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Introduction* During the past few years the van der Waerden
conjecture on the minimum of the permanent of a doubly stochastic
matrix has received considerable attention. (See Marcus and Newman
[1] and [2], Marcus and Mine [1], among others.) This conjecture
states that if A is a doubly stochastic matrix, i.e. if

an ̂  0, Σ an = ΣΣ

then the permanent of A is Ξ>w! n~n. (The permanent of A is Σ Π αicr(<),
where the summation is taken over all permutations σ in the symmetric
group.) Despite the seemingly elementary character of the conjecture,
it is, so far as the present authors are aware, still unresolved in
general, although it has been settled in some special cases. (See the
above references.)

An implication of the conjecture is that some term of the permanent
expansion must be greater than or equal to n~n. This was established
by Marcus and Mine [1] in 1962. Specifically they showed that if
Π da is not exceeded by any other term in the permanent expansion,
then

(1) Σ log α« ^ Σ Σ aio log aid ^ n log n~x .

The second inequality above is a simple application of Jensen's inequality
using the convex function x log x; the first inequality is the key to the
problem. It is the extension of this inequality to functions defined on
the unit square that is referred to in the title of this paper. We will
show in §4 that under suitable hypotheses

(2) co > fX \ogf(x, x) dx ^ [ [f(x, y) logf(x, y) dxdy ^ 0 .
Jo Jo Jo

The proof of (2) (and incidentally a new proof of (1)) is based
ultimately on the following theorem:

THEOREM 1. Let S be an arbitrary set and f(p, q) a real-valued
function defined on S x S with the following property:

(C) if pl9 ' , pn is any finite sequence of points in S, not
necessarily distinct, then
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f(Vi, V,) + /(ft, ft) + + /(P-i, P.) + f(pn, ft) ^ 0 .

Then there exists a real valued function φ defined on S such that
for all (p, q)eS x S

f(p, q) ^ φ{p) - φ(q) .

Furthermore, given any s e S, we may determine φ(p) so that for
-all peS

/(ft s) ^ φ(p) ^ -/(s, p) , and φ{s) = 0 .

This theorem for finite sets S is essentially contained in a paper
by S. N. Afriat [1] which appeared in 1963 in connection with a study
of empirical preference analysis in economics. Theorem 1 was discovered
independently by the authors in their study of the van der Waerden
conjecture; it is very closely related to the linear programming dual
of a theorem proved by Garret Birkhoff [1], which states that the
doubly stochastic matrices are the convex hull of the permutation
matrices. Indeed it was this last fact which persuaded us that Theorem
1 could be applied directly to the van der Waerden conjecture. In § 1
we will give a proof of this theorem which differs essentially from
that for the finite case given by Afriat; it is certainly much shorter.

The proof of (2) to be given in §§3 and 4 will depend on Theorem
1 and on the following "Arzela type" compactness result proved by
M. Riesz. We state it, for reference, in the form that we shall use it.
It is also convenient to state here a partial converse of the Fubini
theorem proved by L. Tonelli.

THEOREM A (M. Riesz). Let M be a set of functions in L (0,1).

If
1° there exists a constant K such that for all x(t) e M

and if

2° for every ε > 0, there is a δ > 0 such that for all x(t)e M
and all h for which \ h \ < d

Γ| x(t + h)-~ x(t) \dt<ε ,
Jo

then the set M is conditionally compact in the sense of the metric
of L. A proof of the above result can be found in Nemyckii [1].

THEOREM B (Fubini converse: L. Tonelli). Let f(x, y) be measurable
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on the unit square. If for almost all x, \f(x,y)\ is summable as a
function of y, and if

\dx \ \f(x,y)\dy
Jo Jo

exists as an iterated integral and is finite, then f(x, y) is summable
on the unit square.

A proof of this theorem is in McShane [1].

1* Proof of theorem 1* Define g(p, q) = f(p, q) for p Φ q and
9(P, V) = 0. Then g satisfies condition (C) and / ^ g. Choose a fixed
se S and define

φ(p) = lub{g(p, qx) + g(qu ga) + + g(qn-i, Qn) + 0(ff«, s)}

where the least upper bound is taken over all finite sequences qlf , qn

selected from S. Since g satisfies (C) the finite sum is always ^ — g(s, p),
and so the least upper bound is finite. Now fix qx = q and let the
remaining q{ range unrestricted. The definition of φ yields at once
φ{p) ^ g(p, q) + φ(q) so that f(p, q) ^ g(p, q) ^ φ{p) - φ(q) as claimed.
Finally f(p, s) ^ g{p, s) ^ <p(p) ^ — g(s, p) g —f(s, p), which completes
the proof.

It may be worth remarking that if the range of / is any conditionally
complete lattice ordered group, the proof goes through unchanged.

2 Proof of the matrix theorem* In this section we give a proof
of inequality (1) based on Theorem 1. Suppose as stated in the introduc-
tion that the n x n matrix A is doubly stochastic and that Π au ^
Π ttiσu) for all permutations σ. It is technically convenient to assume
for the moment also that ai3 > 0.

Let bi:i = loga{j — logα^; then bid as a function on S x S, S =
{1, 2, •••,%}, is easily seen to satisfy condition (C). (This follows
readily from bi{ = 0 and Σ hσd) ^ 0 for all σ.) Hence there exists a
vector c{ such that b{j ^ c.L — cό. Thus

log ai3- ^ log au + c, - c3- , i, j = 1, . . . , n ,.

so that

aiό log ai3 ^ ai5 log au + ai3- c{ - aί3- c3 .

If we now sum first with respect to j and then with respect to i, the
vector c{ drops out and we have

Σ Σ α<i log ai3 ^ Σ log α« .
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The positivity restriction of the aiS is easily removed by a simple
continuity argument.

3* Functions on the unit square* In this and the following
section we shift our attention from the discrete matrix situation of § 2
and study an analogous situation on the unit square.

Let I denote the half open unit interval [0,1) and J^Γ the class
of one-to-one measure preserving transformations of I onto I. We will
prove the following theorem:

THEOREM 2. Let f(x, y) be a measurable function on I x I which
satisfies

1° for all Te^~,f(x, Tx)eL(I) and [fix, Tx)dx ^ 0,

and

2° the limit as δ —> 0 of Γ \f(x, x + δ) | dx = 0.
Jo

(The function f(x9 y) is defined outside I x I to be periodic of period
one in x and y.) Then there exists a function φeL (I) such that
for almost all (x,y)e I x /

f(χ, y) S φ{χ) - φ(y).

The proof of Theorem 2 requires two lemmas. (Throughout this
section we will assume that 1° and 2° above hold.)

LEMMA 1. Let Ea.1 be the union of a finite number of disjoint
intervals and let T e J7~ be such that TE = E. Then

(3) ( f(x, Tx) dx^O.
JE

Proof. We may assume that the intervals of E are semi-open
(open on the right), so that the same is true of the finite set of non-
continuous intervals that compose I — E. Let J = [α, b) be one such
interval of I — E. Define a measure preserving transformation Un on
J as follows: set δn = (b — a)/2n and

Unx = x + δn , a + 2(k - l)δn ^ x < a + (2k - l)δn

Un x = x - δn , a + (2k - l)δ ft ^ x < a + 2k δn ,

k = 1, . . . , w .

Then

I ̂ , Un x) s j[ \flx, x + δn)\dx + ̂  \f(x, x-δn)\ dx

0 as n -> oo by 2° of Theorem 2 .
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If we define Un similarly on each of the finite set of J d — E, and
Un x = Tx for x e E, then Une^~ and

( f(x, Un x) dx + \ f(x, Tx) dx ^ 0 ,
JI-E JE

by 1° of Theorem 2. Since ί f(x, Un x) dx -» 0, the result follows.
JI-E

LEMMA 2. Let f(x, y) be as in Theorem 2. Define for 0 < λ < 1

( 4 ) f{x, y; λ) - λ \kf(χ + t,y + t)dt.
λ Jo

Then f(x, y; λ) satisfies condition (C) of Theorem 1 on I x /.

Proof. We prove the lemma for the function λ/(a$, 2/; λ). Define
jFte, α?a, , xn; λ) = λ/fo, α?a; λ) + + λ / K , ay λ) = Ffo λ). We
will show that given any ordered set x = (xlf , xn), F(x; λ) ^ 0 for
all 0 < λ < 1. The following two easily verified properties of F(x; λ)
will be required:
(5a) given any finite ordered set x, there are finite ordered sets x{i),

each of which has distinct components, and elements xdf such that
identically in λ

F(x; λ) = F(x{1); λ) + . . . + F(x{k); λ)

+ F(xu xλ\ λ) + + F(xp, xp; λ)

{5b) identically in x

F(x; λ) - F(x; λx) + F(x + \; λ2) + . . + F(x + λx + + λ,_i; λk) ,

where λ = λx + + Xk.
(We leave to the reader the verification of the above.)

As a consequence of Lemma 1 (F(xj9 x3-; λ) g 0) and (5a), it will
suffice to prove F(x; λ) ^ 0 when the components of x are distinct.
Suppose then that x = (xl9 , xn), xi Φ xd for i Φ j , 0 ^ Xι < 1, and
consider for the moment the xt rearranged in increasing order, say
Vi, , V«- We define λ* = Min {y2 - ylf yz - y2, , yn - yn-l9 yx +

1 — Vn}, and note that λ* > 0 by our conditions on the xt. Suppose
ίirst that 0 < λ ^ λ ,̂ and let E be the set of points x{ + t (i = 1, , n;
0 ^ ί < λ) reduced modulo 1. For 0 k ί < λ define Γ(aji + ί) = xi+1 + t,
1 = 1, , n — 1 and Γ(ίc% + *) = «! + *, where again all numbers are
reduced modulo 1. Since λ ^ λ*, T is well defined on i?and TE = E.
For xel — E, define Tec = a?, and we have Te^Z By the periodicity
of/,

F(α?; λ) = ί /(a?, Γx) dx, which is ^ 0 by Lemma 1 .
JE
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We have shown, then, that

( 6 ) for 0 < λ ^ λ* , F(x; λ) ^ 0 .

Finally, since for 0 < λ < 1 we may write λ = k λ* 4- r where k is
a nonnegative integer and 0 ^ r < λ*, we see that (5b) and (6) complete
the proof. (This is equivalent to iterating T k times with λ = λ^
and then using T with λ = r.)

Before staring the proof of Theorem 2 we make a heuristic remark
about hypothesis 2°. If fix, y) ^ φ(x) - φ(y),f(%, x) = 0, and all the
functions are smoothly differentiable, then the surfaces z = f(x, y) and
z = φ{χ) — φ(y) are tangent along y = x, and so φ(x) is determined
(up to an additive constant) by φ'(x) = fx{x, x). This suggests strongly
that the "nature" of ψ in general is determined by the behavior of
fix, y) in the neighborhood of y = x. This will become clear in the
proof that follows; later we will mention some consequences to φ of
altering 2°.

We proceed now to the proof of Theorem 2. By Theorem 1 and
Lemma 2 we know that for each λ, 0 < λ < 1, and for any s e /, we
can find a function φ(x\ s, λ) such that for all (x,y)elx I

( 7 ) f{x, y; λ) ^ φ(x; 8, λ) - <p(y; s, λ) ,

f(x, 8; λ) g φ(x; β, λ) ^ -f(s, x; λ) ,

and

φ(s; s, λ) = 0 .

The remainder of the proof will be devoted to analyzing the (conditional)
compactness of the family {φ(x; s, λ)} in L (I).

Theorem A (Riesz-Arzela) tells us that conditional compactness is-
implied by equicontinuity and uniform boundedness. We have from (7)>

(8) f{x, y; λ) S φ(x; s, λ) - φ(y; s, λ) ^ -fiy, x; λ) ,

so that

(9 ) I φ(x + δ; s, λ) - φix; s, λ) | ^ \f(x + d, x;X)\ + \f(x9 x + δ; λ) |

f [{M + δ,x)\ + \fix, x
λ Jo

Thus by 2°, φ(x; s, λ) is continuous and hence measurable. Furthermore
from the first inequality of (9) and Theorem B we have easily

(10) 1 I φ(x + δ; s, λ) — φix; s, λ)
Jo

dx
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so that the entire family {φ(x; s, λ)} is equicontinuous (L).
Uniform boundedness (L) is more of a problem. We have found

it necessary to choose an appropriate sub-family, and this will be done
in the following paragraphs.

Since f(x, y) is measurable on / x I we conclude from 2° and
Theorem B that there exists a number a > 0 such that / is summable
on the set P bounded by the lines x = 0, x = 1, y = x ± a. We define
f(x, y) — f(x, y) on P and all points in the plane congruent to P modulo
one in x and y; elsewhere we set f(x, y) = 0.

We will choose sx e I so that 0 ^ sL < a, and both (11) and (12)
are satisfied:

(11) as λ — 0

lim — \ l dx\ \f(x, y)\dy=\ \f(su y) \ dy < oo ,
λ Jsi JO JO

and

i

lim —
λ

and

dy\ \f(x, y)\dx= \f(x, s,) \ dx <
JO JO

(12) as n—> co, for almost all x e I,

lim/„(«!, α) = f(s19 x) , and lim/Λ(a?, s j = /(x, s2) ,

where fn(x, y) = /(x, /̂ w 1 ) .

For almost all se I (11) holds since fe L(P) and so e L(I x I).
Similarly, (12) is valid for almost all sel by the fundamental theorem
of calculus. (We introduce fn in (12) to avoid some possible measurability
difficulties.) Thus sx can certainly be chosen as required.

We will now show that the family {φ(x; sl9 n~λ)} is uniformly
bounded (L). We choose s2f •• ,sA. so that

(13)

(14)

(15)

and

S%+i ^i

Si satisfies

Now define

< 2α

(11)

[al9 \

s±< s2<

for i = 1,

when sλ is

a s Ύb *

lim fn(su

lim fn(Si,

) = LO, * +

• < sk < 1 ,

. . . , f e - l ,

replaced by s{

. Si) = /(Si, ^)

«)> (αΛ, δ*) =

and

>

1 -

2,

- α ,

- sΛ < α

• , fe; and

6 — Δ,

1), and (c^

finally

•..,fe.

:, W -
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(Si — a, Si + α), i = 2, , fc — 1. The union of these intervals covers
J. Write φn(x; sλ) for <p(a;; su n~x). Then by (8)

(16)

Hence

I φn(x; 8j I ̂  |Λ(α?, «,) I + |/.(e<f a?) | + I ?>»(«*; βi) I ,

for # e J and ΐ = 1, , k .

(17)

^ P IΛ(«, «i) I da? + Γ* |/»(«i, α?) I do?

^ At + Bi + C{, where ,

for 1 ̂  i ^ Λ, by (14)

M # l/(ί», J/)

Jsί JO

n\ dx\ \f(x, y)\dy>

C, - 0, by (7) ,

and for 2 ^ i ^ fc, by (15)

C4 - (b, - α,) Z^δ {\fn(8if s,) I

Since

- α 4 ) | ^ ( e < f s,)

(18) ^ ( ^ Si) I dx ; «i) I

we have established uniform boundedness (L) and Theorem A applies.
We have then that some subsequence {φH(x; sx)} converges to φ(x)
(say) in L and fnt(x, y) converges to f(x, y) for almost all (a?, y)e I xl.
Since for all (x, y), fn(x, y) g φn(x; sλ) — <pn(y; s j , Theorem 2 follows.

We now return to our remark preceding the proof of the theorem.
We have just seen that the fact that φ is in L(I) has been determined
by condition 2°. It is reasonable to expect that a strengthening- of 2°
should lead to a "smoothing" of φ, and this is indeed the case. If 2°
is replaced by

"2£ for fixed p (1 ̂  p < co) the limit as 8 -> 0 of

then φ e I/p(/). The modification of the proof consists of invoking the
Lp version of Theorem A, which is also to be found in Nemyckii [1].
Finally if we replace 2° by
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"2Z the limit as δ -> 0 of ess sup, \f(x, x + δ) | - 0" ,

then φeC(I). (The classical Arzela or Ascoli theorem is used.)

4* The permanent theorem in L(I X /)• In this section we
state and prove the L(I x /) analog of the discrete theorem of § 2.

THEOREM 3. Suppose that f(x, y) defined and measurable on
I x I has the following properties:

1° fix, V)>0 and [ f(x, y) dx - [ f(x, y) dy - 1, for all x, y;
Jo Jo

2° for all Te^\ f(x, Tx) is measurable,

f(Xy X)

and

and

log f(x, x + δ) dx —̂  0 , as o —-> 0 .

w / l o g / e L ( ί x /) and

log/(a?, .τ) rfa; ̂  f(x, y) logf(x, y) dxdy ^ 0 .

o Jo Jo

Proof. Conditions 2° and 3° above suffice for the application of
Theorem 2 to the function log [f(x, y)/f(x, x)]' there exists φ(x)eL(I)
such that for almost all x,y

(20) log f}^ yl £ φ(x) - φ(y) .
f(x, x)

If we multiply by f(x, y) and rearrange, we find

(21) -—^f(x,v)logf(x,y)
e

^ f{χ, y) log/(α, x) + φ(χ)f(χ, y) - φ(v)f(χ, y),

where the first inequality is a consequence of — 1/e = î& x log a; for
x > 0. Now, as functions of #, /(x, y) log/(x, x) and <p(x)f(x, y) both
G L by 1° above. Again, if we apply Theorem B to φ{y)f{x, y),
integrating first with respect to x9 we see that φ(y)f(x, y) e L(I x /),
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and so for almost all x, that function is summable as a function of y.
Thus by (21), f(x, y) \ogf(x, y) is summable y for almost all x,

and integrating gives

(22) 0^ \1f(x,y)logf(x,y)dy
Jo

^ log/(α, a?) + 9>(α) - \ <P(y)f(x, V) dy .
Jo

( /ri \ ri

The first inequality above is Jensen: ψl \ fdy) ^ I ψ(f)dy, where
\ \Jo / Jo

φ(x) = # log x.) Hence

(23) logf(x, x) ̂  [ ψ{y)f{x, y) dy - φ(x) ,
Jo

and so log/(x, x) is bounded below by a summable function. Now,
since by 1° and Theorem B feL(Ix I), it follows that for almost
all δ, f(x, x + δ) e L(I). We choose δ so that f(x, x + δ)e L(I).
Since log/(a?, α? + δ)< f(x, x + δ), and since by 2° log/(a?, x + δ) -
\ogf(x, x)eL(I), we see that

(24) log/(a?, x) ύ f(x, x + δ) + log [f(x, x)/f(x, x + δ)] ,

and so log f(x, x) is also bounded above by a summable function; hence
logf(x, x)eL(I). Returning to (21) we apply Theorem B and have
/ log/eL(J x /); then integrating both sides of (22) φ drops out and
we have (19) as asserted.
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