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0. SHISHA AND G. T. CARGO

1. Let -co < α < 6 < c o , and let Φ denote the set of all functions,
continuous and strictly monotone in [α, 6]. For every φ eΦ, every
positive integer n, every xl9x29 '9xn of [α, 6], and every positive
Qiy Q2, , Qn with Σ?=i #v = 1, we consider the mean

Mφ(x19 x2, , xn\ q19 q2, , qn) = φ-\Σil=i qM®*)) .

Let ψ and χ be elements of Φ. We write

if and only if the inequality Mψ(xi9 x2, , x J ?i, g2, , qn) ^
M^Xi, x29 -. , αΛ i g1? g2, , g j holds for every w ^ 1, every xx, x2,
xn of [α, 6], and every positive q19 q29 , gΛ with Σ?=i9v — l

A well-known necessary and sufficient condition for (1) to hold is
that χiψ-^x)) be convex in [ψ(a), ψ(b)] (or [ψ(b), ψ(a)]) if χ is increas-
ing, and that Xiψ'^ix)) be concave there if X is decreasing.

It is not difficult to see that (1) holds if and only if Mψ(x19 x2 \ ql9 q2) ^
Mx(xlf x21 ql9 q2) for every xl9 x2 of [a9 b] and every positive ql9 q2 with
Qi + Q2 — 1, which in turn holds if and only if Mψ{x19 x211/2, 1/2) ^
Mχί^i, x2\ 1/2, 1/2) for every x19 x2 of [α, 6],

Similarly, we write

( 2 ) Mir<Mχ

if and only if the inequality

Mf(x19 x29 , a?Λ I QΊ, g2 , qn) < Mx(x1} x2, . , xn | qu q2 . . , O

holds for every w ^ 2, every ^ , x2, — , xn (not all equal) of [α, 6], and
every positive ql9 q2, - *,qn with Σ?=i9v = l A necessary and suffi-
cient condition for (2) to hold is that %(ψ~\x)) be strictly convex in
[ψ(a)f ψ(b)] (or [^(6), ψ(a)]) if X is increasing, and that Xiψ^x)) be
strictly concave there if χ is decreasing. Also, (2) holds if and only
if Mψ(xl9 x21 ?i, q2) < M%(x19 x21 q19 q2) for every xx, x2 {Φ xx) of [α, b] and

every positive QΊ, q2 with ^ + g2 = 1, which in turn holds if and only
if Mγ(x19 x211/2, 1/2) < M%(xly x2 \ 1/2, 1/2) for every xx and x2 (Φ x,) of
[α, 6].

2. In this paper we give simple criteria for the validity of (1)
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and of (2), and then we give a few applications.

THEOREM 1. Let ψ and χ be elements of Φ differentiate in (a, b),
and let ψ' Φ 0 there. A necessary and sufficient condition for (1) to
hold is that X'lψ' be nondecreasing in (a, 6) if ψ and χ are monotone
in the same sense, and that χ'lψf be nonincreasing there if ψ and χ
are monotone in opposite senses.

Proof. Consider the function u(x) ΞΞ χ{ψ~\x)). Let / denote the
open interval joining ψ(a) to ψ(b), and let J be the closure of /. For
every f e J, we have

Suppose that ψ and χ are monotone in the same sense. Then (1) holds
if and only if u(x) is convex in J in case χ increases, and if and only
if u(x) is concave there in case χ decreases. So (1) holds if and only
if vf(x) is nondecreasing in J in case ψ increases, and if and only if
u\x) is nonincreasing there in case ψ decreases. From this, with the
aid of (3), one easily infers that (1) is equivalent to χ'jψ' being non-
decreasing in (a, b). Similarly one shows that (1) is equivalent to
X'jψ' being nonincreasing in (α, 6), if ψ and χ are monotone in opposite
senses.

One can modify Theorem 1 by replacing in it (1) by (2), "non-
decreasing" by "strictly increasing," and "nonincreasing" by "strictly
decreasing."

3 Given a function ψ, one may construct by means of Riemann-
Stieltjes integrals functions X such that Mψ S M%. In fact, we have
the following

THEOREM 2. Let ψ be a real function, continuous in [a, b] and
differentiate in (a, b). Let m(x) be nondecreasing or nonincreasing
in [a, b], continuous in (a, b), and suppose m{x)ψ\x) Φ 0 throughout
(a, b). Let C be a real constant, and for every x e [a, b] let

χ(x) = C+ \Xm(t)dψ(t) .
Jα

Then ψ and χ belong to Φ. If m(x) is positive in (a, b) and non-
decreasing in [a, b], or negative in (a, b) and nonincreasing in [a, b],
then Mψ S Λfχ. Otherwise, M% ^

Proof. Since ψ' Φ 0 in (a, b), by a well known property of the
derivative, ψ' is either positive throughout (a, b), or negative through-
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out (a, b). Thus ψ is strictly monotone in [a, 6], Also, by well-known
properties of the Riemann-Stieltjes integral, χ is continuous in [a, 6],
and χ'(x) — m(x)ψ'(x) throughout (a, b) (and so χ is strictly monotone
in [a, 6]). If m(a?) is positive in (a, 6) and nondecreasing in [α, 6], then
α/r and X are monotone in the same sense in [a, 6], χ'/ψ' is nondecreas-
ing in (a, 6), and hence by Theorem 1, Jlί^ ^ Λfx. Similarly the rest
of Theorem 2 follows.

Theorem 2 can be modified by replacing in it "nondecreasing"
by "strictly increasing," "nonincreasing" by "strictly decreasing,"
"ikZ> ^ Mx" by "MΨ < MJ and "M χ ^ Λf*" by "Mx < i l V '

4* A converse of Theorem 2 is the following

THEOREM 3. Let ψ and χ be elements of Φ differentiable in (a, b)r

and suppose ψ' Φ 0 there. Suppose, furthermore, that Mψ ^ M%.

Then there exists a function m(x), nondecreasing in (a, b) if ψ and

χ are monotone in the same sense, and nonincreasing there if ψ and

X are monotone in opposite senses, such that throughout [a, b]

m(t)ψ'(t)dt (a Lebesgue integral) .
α

Proof. For every x e (a, b), let m(x) = χ'(x)/ψ'(x). By Theorem 1,
m(x) has the monotonicity property steated in Theorem 3. Now for
every x e [a, b]

X(x) - X(a) = \Xχ'(t)dt = \Xm{t)ψ'{t)dt

(cf. [5], Theorems 269 (p. 188) and 264 (p. 183)).

REMARK. Observe that the integral in (4) can be written, under

appropriate conditions, as a Riemman-Stieltjes integral: \ m(t)dψ(t).

[Cf. loc. cit, Theorem 322.1 (p. 254), and 322 (p. 253)].
Theorem 3 remains valid if we replace in it "Λfy ^ Λfχ" by

"Mψ < Mx," "nondecreasing" by "strictly increasing," and "nonincreas-
ing" by "strictly decreasing."

5* It is known that if the end-point a is positive and r < s,
rs Φ 0, then Mxr < MχS, and Mx-\r\ < Mlogx < ilί>ι. Consequently, if
α > 0 then for every real r (φ 0,1), Miχry < MχTj and M{]osxV< Mlogx.
The question thus arises: Under what' conditions on a function φ
does one have Mφ, < Mφ (or Mφ, ^ Mφ)Ί

THEOREM 4. A necessary and sufficient condition for a real
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function φ to fulfill the conditions (<X)~(Ύ) below is that φ{x) should

be {throughout [α, b]) of one of the forms A + \ exp C(t)dt9 A —

VexpC(t)dt, A + \ exp{ — C{t)}dt, A — \ exp{ — C{t)}dt, where A is a

real number, and C(t) is a function, continuous and convex in [a, b],

differentiate in {a, b), and satisfying there C'{x) < 0.

(a) φ is twice differentiate in (α, b), φ'{a) and φ\b) exist as right
and left hand derivatives, respectively, φf(a)φ'(b) Φ 0, and φ' is con-
tinuous in [a, b].

(β) φ'φ" Φ 0 throughout (a, b) {and hence ψ and ψτ are strictly
monotone in [a, b]).

( 7 ) Mφ,^Mψ.

Proof.

Necessity. By Theorem 1, φ'jφ" is either positive and nondecreas-
ing in {a, b), or negative and nonincreasing there. Thus, φ"\φf is
either positive and nonnincreasing in {a, b), or negative and non-
decreasing there. In the first case we set C{x) = —log | φ'(x) \ (in [a, b]).
Then C{x) is continuous in [a, b] and C'{x) < 0 in (a, b). Also C'{x) is
nondecreasing in {a, b), and, therefore, C{x) is convex in [a, b]. Either

exp{ — C{t)}dt, or for every x e [a, b],
exp{ — C{t)}dt. In the second case, we set C{x) —

a

log I φ'{x) I (in [a, b]). Then C{x) is continuous in [a, b], C{x) < 0 in
{a, b), and, again, C(x) is convex in [a, 6]. Either for every xe[a, b],

exp C{t)dt, of for every x e [a, b], φ{x) = φ{a) —
exp C(t)dt.

a

Sufficiency, {a) and (β) clearly hold. Also, by the convexity of
C{t), C'{t) is nondecreasing in {a, b). Now, either throughout {a, b),
φ'jφ" = {C{t)}~\ or throughout {a, b), φ'lφ" = -{C\t)Y\ In the first
case, φ' and φ are monotone in opposite senses, and φ'jφ" is non-
increasing in {a, b). In the second case, φf and φ are monotone in the
same sense, and φ'jφ" is nondecreasing in {a, b). In either case, by
Theorem 1, Mφ, ^ Mφ.

Theorem 4 can be modified by replacing in it "convex" by "strictly
convex," and "Mφ, ^ Mφ" by "Mφ, < Mφ."

THEOREM 5. Let φ be strictly monotone in [a, b] and three-times
differentiate in {a, b). Let φf be continuous in [a, b] {where φr{a)
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and φ'(b) are right and left hand derivatives, respectively). Let
φ" φ 0 throughout (a, b). A necessary and sufficient condition for
Mφ, ^ Mφ to hold is that φf'2 ^ <p'φr" throughout {a, b) if φ' and φ
are monotone in the same sense, and that φ"2 ^ φ'φf" throughout
{a, b) if φr and φ are monotone in opposite senses.

Theorem 5 follows easily from Theorem 1 by considering the de-
rivative of φ'\φ".

Similarly, under the hypotheses of Theorem 5, Mφ> < Mφ holds,
if φ"2 > φ'φtn throughout (a, b) and φ and φ' are monotone in the
same sense, and also if φ1'2 < φ'φ'" throughout {a, b) and φ and φ'
are monotone in opposite senses.

As an example, let a = 0, b = π/2, φ(x) = cos x. φ and φr are
monotone in the same sense in [0, π/2], and φ"2 — cos2x > — ύv?% =
φ'φ'" throughout (0, π/2). Therefore, MLsinίC < Mcosx, i.e., Msίnx < Mcosx.

6. In a previous paper [3] the authors studied, for given positive

Q13 ?a, •••,£» ( w i t h Σ ? = i Qy = 1)> t h e r a t i o

\F(x±,x2, -- ,xn)

\ = M%(x19 x2, •••,«?„! ql9 q2, , qn)/Mf(x19 x2, , xn \ qlf q2, , qn)

where 0 < a, ψ(x) = xr, χ(x) = xs (r < s, rs Φ 0).

Their purpose was to find an upper bound for F in

I = {(x19 x2, , xn): a g xk <L b, k = 1, 2, , n} .

A crucial step was to show that if X* is a point of I such that
F(X*) = max {F(X) :XeI}, then X* is necessarily a vertex of I. In
particular, X* cannot be an interior point of I. This last property
holds under quite general conditions:

THEOREM 6. Let ψ and χ be elements of Φ, differentiate in
(a, b), and satisfying ψ'χ' Φ 0 there. Assume 0 g [a, 6], Mψ < M%.
Let q19 , qn (n > 1) be given positive numbers with Σv=i Qv — 1? crnd
let I be as in the last paragraph. Let F of (5) attain its maximum
in I at a point X* = (ccf, •••,#*) o/ /. Then X* is not an interior
point of I.

Proof. Suppose that some x* satisfies a < xf < b. Then
(ΘF/Θxj).^,*. = 0, i.e.,

V = l , 2 , - - , Λ
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Thus

χ'(χ!W(χf) =

x

Let C denote the right hand side of the last equality. If both xf and
xϊ are interior points of [α, 6], then χ'(xf)/φ'(xf) = C = X'(xt)lψ'(x*),
and hence, by the strict monotonicity of χ'/Ψ' [see the end of § 2],
#* = x*. Thus, if X* were an interior point of /, we would have
x* = x* =...=: x*9 and therefore

1 - F(xf, xϊ, ••-,«*) = max {F(X) :XeI}>l.
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