QUASI-POSITIVE OPERATORS

D. W. SASSER

The classical results of Perron and Frobenius 1. Introduction. ([6], [7], [12]) assert that a finite dimensional, nonnegative, non-nilpotent matrix has a positive eigenvalue which is not exceeded in absolute value by any other eigenvalue and the matrix has a nonnegative eigenvector corresponding to this positive eigenvalue. If the matrix has strictly positive entries, then there is a positive eigenvalue which exceeds every other eigenvalue in absolute value, and the corresponding space of eigenvectors is one-dimensional and is spanned by a vector with strictly positive coordinates. Numerous generalizations of these results to order-preserving linear operators acting in ordered linear spaces have appeared in recent years; a short bibliography is included at the end of this paper. In this paper a generalization in a different direction is obtained which reduces, in the finite dimensional case, to the assertion that the Perron-Frobenius theorems hold if it is only required that all but a finite number of the powers of the matrix satisfy the given conditions. The principal results are theorems of the Perron-Frobenius type which are applicable to any compact linear operator (the compactness condition is weakened somewhat), acting in an ordered real Banach space B, which satisfies a condition weaker than order-preserving. In addition, the results apply to the case when the "cone" of positive elements in B has no interior.

2. Preliminaries. Throughout the sequel, B will denote a real Banach space with norm $||\cdot||$. The complex extension of B, \tilde{B} , is the complex Banach space $\tilde{B} = \{x + iy \mid x, y \in B\}$ with the obvious definitions of addition and complex scalar multiplication and the norm in \tilde{B} is $||x + iy|| = \sup_{\theta} ||\cos \theta \cdot x + \sin \theta \cdot y||$. If T is a (real) linear operator on B into B, the (complex) linear operator \tilde{T} on \tilde{B} into \tilde{B} is defined by $\tilde{T}(x + iy) = Tx + iTy$. T is bounded if and only if \tilde{T} is bounded, in which case $||T|| = ||\tilde{T}||$. The spectrum, $\sigma(T)$, and the resolvent, $\rho(T)$, are defined to be the corresponding sets associated with the operator \tilde{T} . We denote the spectral radius of T by r_T , $r_T = \lim_{n \to \infty} ||T^n||^{1/n} = \sup_{\lambda \in \sigma(T)} |\lambda|$ (provided $||T|| < \infty$).

In all of our results there will be a basic assumption that the linear operator under consideration is quasi-compact, a notion which we will now define. A bounded linear operator T is compact (also called completely continuous) if each sequence Tx_1, Tx_2, \cdots , with

Received September 13, 1962. This work was performed under the auspices of the United States Atomic Energy Commission.

 $||x_i|| \leq 1, i = 1, 2, \cdots$, has a convergent subsequence. T is quasicompact if there exists a positive integer n and a bounded linear operator V such that $T^n - V$ is compact and $r_V < r_T^{n,1}$. There are a number of properties possessed by quasi-compact operators some of which we state now without proof.² If $\lambda_0 \in \sigma(T)$ and $|\lambda_0| = r_T$, then λ_0 is an isolated point in $\sigma(T)$ and is in the point spectrum, i.e., $(\lambda_0 I - \tilde{T})$ is not one-to-one. The resolvent operator, $R(\lambda, T) \equiv (\lambda I - \tilde{T})^{-1}$, exists in a neighborhood of λ_0 (excluding λ_0) and, in this neighborhood, $R(\lambda, T)$ has a Laurent series expansion of the form

$$R(\lambda, T) = \sum_{k=1}^{n(\lambda_0)} rac{(\lambda_0 I - \widetilde{T})^{k-1}}{(\lambda - \lambda_0)^k} P(\lambda_0, T) + \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k A_k(\lambda_0, T)$$

where $A_k(\lambda_0, T)$ is a bounded linear operator and the series on the right is convergent in the uniform operator topology. The integer $n(\lambda_0)$ is the index of λ_0 , i.e., $n(\lambda_0)$ is the smallest integer n such that $\{x \mid (\lambda_0 I - \tilde{T})^{n+1}x = 0\} = \{x \mid (\lambda_0 I - \tilde{T})^n x = 0\}$. $P(\lambda_0, T)$ is a projection onto the finite dimensional space $\{x \mid (\lambda_0 I - \tilde{T})^{n(\lambda_0)}x = 0\}$. The minimal property of $n(\lambda_0)$ implies that $(\lambda_0 I - \tilde{T})^{n(\lambda_0)-1}P(\lambda_0, T) \neq 0$.

We recall that for an arbitrary bounded linear operator, the resolvent $R(\lambda, T) = (\lambda I - \tilde{T})^{-1}$ is an analytic function of λ for $\lambda \in \rho(T)$ and the expansion $R(\lambda, T) = \sum_{k=0}^{\infty} (1/\lambda)^{k+1} \tilde{T}^k$ is valid for $|\lambda| > r_T$.

3. Quasi-positive operators. A cone in B is a convex set K which contains λx for all $\lambda \ge 0$ if it contains x. K is a proper cone if $x \in K$ and $-x \in K$ imply x = 0. A cone K induces an ordering \ge in B with $x \ge y$ if and only if $x - y \in K$. This transitive ordering satisfies

(1) if $x \ge y$, $u \ge v$, then $x + u \ge y + v$,

(2) if $x \ge y$ and $\lambda \ge 0$, then $\lambda x \ge \lambda y$, and

(3) $x \ge y$ if and only if $-y \ge -x$.

If the cone is proper, then the ordering satisfies, in addition,

(4) if $x \ge y$ and $y \ge x$, then x = y.

We will use the notation x > y to denote $x \ge y, x \ne y$. Associated with a cone K is a closed cone K^+ in the conjugate space B^* of continuous, real-valued, linear functions on B, consisting of those $x^* \in B^*$ with the property that $x^*(x) \ge 0$ for all $x \in K$. K^+ is a proper cone if and only if the linear space spanned by K is dense in B (a set with this property is called *fundamental*). This is an easy consequence of the Hahn-Banach theorem on the extension of linear functionals. We will use the notations $x^* \ge y^*$ and $x^* > y^*$ to denote $x^* - y^* \in K^+$

¹ Note that a compact operator is quasi-compact if and only if it has a positive spectral radius.

² For details, see Yu. L. Smvl'yan, *Completely continuous perturbations of operators*, Amer. Math. Soc. Translations **10**, 341-344.

and $x^* - y^* \in K^+$, $x^* \neq y^*$, respectively. An element x > 0 $(x^* > 0)$ will be called *strictly positive* if $x^*(x) > 0$ for all $x^* > 0$ $(x^*(x) > 0$ for all x > 0).

The following theorem is a characterization of a closed cone and its interior (when the latter is nonvoid) in terms of K^+ . The proof may be found, for example, in [11] (Theorem 1.3 and its corollaries, pg. 16).

THEOREM 1. Let K be a closed cone in B. Then $x \in K$ if and only if $x^*(x) \ge 0$ for all $x^* \ge 0$. If K has a nonvoid interior, then

(1) x is in the interior of K if and only if x is strictly positive and

(2) for each x on the boundary of K there exists an $x^* > 0$ such that $x^*(x) = 0$.

COROLLARY. If K is a closed proper cone, K^+ is a total set of functionals, i.e., for each $x \neq 0$, $x \in B$, there exists $x^* > 0$ such that $x^*(x) \neq 0$.

Proof. Since either $x \notin K$ or $-x \notin K$ if $x \neq 0$, this follows immediately from Theorem 1.

A linear operator T on B into B will be called positive with respect to a cone K if $TK \subseteq K$. In the absence of ambiguity we will simply say T is positive. In our applications K will be a closed cone and in this case, in view of Theorem 1, T is positive if and only if $x^*(Tx) \ge 0$ for all $x \ge 0$, $x^* \ge 0$. Since $Tx \ge 0$ if $x \ge 0$, we have $x^*(T^2x) \ge 0$ and, in general, $x^*(T^*x) \ge 0$ for all n and all $x \ge 0$, $x^* \ge 0$. We define T to be quasi-positive if for each pair $x \ge 0$, $x^* \ge 0$, there exists an integer $n(x, x^*) \ge 1$ such that $x^*(T^*x) \ge 0$ if $n \ge n(x, x^*)$. We define T to be strictly quasi-positive if for each pair x > 0, $x^* > 0$, there exists an integer $n(x, x^*) \ge 1$ such that $x^*(T^*x) > 0$ if $n \ge n(x, x^*)$. Finally we define T to be strongly quasi-positive if it is not nilpotent³ and for each pair x > 0, $x^* > 0$, lim inf_{$n \to \infty$} $x^*(T^*x)/|| T^*|| > 0$.

4. Spectral properties. Throughout this section, K will denote a closed proper cone in B and K will be assumed to be fundamental. T will denote a quasi-compact bounded linear operator with spectral radius 1. This restriction on the spectral radius is for convenience only and the results given may be interpreted for a general (quasi-compact) bounded linear operator S with spectral radius $r_s > 0$ by considering the operator $T = (1/r_s) S$ which has spectral radius 1.

³ An operator T is nilpotent if $T^n = 0$ for some n.

THEOREM 2. If T is quasi-positive and quasi-compact withspectral radius 1, then $1 \in \sigma(T)$ and the index of 1 is not exceeded by the index of any other point $\lambda \in \sigma(T)$, $|\lambda| = 1$.

Proof. Assume that $1 \in \rho(T)$. Since $\rho(T)$ is open and $R(\lambda, T)$ is analytic in λ for $\lambda \in \rho(T)$, it follows that the function $g(\lambda) = x^*(R(1/\lambda, T)x), x > 0, x^* > 0$, is analytic for $1/\lambda \in \rho(T)$, in particular for λ in some neighborhood of 1. Moreover, $R(\lambda, T) = \sum_{k=0}^{\infty} (1/\lambda)^{k+1} \tilde{T}^k$ if $|\lambda| > 1$, hence $g(\lambda) = \sum_{k=0}^{\infty} \lambda^{k+1} x^*(T^k x)$ if $|\lambda| < 1$. A theorem of Pringsheim states that if a power series has nonnegative coefficients and converges in the open unit disk, either 1 is a singularity of the series or the series has radius of convergence greater than 1.⁴ Clearly it is sufficient to assume that all but a finite number of the coefficients are nonnegative. Since $x^*(T^n x) \ge 0$ if $n \ge n(x, x^*)$, and $g(\lambda)$ is analytic in a neighborhood of 1, we conclude that the series $\sum_{k=0}^{\infty} \lambda^{k+1} x^*(T^k x)$ converges in $|\lambda| < 1 + \delta$ for some $\delta > 0$. By assumption $r_T = 1$, hence $R(\lambda, T)$ has a singularity somewhere on $|\lambda| = 1$, say at λ_0 . Since T is quasi-compact, the expansion

$$R(\lambda, T) = \sum_{k=1}^n rac{(\lambda_0 I - T)^{k-1}}{(\lambda - \lambda_0)^k} P(\lambda_0, T) + \sum_{k=0}^n (\lambda - \lambda_0)^k A_k(\lambda_0, T)$$

is valid for $0 < |\lambda - \lambda_0| < \delta'$, where $n = n(\lambda_0)$ is the index of λ_0 and $(\lambda_0 I - \tilde{T})^{n-1} P(\lambda_0, T) \neq 0$. We may choose x > 0 such that $(\lambda_0 I - \tilde{T})^{n-1} P(\lambda_0, T) x = y \neq 0$ since K is fundamental and by Theorem 1 we may choose $x^* > 0$ such that $x^*(y) \neq 0$. It follows easily that

$$g(\lambda)=(\lambda/\lambda_{\scriptscriptstyle 0})^n(1/\lambda_{\scriptscriptstyle 0}-\lambda)^{-n}h(\lambda)$$
 , $||1/\lambda-\lambda_{\scriptscriptstyle 0}|<\delta$,

where $h(\lambda)$ is analytic and $h(1/\lambda_0) = x^*(y) \neq 0$. Thus g has a pole at $1/\lambda_0$ which contradicts the fact that g has a Taylor's series about the origin with radius of convergence greater than 1. Our assumption that $1 \in \rho(T)$ leads to a contradiction, hence $1 \in \sigma(T)$.

Now let the index of 1 be *n*. It is easy to see that $\lim_{\lambda \to 1} (\lambda - 1)^k R(\lambda, T) = 0$ if k > n. It follows that for $|\lambda| > 1$, $\lim_{\lambda \to 1} (\lambda - 1)^k \sum_{m=0}^{\infty} (1/\lambda)^{m+1} x^* (T^m x) = 0$ for every pair x > 0, $x^* > 0$ and clearly this implies $\lim_{\lambda \to 1} (\lambda - 1)^k \sum_{m=j}^{\infty} (1/\lambda)^{m+1} x^* (T^m x) = 0$ if k > n and $j \ge 0$. If $\lambda_0 \in \sigma(T)$, $|\lambda_0| = 1$ and λ_0 has index l, then $\lim_{\lambda \to \lambda_0} (\lambda - \lambda_0)^l R(\lambda, T) \neq 0$. We may choose x > 0 and $x^* > 0$ such that $\lim_{\lambda \to \lambda_0} (\lambda - \lambda_0)^l x^* (R(\lambda, T)x) \neq 0$ and it follows that for $|\lambda| > 1$, $\lim_{\lambda \to \lambda_0} (\lambda - \lambda_0)^l \sum_{m=j}^{\infty} (1/\lambda)^{m+1} x^* (T^m x) \neq 0$. Let $\lambda_0 = e^{i\varphi}$, $\lambda = \rho e^{i\varphi}$, $\rho > 1$. If $j \ge n(x, x^*)$, $|(\lambda - \lambda_0)^l \sum_{m=j}^{\infty} (1/\lambda)^{m+1} x^* (T^m x)| \le (\rho - 1)^l \sum_{m=j}^{\infty} (1/\rho)^{m+1} x^* (T^m x)$. The expression on the right in this last inequality tends to zero as

⁴ See Titchmarsh, *Theory of Functions*, pg. 214. Acknowledgement is due here to S. Karlin for the essence of the proof in Theorem 2 (see [10], Theorem 4).

 ρ tends to 1 if l > n, hence $l \le n$. This completes the proof.

THEOREM 3. If T is quasi-positive and quasi-compact with spectral radius 1, there exist elements u > 0 and $u^* > 0$ such that Tu = u, $T^*u^* = u^*$.⁵

Proof. By Theorem 2, $1 \in \sigma(T)$. We have

$$R(\lambda, T) = \sum_{k=1}^{n} \frac{(I - \tilde{T})^{k-1}}{(\lambda - 1)^{k}} P(1, T) + \sum_{k=0}^{\infty} (\lambda - 1)^{k} A_{k}(1, T)$$

where P(1, T) is a projection onto the finite-dimensional space $\{x \mid (I - \tilde{T})^n x = 0\}$ and $(I - \tilde{T})^{n-1}P(1, T) \neq 0$. Let $\Gamma = (I - \tilde{T})^{n-1}P(1, T)$. It is easy to see that $R(\lambda, T)B \subseteq B$ for λ real. Since $\Gamma = \lim_{\lambda \to 1} (\lambda - 1)^n R(\lambda, T)$, it follows that $\Gamma B \subseteq B$. Also $\tilde{T}\Gamma = \Gamma \tilde{T} = \Gamma$. Let $x \geq 0$, $x^* \geq 0$ be arbitrary and let $N = n(x, x^*)$. If $\lambda > 1$, we have $x^*(T^N R(\lambda, T)x) = \sum_{m=0}^{\infty} (1/\lambda)^{m+1} x^*(T^{N+m})x \geq 0$. It follows that for $\lambda > 1$, $x^*(T^N \Gamma x) = \lim_{\lambda \to 1} (\lambda - 1)^n \sum_{m=0}^{\infty} (1/\lambda)^{m+1} x^*(T^{N+m}x) \geq 0$. Since $T^N \Gamma = \Gamma$, Γ is a positive operator. We choose v > 0 such that $\Gamma v = u \neq 0$. Then u > 0 and $Tu = T\Gamma v = \Gamma v = u$. We choose $v^* > 0$ such that $v^*(u) > 0$. Letting $u^* = \Gamma^* v^*$, we see that for $x \geq 0$, $u^*(x) = (\Gamma^* v^*)(x) = v^*(\Gamma x) \geq 0$ since $v^* > 0$ and Γ is a positive operator. Hence $u^* \geq 0$, and since $u^*(v) = (\Gamma^* v^*)(v) = v^*(\Gamma v) = v^*(u) > 0$, $u^* > 0$. Finally, we have $\Gamma T = \Gamma$ which implies $T^* \Gamma^* = \Gamma^*$, hence $T^* u^* = T^*(\Gamma^* v^*) = \Gamma^* v^* = u^*$ which completes the proof.

For strictly quasi-positive operators we obtain stronger results in the next two theorems.

THEOREM 4. If T is strictly quasi-positive and quasi-compact with spectral radius 1, then $1 \in \sigma(T)$, 1 has index one and \tilde{T} has a representation of the form $\tilde{T} = \sum_{j=1}^{m} \lambda_j P_j + S$ where $\lambda_1 = 1, |\lambda_j| = 1$, $P_j^2 = P_j$, $SP_j = P_jS = 0$, $j = 1, 2, \dots, m$, $P_iP_j = 0$ if $i \neq j$, and $r_s < 1$.

Proof. By Theorem 2, $1 \in \sigma(T)$. By Theorem 3, there exists $u^* > 0$ such that $T^*u^* = u^*$ and for x > 0, $u^*(x) = u^*(T^*x) > 0$ if $n \ge n(x, u^*)$, hence u^* is strictly positive. Let the index of 1 be n. Then $\Gamma = \lim_{\lambda \to 1} (\lambda - 1)^* R(\lambda, T) \neq 0$. For $\lambda > 1$ and arbitrary x we have

$$u^*(\Gamma x) = \lim_{\lambda \to 1} (\lambda - 1)^n \sum_{k=0}^\infty (1/\lambda)^{k+1} u^*(T^k x) = \lim_{\lambda \to 1} u^*(x) (\lambda - 1)^n \sum_{k=0}^\infty (1/\lambda)^{k+1} = u^*(x) \lim_{\lambda \to 1} (\lambda - 1)^{n-1} = 0$$

⁵ T^* is the adjoint of T, defined on B^* by $(T^*x^*)(x) = x^*(Tx)$.

unless n = 1. In proving Theorem 3 we showed that Γ is a positive operator, hence there exists x > 0 such that $\Gamma x > 0$ and therfore $u^*(\Gamma x) > 0$. It follows that n = 1. By Theorem 2, every $\lambda_0 \in \sigma(T)$, $|\lambda_0| = 1$, has index 1 and hence $P(\lambda_0, T) = \lim_{\lambda \to \lambda_0} (\lambda - \lambda_0) R(\lambda, T)$ exists and is a projection onto the finite dimensional space $\{x \mid (\lambda_0 I - \tilde{T})x = 0\}$. Let $\lambda_1 = 1, \lambda_2 \cdots, \lambda_m$ be an enumeration of the points in $\sigma(T)$ with absolute value 1 and let $P_i = P(\lambda_i, T)$. Since \tilde{T} commutes with $R(\lambda, T)$ and $P_i = \lim_{\lambda \to \lambda_i} (\lambda - \lambda_i) R(\lambda, T)$, it follows that \widetilde{T} commutes with P_i . For $i \neq j$ we have $\lambda_i P_i P_j = \widetilde{T} P_i P_j = P_i \widetilde{T} P_j = \lambda_j P_i P_j$, hence $P_i P_j = 0$. Define the bounded linear operator S by the equation $\widetilde{T} = \sum_{i=1}^{m} \lambda_i P_i + S$. Since $\widetilde{T}P_j = P_j\widetilde{T} = \lambda_jP_j$, $P_j^2 = P_j$ and $P_iP_j = 0$ if $i \neq j$, it follows that $P_iS = SP_i = 0$. This implies $\widetilde{T}^n = \sum_{j=1}^m \lambda_j^n P_j + S^n$. Suppose $r_s \ge 1$ 1. T is quasi-compact, hence $\widetilde{T}^n = U + V$ for some n where U is compact and $r_v < 1$. The operator U' defined by $U'x = Ux - \sum_{i=1}^{m} \lambda_i^n P_i x$ is compact⁶ and $S^n = U' + V$. Therefore S is quasi-compact. Let $\lambda \in \sigma(S), |\lambda| = r_s \ge 1$. Then $Sx = \lambda x$ for some $x \in \widetilde{B}, x \neq 0$. Since $P_i S = SP_i = 0$, it follows that $\widetilde{T}x = \lambda x$ and therefore for some $j, \lambda = \lambda_i$ and $P_{i}x = x$. This implies $Sx = SP_{i}x = 0$, a contradiction. Therefore $r_{s} < 1$ and the proof is complete.

Before stating our next result, we state the following lemma which is easily proved.

LEMMA 1. If E is a finite dimensional real Banach space, K is a cone in E and K is fundamental, then K contains an open set.

THEOREM 5. If T is strictly quasi-positive and quasi-compact with spectral radius 1, the eigenspace for T corresponding to the eigenvalue 1 is one-dimensional.

Proof. By Theorem 4 we have $\widetilde{T} = \sum_{j=1}^{m} \lambda_j P_j + S$ where P_j is a projection onto the eigenspace corresponding to $\lambda_j, \lambda_1 = 1, |\lambda_j| = 1, P_j S = SP_j = 0, j = 1, 2, \dots, m$ and $P_i P_j = 0$ if $i \neq j$. By a theorem of Kronecker, there exists a sequence $n_1, n_2 \cdots$ of positive integers such that $\lim_{k\to\infty} \lambda_j^{n_k} = 1, j = 1, 2, \dots, m$.⁷ Since $r_S < 1$, it follows that $\lim_{n\to\infty} || S^n || = 0$. This implies $\lim_{k\to\infty} \widetilde{T}^{n_k} = \sum_{j=1}^{m} P_j$. Let $P = \sum_{j=1}^{m} P_j$. For $x \in B$ we have $Px = \lim_{k\to\infty} T^{n_k}x$, hence $PB \subseteq B$. For $x \geq 0$ and $x^* \geq 0, x^*(Px) = \lim_{k\to\infty} x^*(T^{n_k}x) \geq 0$, hence P is a positive operator. Consider the finite dimensional real Banach space PB with closed proper cone PK. Since K is fundamental in B, it is clear that PK is fundamental in PB. Therefore, by Lemma 1, PK contains an open set (open relative to PB). Since T is strictly quasi-positive, every

⁶ The compact operators from an ideal in the algebra of bounded linear operators and any bounded operator with a finite dimensional range is compact.

⁷ See, for example, Hardy & Wright, The Theory of Numbers, Oxford Univ. Press.

non-trivial fixed vector of T in K is strictly positive. By Theorem 3, there exists u > 0 such that Tu = u. Let $Tx = x, x \neq 0$. We wish to show u and x are linearly dependent and for this purpose we may assume $x \notin K$ (otherwise replace x by -x). It is clear that $u \in PK$ and $x \in PB$. Let $t_0 = \sup\{t \mid u + tx \in PK\}$. Since u is in the interior of PK and $x \notin PK$, it is easy to see that $0 < t_0 < \infty$ and that $u + t_0x$ is on the boundary of PK. Hence, by Theorem 1, there exists $x^* \in (PK)^+$ such that $x^*(u + t_0x) = 0$. We extend x^* to $y^* \in B^*$ by defining $y^*(y) =$ $x^*(Py)$. Since $PK \subseteq K$, it follows that $y^* \in K^+$. We have $P(u+t_0x) =$ $u + t_0x$, hence $y^*(u + t_0x) = x^*(u_0 + t_0x) = 0$. Now $u + t_0x$ is a fixed vector of T which is not strictly positive, hence $u + t_0x = 0$, which completes the proof.

Our next result is a characterization of strongly quasi-positive operators.

THEOREM 6. If T is quasi-compact with spectral radius 1, then T is strongly quasi-positive if and only if the following conditions are satisfied:

(1) $1 \in \sigma(T)$ and 1 is the only point in $\sigma(T)$ with absolute value one,

(2) the eigenspace for T corresponding to the eigenvalue 1 is one-demensional and is spanned by a strictly positive element u,

(3) there exists a strictly positive element u^* such that $T^*u^* = u^*$.

Proof. In Theorems 3, 4, 5 we have seen that if T is strictly quasi-positive (in particular, if it is strongly quasi-positive), then $1 \in \sigma(T)$ and (2) and (3) hold. There remains to show 1 is the only point in $\sigma(T)$ with absolute value one. We define the operator P = $\sum_{i=1}^{m} P_i$ as in Theorem 5 and recall that PB is a finite dimensional real Banach space with closed proper cone PK containing interior elements. Let $\lambda = e^{i\theta}$ be a point in $\sigma(T)$ and let $\tilde{T}(x + iy) = e^{i\theta}(x + iy)$ for some x, y in B, not both zero. It is easy to see that Px = x and Py = y, hence $x \in PB$ and $y \in PB$. At least one of the four elements x + y, x - y, y - x, -x - y must be not in PK since otherwise x + y = 0, x - y = 0, hence x = y = 0. Therefore $ax + by \notin PK$ for some choice of $a = \pm 1$ and $b = \pm 1$. Now choose t > 0 such that u + t(ax + by) = v is on the boundary of PK. By Theorem 1, there exists $x^* \in (PK)^+$, $x^* \neq 0$, such that $x^*(v) = 0$. We extend x^* to $y^* \in K^+$: $y^*(y) = x^*(Py)$. Now choose a sequence of positive integers n_1, n_2, \cdots such that $\lim_{k \to \infty} e^{in_k \theta} = 1$. It follows that $\lim_{k \to \infty} T^{n_k} v = v$. Since $r_T = 1$, we have $||T^n|| \ge 1$ for all n and hence if v > 0,

$$\liminf_{n o\infty}y^*(T^nv)\geq \liminf_{n o\infty}y^*(T^nv)/||\ T^n\,||>0$$
 .

This is impossible since $\lim_{k\to\infty} y^*(T^{*_k}v) = y^*(v) = 0$. Therefore v = 0, i.e., ax + by = -(1/t)u. Since $\tilde{T}(x + iy) = e^{i\theta}(x + iy)$, it follows that $u^*(x) + iu^*(y) = e^{i\theta}(u^*(x) + iu^*(y))$. This implies either $e^{i\theta} = 1$ or $u^*(x) = u^*(y) = 0$. The second alternative is incompatible with ax + by = -(1/t)u since $u^*(u) > 0$. Therefore $e^{i\theta} = 1$ and the necessity of (1), (2), (3) is proved.

Now let T satisfy conditions (1), (2), (3). We assume without loss of generality that u^* is normalized so that $u^*(u) = 1$. Define the bounded linear operator S by $Tx = u^*(x)u + Sx$. As in Theorem 4, it can be shown that $r_s < 1$. We have $Su = Tu - u^*(u)u = u - u = 0$ and it follows that $T^*x = u^*(x)u + S^*x$. Since $r_s < 1$, $||S^*|| \leq M$ for all n and hence $||T^*|| \leq ||u^*|| ||u|| + ||S^*|| \leq M'$ for all n. Moreover, $S^*x \to 0$ as $n \to \infty$ for all x. Hence if x > 0 and $x^* > 0$,

$$\lim \inf_{n o \infty} x^*(T^n x) / || \ T^n \, || \ge \lim \inf_{n o \infty} (u^*(x) x^*(u) + x^*(S^n x)) / M' \ \ge u^*(x) x^*(u) / M' > 0 \; .$$

Therefore T is strongly quasi-positive and the theorem is proved.

THEOREM 7. Assume that B is a lattice⁸ with respect to the ordering given by K. Then Theorem 6 is true if "strongly quasi-positive" is replaced by "strictly quasi-positive."

Proof. Conditions (1), (2) and (3) in Theorem 6 imply T is strongly quasi-positive, hence, a fortiori, T is strictly quasi-positive. Now suppose T is strictly quasi-positive. Then $1 \in \sigma(T)$ and (2), (3) hold. It is easy to see from the representation of Theorem 4, $\tilde{T} = \sum_{j=1}^{m} \lambda_j P_j + S$, that $||T^n||$ is bounded independently of n. Hence, by a theorem of Krein-Rutman ([11], Theorem 8.1 and corollary), every $\lambda \in \sigma(T)$, $|\lambda| = 1$, is a root of unity. It is easily verified that every power of T is quasi-compact and strictly quasi-positive, hence the eigenspace for T^n corresponding to the eigenvalue 1 is one-dimensional for all n. If $\tilde{T}x = \lambda x$, $|\lambda| = 1$, $\lambda^n = 1$, then $\tilde{T}^n x = \lambda^n x = x$ and it follows that $\lambda = 1$ which completes the proof.

An immediate consequence is the following corollary.

COROLLARY. If B is a lattice, every strictly quasi-positive and quasi-compact operator is strongly quasi-positive.

The conclusion of this corollary is not true in general as we will illustrate by an example. Let B be three-dimensional (real) Euclidean

 $^{^{8}}$ I.e., each pair of elements in B has a greatest lower bound and a least upper bound.

space, $B = \{(x_1, x_2, x_3)\}$, and let $K = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 \leq x_3^2, x_3 \geq 0\}$. If we interpret "to the right" to mean any direction in which the x_3 coordinate is increasing, each non-trivial element $x^* \in K^+$ is represented by a plane through the origin whose unit normal at the origin directed to the right lies in K. Let T be a rotation about the x_3 axis through θ radians where θ and 2π are incommensurable. It is clear that $||T^{n}|| = 1$ for all n and that $TK \subseteq K$. To show that T is strictly quasi-positive it suffices to consider $x^* \in K^+$ which is represented by a plane tangent to K. If p is in the interior of K, $T^{n}p$ is in the interior for all n, hence $x^*(T^n p) > 0$. Now let p be on the boundary of K. There exists exactly one point q which has the same x_3 coordinate as p and such that $x^*(q) = 0$. Since θ and 2π are incommensurable, there is at most one value of n such that $T^n p = q$. Therefore, $x^*(T^m p) > 0$ for all m sufficiently large and, hence, T is strictly quasi-positive. If p is on the boundary of K, so is $T^n p$ for all n. We can pick a sequence n_1, n_2, \cdots such that $T^{n_i}p$ converges to a point q on the boundary of K and there exists $x^* \in K^+$ such that $x^*(q) = 0$, $x^* \neq 0$. This shows T is not strongly quasi-positive.

BIBLIOGRAPHY

1. T. Ando, *Positive linear operators in semi-ordered linear spaces*, J. Fac. Science, Hokkaido University, Ser. I, XIII, (1957), 214-228.

2. G. Birkhoff, Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc., 85 (1957), 219-228.

3. F. F. Bonsall, Endomorphisms of partially ordered vector spaces, J. London Math. Soc., **30** (1955), 133-144.

4. _____, Endomorphism of a partially ordered vector space without order unit, J. London Math. Soc., **30** (1955), 144–153.

5. ____, Linear operators in complete positive cones, Proc. London Math. Soc., 3, VIII (29), (1958), 53-75.

6. G. Frobenius, Über Matrizen aus positiven Elementen, Sitz. Ber. Preuss. Academie der Wiss. Berlin (1908), 471-476, (1909), 514-518.

7. ____, Über Matrizen aus nicht negativen Elementen, Sitz. Ber. Preuss. Akademie der Wiss. Berlin (1912), 456-477.

8. E. Hopf, Über lineare Integralgleichungen mit positiven Kern, Sitz. Ber. Preuss. Akademie der Wiss. Berlin, XVIII (1928), 233-245.

9. R. Jentzsch, Über Integralgleichungen mit positiven Kern, Crelles J., 141 (1912), 235-244.

10. S. Karlin, Positive Operators, J. Math., 8 (1959), 907-938.

11. M. Krein and M. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Navk (1948), 3-95, Amer. Math. Soc. Translation No. 26.

12. O. Perron, Zur Theorie der Matrizen, Math. Ann., 64 (1907), 248-263.

13. H. Schaefer, Positive Transformationen in lokal konvexen halbgeordneten Vektorräumen, Math. Ann., **129** (1955), 323-329.

14. ____, Some spectral properties of positive linear operators, Pacific J. Math., **10** (1930), 1009–1019.

SANDIA LABORATORY, ALBUQUERQUE, NEW MEXICO