QUASI-POSITIVE OPERATORS

D. W. Sasser

1. Introduction. The classical results of Perron and Frobenius ([6], [7], [12]) assert that a finite dimensional, nonnegative, non-nilpotent matrix has a positive eigenvalue which is not exceeded in absolute value by any other eigenvalue and the matrix has a nonnegative eigenvector corresponding to this positive eigenvalue. If the matrix has strictly positive entries, then there is a positive eigenvalue which exceeds every other eigenvalue in absolute value, and the corresponding space of eigenvectors is one-dimensional and is spanned by a vector with strictly positive coordinates. Numerous generalizations of these results to order-preserving linear operators acting in ordered linear spaces have appeared in recent years; a short bibliography is included at the end of this paper. In this paper a generalization in a different direction is obtained which reduces, in the finite dimensional case, to the assertion that the Perron-Frobenius theorems hold if it is only required that all but a finite number of the powers of the matrix satisfy the given conditions. The principal results are theorems of the Perron-Frobenius type which are applicable to any compact linear operator (the compactness condition is weakened somewhat), acting in an ordered real Banach space B, which satisfies a condition weaker than order-preserving. In addition, the results apply to the case when the "cone" of positive elements in B has no interior.
2. Preliminaries. Throughout the sequel, B will denote a real Banach space with norm $\|\cdot\|$. The complex extension of B, \widetilde{B}, is the complex Banach space $\widetilde{B}=\{x+i y \mid x, y \in B\}$ with the obvious definitions of addition and complex scalar multiplication and the norm in \widetilde{B} is $\|x+i y\|=\sup _{\theta}\|\cos \theta \cdot x+\sin \theta \cdot y\|$. If T is a (real) linear operator on B into B, the (complex) linear operator \widetilde{T} on \widetilde{B} into \widetilde{B} is defined by $\widetilde{T}(x+i y)=T x+i T y . \quad T$ is bounded if and only if \widetilde{T} is bounded, in which case $\|T\|=\|\widetilde{T}\|$. The spectrum, $\sigma(T)$, and the resolvent, $\rho(T)$, are defined to be the corresponding sets associated with the operator \widetilde{T}. We denote the spectral radius of T by $r_{T}, r_{T}=$ $\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}=\sup _{\lambda \in \sigma(T)}|\lambda|$ (provided $\left.\|T\|<\infty\right)$.

In all of our results there will be a basic assumption that the linear operator under consideration is quasi-compact, a notion which we will now define. A bounded linear operator T is compact (also called completely continuous) if each sequence $T x_{1}, T x_{2}, \cdots$, with

[^0]$\left\|x_{i}\right\| \leqq 1, i=1,2, \cdots$, has a convergent subsequence. T is quasicompact if there exists a positive integer n and a bounded linear operator V such that $T^{n}-V$ is compact and $r_{V}<r_{T .}^{n}{ }^{1}$ There are a number of properties possessed by quasi-compact operators some of which we state now without proof. ${ }^{2}$ If $\lambda_{0} \in \sigma(T)$ and $\left|\lambda_{0}\right|=r_{T}$, then λ_{0} is an isolated point in $\sigma(T)$ and is in the point spectrum, i.e., $\left(\lambda_{0} I-\widetilde{T}\right)$ is not one-to-one. The resolvent operator, $R(\lambda, T) \equiv(\lambda I-\widetilde{T})^{-1}$, exists. in a neighborhood of λ_{0} (excluding λ_{0}) and, in this neighborhood, $R(\lambda, T)$ has a Laurent series expansion of the form
$$
R(\lambda, T)=\sum_{k=1}^{n\left(\lambda_{0}\right)} \frac{\left(\lambda_{0} I-\widetilde{T}\right)^{k-1}}{\left(\lambda-\lambda_{0}\right)^{k}} P\left(\lambda_{0}, T\right)+\sum_{k=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{k} A_{k}\left(\lambda_{0}, T\right)
$$
where $A_{k}\left(\lambda_{0}, T\right)$ is a bounded linear operator and the series on the right is convergent in the uniform operator topology. The integer $n\left(\lambda_{0}\right)$ is the index of λ_{0}, i.e., $n\left(\lambda_{0}\right)$ is the smallest integer n such that $\left\{x \mid\left(\lambda_{0} I-\widetilde{T}\right)^{n+1} x=0\right\}=\left\{x \mid\left(\lambda_{0} I-\widetilde{T}\right)^{n} x=0\right\} . \quad P\left(\lambda_{0}, T\right)$ is a projection onto the finite dimensional space $\left\{x \mid\left(\lambda_{0} I-\widetilde{T}\right)^{n\left(\lambda_{0}\right)} x=0\right\}$. The minimal property of $n\left(\lambda_{0}\right)$ implies that $\left(\lambda_{0} I-\widetilde{T}\right)^{n\left(\lambda_{0}\right)-1} P\left(\lambda_{0}, T\right) \neq 0$.

We recall that for an arbitrary bounded linear operator, the resolvent $R(\lambda, T)=(\lambda I-\widetilde{T})^{-1}$ is an analytic function of λ for $\lambda \in \rho(T)$ and the expansion $R(\lambda, T)=\sum_{k=0}^{\infty}(1 / \lambda)^{k+1} \widetilde{T}^{k}$ is valid for $|\lambda|>r_{T}$.
3. Quasi-positive operators. A cone in B is a convex set K which contains λx for all $\lambda \geqq 0$ if it contains $x . K$ is a proper cone if $x \in K$ and $-x \in K$ imply $x=0$. A cone K induces an ordering \geqq in B with $x \geqq y$ if and only if $x-y \in K$. This transitive ordering satisfies
(1) if $x \geqq y, u \geqq v$, then $x+u \geqq y+v$,
(2) if $x \geqq y$ and $\lambda \geqq 0$, then $\lambda x \geqq \lambda y$, and
(3) $x \geqq y$ if and only if $-y \geqq-x$.

If the cone is proper, then the ordering satisfies, in addition,
(4) if $x \geqq y$ and $y \geqq x$, then $x=y$.

We will use the notation $x>y$ to denote $x \geqq y, x \neq y$. Associated with a cone K is a closed cone K^{+}in the conjugate space B^{*} of continuous, real-valued, linear functions on B, consisting of those $x^{*} \in B^{*}$ with the property that $x^{*}(x) \geqq 0$ for all $x \in K . K^{+}$is a proper cone if and only if the linear space spanned by K is dense in B (a set with this property is called fundamental). This is an easy consequence of the Hahn-Banach theorem on the extension of linear functionals. We will use the notations $x^{*} \geqq y^{*}$ and $x^{*}>y^{*}$ to denote $x^{*}-y^{*} \in K^{+}$

[^1]and $x^{*}-y^{*} \in K^{+}, x^{*} \neq y^{*}$, respectively. An element $x>0\left(x^{*}>0\right)$ will be called strictly positive if $x^{*}(x)>0$ for all $x^{*}>0\left(x^{*}(x)>0\right.$ for all $x>0$).

The following theorem is a characterization of a closed cone and its interior (when the latter is nonvoid) in terms of K^{+}. The proof may be found, for example, in [11] (Theorem 1.3 and its corollaries, pg. 16).

Theorem 1. Let K be a closed cone in B. Then $x \in K$ if and only if $x^{*}(x) \geqq 0$ for all $x^{*} \geqq 0$. If K has a nonvoid interior, then
(1) x is in the interior of K if and only if x is strictly positive and
(2) for each x on the boundary of K there exists an $x^{*}>0$ such that $x^{*}(x)=0$.

Corollary. If K is a closed proper cone, K^{+}is a total set of functionals, i.e., for each $x \neq 0, x \in B$, there exists $x^{*}>0$ such that $x^{*}(x) \neq 0$.

Proof. Since either $x \notin K$ or $-x \notin K$ if $x \neq 0$, this follows immediately from Theorem 1.

A linear operator T on B into B will be called positive with respect to a cone K if $T K \subseteq K$. In the absence of ambiguity we will simply say T is positive. In our applications K will be a closed cone and in this case, in view of Theorem 1, T is positive if and only if $x^{*}(T x) \geqq 0$ for all $x \geqq 0, x^{*} \geqq 0$. Since $T x \geqq 0$ if $x \geqq 0$, we have $x^{*}\left(T^{2} x\right) \geqq 0$ and, in general, $x^{*}\left(T^{n} x\right) \geqq 0$ for all n and all $x \geqq 0, x^{*} \geqq 0$. We define T to be quasi-positive if for each pair $x \geqq 0, x^{*} \geqq 0$, there exists an integer $n\left(x, x^{*}\right) \geqq 1$ such that $x^{*}\left(T^{n} x\right) \geqq 0$ if $n \geqq n\left(x, x^{*}\right)$. We define T to be strictly quasi-positive if for each pair $x>0, x^{*}>0$, there exists an integer $n\left(x, x^{*}\right) \geqq 1$ such that $x^{*}\left(T^{n} x\right)>0$ if $n \geqq$ $n\left(x, x^{*}\right)$. Finally we define T to be strongly quasi-positive if it is not nilpotent ${ }^{3}$ and for each pair $x>0, x^{*}>0, \lim \inf _{n \rightarrow \infty} x^{*}\left(T^{n} x\right) /\left\|T^{n}\right\|>0$.
4. Spectral properties. Throughout this section, K will denote a closed proper cone in B and K will be assumed to be fundamental. T will denote a quasi-compact bounded linear operator with spectral radius 1. This restriction on the spectral radius is for convenience only and the results given may be interpreted for a general (quasicompact) bounded linear operator S with spectral radius $r_{s}>0$ by considering the operator $T=\left(1 / r_{S}\right) S$ which has spectral radius 1 .

[^2]Theorem 2. If T is quasi-positive and quasi-compact withspectral radius 1 , then $1 \in \sigma(T)$ and the index of 1 is not exceeded by the index of any other point $\lambda \in \sigma(T),|\lambda|=1$.

Proof. Assume that $1 \in \rho(T)$. Since $\rho(T)$ is open and $R(\lambda, T)$ is analytic in λ for $\lambda \in \rho(T)$, it follows that the function $g(\lambda)=$ $x^{*}(R(1 / \lambda, T) x), x>0, x^{*}>0$, is analytic for $1 / \lambda \in \rho(T)$, in particular for λ in some neighborhood of 1. Moreover, $R(\lambda, T)=\sum_{k=0}^{\infty}(1 / \lambda)^{k+1} \widetilde{T}^{k}$ if $|\lambda|>1$, hence $g(\lambda)=\sum_{k=0}^{\infty} \lambda^{k+1} x^{*}\left(T^{k} x\right)$ if $|\lambda|<1$. A theorem of Pringsheim states that if a power series has nonnegative coefficients and converges in the open unit disk, either 1 is a singularity of the series or the series has radius of convergence greater than $1 .{ }^{4}$ Clearly it is sufficient to assume that all but a finite number of the coefficients are nonnegative. Since $x^{*}\left(T^{n} x\right) \geqq 0$ if $n \geqq n\left(x, x^{*}\right)$, and $g(\lambda)$ is analytic in a neighborhood of 1 , we conclude that the series $\sum_{k=0}^{\infty} \lambda^{k+1} x^{*}\left(T^{k} x\right)$ converges in $|\lambda|<1+\delta$ for some $\delta>0$. By assumption $r_{T}=1$, hence $R(\lambda, T)$ has a singularity somewhere on $|\lambda|=1$, say at λ_{0}. Since T is quasi-compact, the expansion

$$
R(\lambda, T)=\sum_{k=1}^{n} \frac{\left(\lambda_{0} I-\widetilde{T}\right)^{k-1}}{\left(\lambda-\lambda_{0}\right)^{k}} P\left(\lambda_{0}, T\right)+\sum_{k=0}^{n}\left(\lambda-\lambda_{0}\right)^{k} A_{k}\left(\lambda_{0}, T\right)
$$

is valid for $0<\left|\lambda-\lambda_{0}\right|<\delta^{\prime}$, where $n=n\left(\lambda_{0}\right)$ is the index of λ_{0}. and $\quad\left(\lambda_{0} I-\widetilde{T}\right)^{n-1} P\left(\lambda_{0}, T\right) \neq 0$. We may choose $x>0$ such that $\left(\lambda_{0} I-\widetilde{T}\right)^{n-1} P\left(\lambda_{0}, T\right) x=y \neq 0$ since K is fundamental and by Theorem 1 we may choose $x^{*}>0$ such that $x^{*}(y) \neq 0$. It follows easily that

$$
g(\lambda)=\left(\lambda / \lambda_{0}\right)^{n}\left(1 / \lambda_{0}-\lambda\right)^{-n} h(\lambda), \quad\left|1 / \lambda-\lambda_{0}\right|<\delta,
$$

where $h(\lambda)$ is analytic and $h\left(1 / \lambda_{0}\right)=x^{*}(y) \neq 0$. Thus g has a pole at $1 / \lambda_{0}$ which contradicts the fact that g has a Taylor's series about the origin with radius of convergence greater than 1 . Our assumption that $1 \in \rho(T)$ leads to a contradiction, hence $1 \in \sigma(T)$.

Now let the index of 1 be n. It is easy to see that $\lim _{\lambda \rightarrow 1}(\lambda-1)^{k} R(\lambda, T)=0$ if $k>n$. It follows that for $|\lambda|>1$, $\lim _{\lambda \rightarrow 1}(\lambda-1)^{k} \sum_{m=0}^{\infty}(1 / \lambda)^{m+1} x^{*}\left(T^{m} x\right)=0$ for every pair $x>0, x^{*}>0$ and clearly this implies $\lim _{\lambda \rightarrow 1}(\lambda-1)^{k} \sum_{m=j}^{\infty}(1 / \lambda)^{m+1} x^{*}\left(T^{m} x\right)=0 \quad$ if $k>n$ and $j \geqq 0$. If $\lambda_{0} \in \sigma(T),\left|\lambda_{0}\right|=1$ and λ_{0} has index l, then $\lim _{\lambda \rightarrow \lambda_{0}}\left(\lambda-\lambda_{0}\right)^{l} R(\lambda, T) \neq 0$. We may choose $x>0$ and $x^{*}>0$ such that $\lim _{\lambda \rightarrow \lambda_{0}}\left(\lambda-\lambda_{0}\right)^{2} x^{*}(R(\lambda, T) x) \neq 0$ and it follows that for $|\lambda|>1$, $\lim _{\lambda \rightarrow \lambda_{0}}\left(\lambda-\lambda_{0}\right)^{l} \sum_{m=j}^{\infty}(1 / \lambda)^{m+1} x^{*}\left(T^{m} x\right) \neq 0$. Let $\lambda_{0}=e^{i \varphi}, \lambda=\rho e^{i \varphi}, \rho>1$. If $j \geqq n\left(x, x^{*}\right),\left|\left(\lambda-\lambda_{0}\right)^{l} \sum_{m=j}^{\infty}(1 / \lambda)^{m+1} x^{*}\left(T^{m} x\right)\right| \leqq(\rho-1)^{l} \sum_{m=j}^{\infty}(1 / \rho)^{m+1} x^{*}\left(T^{m} x\right)$. The expression on the right in this last inequality tends to zero as

[^3]ρ tends to 1 if $l>n$, hence $l \leqq n$. This completes the proof.
THEOREM 3. If T is quasi-positive and quasi-compact with spectral radius 1 , there exist elements $u>0$ and $u^{*}>0$ such that $T u=u, T^{*} u^{*}=u^{*} .{ }^{5}$

Proof. By Theorem 2, $1 \in \sigma(T)$. We have

$$
R(\lambda, T)=\sum_{k=1}^{n} \frac{(I-\widetilde{T})^{k-1}}{(\lambda-1)^{k}} P(1, T)+\sum_{k=0}^{\infty}(\lambda-1)^{k} A_{k}(1, T)
$$

where $P(1, T)$ is a projection onto the finite-dimensional space $\left\{x \mid(I-\widetilde{T})^{n} x=0\right\}$ and $(I-\widetilde{T})^{n-1} P(1, T) \neq 0$. Let $\Gamma=(I-\widetilde{T})^{n-1} P(1, T)$. It is easy to see that $R(\lambda, T) B \subseteq B$ for λ real. Since $\Gamma=$ $\lim _{\lambda \rightarrow 1}(\lambda-1)^{n} R(\lambda, T)$, it follows that $\Gamma B \subseteq B$. Also $\widetilde{T} \Gamma=\Gamma \widetilde{T}=\Gamma$. Let $x \geqq 0, x^{*} \geqq 0$ be arbitrary and let $N=n\left(x, x^{*}\right)$. If $\lambda>1$, we have $x^{*}\left(T^{N} R(\lambda, T) x\right)=\sum_{m=0}^{\infty}(1 / \lambda)^{m+1} x^{*}\left(T^{N+m}\right) x \geqq 0$. It follows that for $\lambda>1, x^{*}\left(T^{N} \Gamma x\right)=\lim _{\lambda \rightarrow 1}(\lambda-1)^{n} \sum_{m=0}^{\infty}(1 / \lambda)^{m+1} x^{*}\left(T^{N+m} x\right) \geqq 0$. Since $T^{N} \Gamma=\Gamma, \Gamma$ is a positive operator. We choose $v>0$ such that $\Gamma v=$ $u \neq 0$. Then $u>0$ and $T u=T \Gamma v=\Gamma v=u$. We choose $v^{*}>0$ such that $v^{*}(u)>0$. Letting $u^{*}=\Gamma^{*} v^{*}$, we see that for $x \geqq 0, u^{*}(x)=$ $\left(\Gamma^{*} v^{*}\right)(x)=v^{*}(\Gamma x) \geqq 0$ since $v^{*}>0$ and Γ is a positive operator. Hence $u^{*} \geqq 0$, and since $u^{*}(v)=\left(\Gamma^{*} v^{*}\right)(v)=v^{*}(\Gamma v)=v^{*}(u)>0, u^{*}>0$. Finally, we have $\Gamma T=\Gamma$ which implies $T^{*} \Gamma^{*}=\Gamma^{*}$, hence $T^{*} u^{*}=$ $T^{*}\left(\Gamma^{*} v^{*}\right)=\Gamma^{*} v^{*}=u^{*}$ which completes the proof.

For strictly quasi-positive operators we obtain stronger results in the next two theorems.

Theorem 4. If T is strictly quasi-positive and quasi-compact with spectral radius 1 , then $1 \in \sigma(T), 1$ has index one and \widetilde{T} has a representation of the form $\widetilde{T}=\sum_{j=1}^{m} \lambda_{j} P_{j}+S$ where $\lambda_{1}=1,\left|\lambda_{j}\right|=1$, $P_{\jmath}^{2}=P_{j}, \quad S P_{j}=P_{j} S=0, \quad j=1,2, \cdots, m, \quad P_{i} P_{j}=0 \quad$ if $i \neq j, \quad$ and $r_{s}<1$.

Proof. By Theorem 2, $1 \in \sigma(T)$. By Theorem 3, there exists $u^{*}>0$ such that $T^{*} u^{*}=u^{*}$ and for $x>0, u^{*}(x)=u^{*}\left(T^{n} x\right)>0$ if $n \geqq n\left(x, u^{*}\right)$, hence u^{*} is strictly positive. Let the index of 1 be n. Then $\Gamma=\lim _{\lambda \rightarrow 1}(\lambda-1)^{n} R(\lambda, T) \neq 0$. For $\lambda>1$ and arbitrary x we have

$$
\begin{aligned}
u^{*}(\Gamma x) & =\lim _{\lambda \rightarrow 1}(\lambda-1)^{n} \sum_{k=0}^{\infty}(1 / \lambda)^{k+1} u^{*}\left(T^{k} x\right)=\lim _{\lambda \rightarrow 1} u^{*}(x)(\lambda-1)^{n} \sum_{k=0}^{\infty}(1 / \lambda)^{k+1} \\
& =u^{*}(x) \lim _{\lambda \rightarrow 1}(\lambda-1)^{n-1}=0
\end{aligned}
$$

[^4]unless $n=1$. In proving Theorem 3 we showed that Γ is a positive operator, hence there exists $x>0$ such that $\Gamma x>0$ and therfore $u^{*}(\Gamma x)>0$. It follows that $n=1$. By Theorem 2 , every $\lambda_{0} \in \sigma(T)$, $\left|\lambda_{0}\right|=1$, has index 1 and hence $P\left(\lambda_{0}, T\right)=\lim _{\lambda \rightarrow \lambda_{0}}\left(\lambda-\lambda_{0}\right) R(\lambda, T)$ exists and is a projection onto the finite dimensional space $\left\{x \mid\left(\lambda_{0} I-\widetilde{T}\right) x=0\right\}$. Let $\lambda_{1}=1, \lambda_{2} \cdots, \lambda_{m}$ be an enumeration of the points in $\sigma(T)$ with absolute value 1 and let $P_{j}=P\left(\lambda_{j}, T\right)$. Since \widetilde{T} commutes with $R(\lambda, T)$ and $P_{j}=\lim _{\lambda \rightarrow \lambda_{j}}\left(\lambda-\lambda_{j}\right) R(\lambda, T)$, it follows that \widetilde{T} commutes with P_{j}. For $i \neq j$ we have $\lambda_{i} P_{i} P_{j}=\widetilde{T} P_{i} P_{j}=P_{i} \widetilde{T} P_{j}=\lambda_{j} P_{i} P_{j}$, hence $P_{i} P_{j}=0$. Define the bounded linear operator S by the equation $\widetilde{T}=\sum_{j=1}^{m} \lambda_{j} P_{j}+S$. Since $\widetilde{T} P_{j}=P_{j} \widetilde{T}=\lambda_{j} P_{j}, P_{j}^{2}=P_{j}$ and $P_{i} P_{j}=0$ if $i \neq j$, it follows that $P_{j} S=S P_{j}=0$. This implies $\widetilde{T}^{n}=\sum_{j=1}^{m} \lambda_{j}^{n} P_{j}+S^{n}$. Suppose $r_{s} \geqq$ 1. T is quasi-compact, hence $\widetilde{T}^{n}=U+V$ for some n where U is compact and $r_{V}<1$. The operator U^{\prime} defined by $U^{\prime} x=U x-\sum_{j=1}^{m} \lambda_{j}^{n} P_{j} x$ is compact ${ }^{6}$ and $S^{n}=U^{\prime}+V$. Therefore S is quasi-compact. Let $\lambda \in \sigma(S),|\lambda|=r_{S} \geqq 1$. Then $S x=\lambda x$ for some $x \in \widetilde{B}, x \neq 0$. Since $P_{j} S=S P_{j}=0$, it follows that $\widetilde{T} x=\lambda x$ and therefore for some $j, \lambda=\lambda_{j}$ and $P_{j} x=x$. This implies $S x=S P_{j} x=0$, a contradiction. Therefore $r_{S}<1$ and the proof is complete.

Before stating our next result, we state the following lemma which is easily proved.

Lemma 1. If E is a finite dimensional real Banach space, K is a cone in E and K is fundamental, then K contains an open set.

Theorem 5. If T is strictly quasi-positive and quasi-compact with spectral radius 1, the eigenspace for T corresponding to the eigenvalue 1 is one-dimensional.

Proof. By Theorem 4 we have $\widetilde{T}=\sum_{j=1}^{m} \lambda_{j} P_{j}+S$ where P_{j} is a projection onto the eigenspace corresponding to $\lambda_{j}, \lambda_{1}=1,\left|\lambda_{j}\right|=1$, $P_{j} S=S P_{j}=0, j=1,2, \cdots, m$ and $P_{i} P_{j}=0$ if $i \neq j$. By a theorem of Kronecker, there exists a sequence $n_{1}, n_{2} \cdots$ of positive integers such that $\lim _{k \rightarrow \infty} \lambda_{j}^{n_{k}}=1, j=1,2, \cdots, m .^{7}$ Since $r_{S}<1$, it follows that $\lim _{n \rightarrow \infty}\left\|S^{n}\right\|=0$. This implies $\lim _{k \rightarrow \infty} \widetilde{T}^{n_{k}}=\sum_{j=1}^{m} P_{j}$. Let $P=$ $\sum_{j=1}^{m} P_{j}$. For $x \in B$ we have $P x=\lim _{k \rightarrow \infty} T^{n_{k}} x$, hence $P B \cong B$. For $x \geqq 0$ and $x^{*} \geqq 0, x^{*}(P x)=\lim _{k \rightarrow \infty} x^{*}\left(T^{n_{k}} x\right) \geqq 0$, hence P is a positive operator. Consider the finite dimensional real Banach space $P B$ with closed proper cone $P K$. Since K is fundamental in B, it is clear that $P K$ is fundamental in $P B$. Therefore, by Lemma $1, P K$ contains an open set (open relative to $P B$). Since T is strictly quasi-positive, every

[^5]non-trivial fixed vector of T in K is strictly positive. By Theorem 3, there exists $u>0$ such that $T u=u$. Let $T x=x, x \neq 0$. We wish to show u and x are linearly dependent and for this purpose we may assume $x \notin K$ (otherwise replace x by $-x$). It is clear that $u \in P K$ and $x \in P B$. Let $t_{0}=\sup \{t \mid u+t x \in P K\}$. Since u is in the interior of $P K$ and $x \notin P K$, it is easy to see that $0<t_{0}<\infty$ and that $u+t_{0} x$ is on the boundary of $P K$. Hence, by Theorem 1, there exists $x^{*} \in(P K)^{+}$ such that $x^{*}\left(u+t_{0} x\right)=0$. We extend x^{*} to $y^{*} \in B^{*}$ by defining $y^{*}(y)=$ $x^{*}(P y)$. Since $P K \subseteq K$, it follows that $y^{*} \in K^{+}$. We have $P\left(u+t_{0} x\right)=$ $u+t_{0} x$, hence $y^{*}\left(u+t_{0} x\right)=x^{*}\left(u_{0}+t_{0} x\right)=0$. Now $u+t_{0} x$ is a fixed vector of T which is not strictly positive, hence $u+t_{0} x=0$, which completes the proof.

Our next result is a characterization of strongly quasi-positive operators.

Theorem 6. If T is quasi-compact with spectral radius 1, then T is strongly quasi-positive if and only if the following conditions are satisfied:
(1) $1 \in \sigma(T)$ and 1 is the only point in $\sigma(T)$ with absolute value one,
(2) the eigenspace for T corresponding to the eigenvalue 1 is one-demensional and is spanned by a strictly positive element u,
(3) there exists a strictly positive element u^{*} such that $T^{*} u^{*}=$ u^{*}.

Proof. In Theorems 3, 4, 5 we have seen that if T is strictly quasi-positive (in particular, if it is strongly quasi-positive), then $1 \in \sigma(T)$ and (2) and (3) hold. There remains to show 1 is the only point in $\sigma(T)$ with absolute value one. We define the operator $P=$ $\sum_{j=1}^{m} P_{j}$ as in Theorem 5 and recall that $P B$ is a finite dimensional real Banach space with closed proper cone $P K$ containing interior elements. Let $\lambda=e^{i \theta}$ be a point in $\sigma(T)$ and let $\widetilde{T}(x+i y)=e^{i \theta}(x+i y)$ for some x, y in B, not both zero. It is easy to see that $P x=x$ and $P y=y$, hence $x \in P B$ and $y \in P B$. At least one of the four elements $x+y, x-y, y-x,-x-y$ must be not in $P K$ since otherwise $x+y=0, x-y=0$, hence $x=y=0$. Therefore $a x+b y \notin P K$ for some choice of $a= \pm 1$ and $b= \pm 1$. Now choose $t>0$ such that $u+t(a x+b y)=v$ is on the boundary of PK. By Theorem 1, there exists $x^{*} \in(P K)^{+}, x^{*} \neq 0$, such that $x^{*}(v)=0$. We extend x^{*} to $y^{*} \in K^{+}: y^{*}(y)=x^{*}(P y)$. Now choose a sequence of positive integers n_{1}, n_{2}, \cdots such that $\lim _{k \rightarrow \infty} e^{i n_{k} \theta}=1$. It follows that $\lim _{k \rightarrow \infty} T^{n_{k}} v=v$. Since $r_{T}=1$, we have $\left\|T^{n}\right\| \geqq 1$ for all n and hence if $v>0$,

$$
\lim \inf _{n \rightarrow \infty} y^{*}\left(T^{n} v\right) \geqq \lim \inf _{n \rightarrow \infty} y^{*}\left(T^{n} v\right) /\left\|T^{n}\right\|>0
$$

This is impossible since $\lim _{k \rightarrow \infty} y^{*}\left(T^{n_{k}} v\right)=y^{*}(v)=0$. Therefore $v=0$, i.e., $a x+b y=-(1 / t) u$. Since $\widetilde{T}(x+i y)=e^{i \theta}(x+i y)$, it follows that $u^{*}(x)+i u^{*}(y)=e^{i \theta}\left(u^{*}(x)+i u^{*}(y)\right)$. This implies either $e^{i \theta}=1$ or $u^{*}(x)=u^{*}(y)=0$. The second alternative is incompatible with $a x+b y=-(1 / t) u$ since $u^{*}(u)>0$. Therefore $e^{i \theta}=1$ and the necessity of (1), (2), (3) is proved.

Now let T satisfy conditions (1), (2), (3). We assume without loss of generality that u^{*} is normalized so that $u^{*}(u)=1$. Define the bounded linear operator S by $T x=u^{*}(x) u+S x$. As in Theorem 4, it can be shown that $r_{S}<1$. We have $S u=T u-u^{*}(u) u=u-u=0$ and it follows that $T^{n} x=u^{*}(x) u+S^{n} x$. Since $r_{s}<1,\left\|S^{n}\right\| \leqq M$ for all n and hence $\left\|T^{n}\right\| \leqq\left\|u^{*}\right\|\|u\|+\left\|S^{n}\right\| \leqq M^{\prime}$ for all n. Moreover, $S^{n} x \rightarrow 0$ as $n \rightarrow \infty$ for all x. Hence if $x>0$ and $x^{*}>0$,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} x^{*}\left(T^{n} x\right) /\left\|T^{n}\right\| & \geqq \liminf _{n \rightarrow \infty}\left(u^{*}(x) x^{*}(u)+x^{*}\left(S^{n} x\right)\right) / M^{\prime} \\
& \geqq u^{*}(x) x^{*}(u) / M^{\prime}>0
\end{aligned}
$$

Therefore T is strongly quasi-positive and the theorem is proved.
Theorem 7. Assume that B is a lattice ${ }^{8}$ with respect to the ordering given by K. Then Theorem 6 is true if "strongly quasipositive" is replaced by "strictly quasi-positive."

Proof. Conditions (1), (2) and (3) in Theorem 6 imply T is strongly quasi-positive, hence, a fortiori, T is strictly quasi-positive. Now suppose T is strictly quasi-positive. Then $1 \in \sigma(T)$ and (2), (3) hold. It is easy to see from the representation of Theorem $4, \widetilde{T}=\sum_{j=1}^{m} \lambda_{j} P_{j}+$ S, that $\left\|T^{n}\right\|$ is bounded independently of n. Hence, by a theorem of Krein-Rutman ([11], Theorem 8.1 and corollary), every $\lambda \in \sigma(T)$, $|\lambda|=1$, is a root of unity. It is easily verified that every power of T is quasi-compact and strictly quasi-positive, hence the eigenspace for T^{n} corresponding to the eigenvalue 1 is one-dimensional for all n. If $\widetilde{T} x=\lambda x,|\lambda|=1, \lambda^{n}=1$, then $\widetilde{T}^{n} x=\lambda^{n} x=x$ and it follows that $\lambda=1$ which completes the proof.

An immediate consequence is the following corollary.
Corollary. If B is a lattice, every strictly quasi-positive and quasi-compact operator is strongly quasi-positive.

The conclusion of this corollary is not true in general as we will illustrate by an example. Let B be three-dimensional (real) Euclidean

[^6]space, $B=\left\{\left(x_{1}, x_{2}, x_{3}\right)\right\}$, and let $K=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2} \leqq x_{3}^{2}, x_{3} \geqq 0\right\}$. If we interpret "to the right" to mean any direction in which the x_{3} coordinate is increasing, each non-trivial element $x^{*} \in K^{+}$is represented by a plane through the origin whose unit normal at the origin directed to the right lies in K. Let T be a rotation about the x_{3} axis through θ radians where θ and 2π are incommensurable. It is clear that $\left\|T^{n}\right\|=1$ for all n and that $T K \subseteq K$. To show that T is strictly quasi-positive it suffices to consider $x^{*} \in K^{+}$which is represented by a plane tangent to K. If p is in the interior of $K, T^{n} p$ is in the interior for all n, hence $x^{*}\left(T^{n} p\right)>0$. Now let p be on the boundary of K. There exists exactly one point q which has the same x_{3} coordinate as p and such that $x^{*}(q)=0$. Since 0 and 2π are incommensurable, there is at most one value of n such that $T^{n} p=q$. Therefore, $x^{*}\left(T^{m} p\right)>0$ for all m sufficiently large and, hence, T is strictly quasi-positive. If p is on the boundary of K, so is $T^{n} p$ for all n. We can pick a sequence n_{1}, n_{2}, \cdots such that $T^{n} p$ converges to a point q on the boundary of K and there exists $x^{*} \in K^{+}$such that $x^{*}(q)=0, x^{*} \neq 0$. This shows T is not strongly quasi-positive.

Bibliography

1. T. Ando, Positive linear operators in semi-ordered linear spaces, J. Fac. Science, Hokkaido University, Ser. I, XIII, (1957), 214-228.
2. G. Birkhoff, Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc., 85 (1957), 219-228.
3. F. F. Bonsall, Endomorphisms of partially ordered vector spaces, J. London Math. Soc., 30 (1955), 133-144.
4. - Endomorphism of a partially ordered vector space without order unit, J. London Math. Soc., 30 (1955), 144-153.
5. - Linear operators in complete positive cones, Proc. London Math. Soc., 3, VIII (29), (1958), 53-75.
6. G. Frobenius, Über Matrizen aus positiven Elementen, Sitz. Ber. Preuss. Academie der Wiss. Berlin (1908), 471-476, (1909), 514-518.
7. ——Ü̈ber Matrizen aus nicht negativen Elementen, Sitz. Ber. Preuss. Akademie der Wiss. Berlin (1912), 456-477.
8. E. Hopf, Über lineare Integralgleichungen mit positiven Kern, Sitz. Ber. Preuss. Akademie der Wiss. Berlin, XVIII (1928), 233-245.
9. R. Jentzsch, Über Integralgleichungen mit positiven Kerin, Crelles J., 141 (1912), 235-244.
10. S. Karlin, Positive Operators, J. Math., 8 (1959), 907-938.
11. M. Krein and M. Rutman, Linear operators leaving invariant a cone in a Banach. space, Uspehi Matem. Navk (1948), 3-95, Amer. Math. Soc. Translation No. 26.
12. O. Perron, Zur Theorie der Matrizen, Math. Ann., 64 (1907), 248-263.
13. H. Schaefer, Positive Transformationen in lokal konvexen halbgeordneten Velctorräumen, Math. Ann., 129 (1955), 323-329.
14. -_, Some spectral properties of positive linear operators, Pacific J. Math., 10 (1960), 1009-1019.

[^0]: Received September 13, 1962. This work was performed under the auspices of the IJnited States Atomic Energy Commission.

[^1]: ${ }^{1}$ Note that a compact operator is quasi-compact if and only if it has a positive spectral radius.
 ${ }^{2}$ For details, see Yu. L. Smvl'yan, Completely continuous perturbations of operators, Amer. Math. Soc. Translations 10, 341-344.

[^2]: ${ }^{3}$ An operator T is nilpotent if $T^{n}=0$ for some n.

[^3]: ${ }^{4}$ See Titchmarsh, Theory of Functions, pg. 214. Acknowledgement is due here to S. Karlin for the essence of the proof in Theorem 2 (see [10], Theorem 4).

[^4]: ${ }^{5} T^{*}$ is the adjoint of T, defined on B^{*} by $\left(T^{*} x^{*}\right)(x)=x^{*}(T x)$.

[^5]: ${ }^{6}$ The compact operators from an ideal in the algebra of bounded linear operators and any bounded operator with a finite dimensional range is compact.
 ${ }^{7}$ See, for example, Hardy \& Wright, The Theory of Numbers, Oxford Univ. Press.

[^6]: ${ }^{8}$ I.e., each pair of elements in B has a greatest lower bound and a least upper bound.

