
CLIFFORD VECTORS

CURTIS M. FULTON

In this paper we present a generalization of parallel vector fields
in a Riemannian space. As it turns out, such fields exist in spaces of
constant positive curvature.

Restricting ourselves to a Riemannian 3-space throughout, we need
the oriented third-order tensor [3, p. 249]

ηijh = [$gn(g)gγι%jh .

whose covariant derivative vanishes [3, pp. 251-252]. The latter fact
is best ascertained by the use of geodesic coordinates. If we write
the determinant of the metric tensor with the aid of permutation
symbols we also find without difficulty

DEFINITION. Let the direction of a vector field at any point be
that of the unit vector V. The field is said to consist of Clifford
vectors if

( 2 ) ' Vifj = L\ihV
h, L ^ O .

THEOREM. If the Riemannian curvature K is constant and equal
to L2, the system of equations (2) is completely integrable. If, at
any point, solutions of (2) exist in all directions, then K — L2 — const.

It is known that integrability conditions for (2) are obtained using
covariant differentiation. Hence, on account of a Ricci identity [3,
p. 83] and (1) we have

( 3 ) L,kr]ijh Vh - L,flikh Vh + L\ghjgik - ghkgij) Vh = Rhίjk Vh .

If the Riemannian curvature is constant [3, p. 112],

( 4 ) Rhijk = K(ghjgik -

and conditions (3) are identically satisfied. This proves the first part
of our theorem.

For proof of the second part we multiply (3) by Wι Vj Wk and get

L\ghjgik - ghkgij) Vh W* Vs Wk - Rhijk Vh W* V* Wk .

Thus L2 is the Riemannian curvature associated with the unit vectors
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F, W [3, p. 95]. Assume now that W is a solution of (2) and ikfthe
corresponding scalar factor. Then the above curvature is also equal
to ikP. Continuing this process we conclude from Schur's theorem
[3, p. 112] that the curvature is constant and because of (4) that K — IΛ

To conclude, we demonstrate a geometric property of Clifford
vectors justifying the name chosen for them. Let t be the unit tangent
to a geodesic and U & unit vector which undergoes a parallel displace-
ment along the geodesic. Hence U\άt

j — 0 and U remains in a plane
passing through the geodesic [1, p. 161], On the other hand, because
of (2), VijtΨ — 0 which shows that a Clifford vector, propagaged
along the geodesic, is inclined at a constant angle to it. Letting
cos θ — Ui Vif we see that

- sin θdβ = Lηijh UΨ Vh .

We now make the simplifying assumption that both U and V are
perpendicular to t. In this case the vector r]ijh U

l Vh has the direction
of t and using (1) we find its length to be sin θ. Thus dβ — ± L
and the Clifford vector rotates about the geodesic in either sense through
an angle proportional to the displacement. This property may be used
to define the Clifford parallels or paratactic lines in elliptic 3-space [2,
p. 108].
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