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In 1951 Silov [6] published a structure theory for a class of
translation invariant function algebras on compact abelian groups. In
1959 the author extended portions of this structure theory to similar
algebras defined on connected locally compact abelian groups [8]. One
of the conditions which both Silov and the author employed was that
all of the maximal regular ideals of the algebra be determined by the
elements of the underlying groups in the usual way. In 1958 de
Leeuw [2] published results characterizing the maximal ideals of an
algebra of functions on a compact abelian group which satisfies all of
Silov's conditions except this one. The results to be reported here
constitute, in effect, an additional chapter to [8] motivated by an at-
tempt to generalize de Leeuw's results. We will adopt de Leeuw's
terminology, calling an algebra of the type studied in [6] and [8] a
Silov-homogeneons algebra and an algebra which satisfies the weakened
conditions of de Leeuw and the present paper a homogeneous algebra.

1* It is appropriate to begin with a brief discussion of an example
of a Silov-homogeneous algebra which is a generalization of the group
algebra of a locally compact abelian group. Domar, Beurling, Wermer
and others have studied algebras of this type and we shall refer to
results of Domar [3] in this connection. It is also an example which
can be generalized in a natural way to include algebras of the type
which we wish to discuss here and for which our results take a par-
ticularly simple form.

Let G = {s, t, •••} be a locally compact abelian group and let
G = ίZ> *' *} be the group of characters of G. Suppose that p is a real
measurable function on G which is bounded on compact sets and satis-
fies the conditions

(i.i) p(x) ^ i

(1.2) Pttifc) ^ PiXdPiXύ

() ΣV
n

for all χ, χlf χ2εG.
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Let R(p, G) be the algebra of all Fourier transforms / of those
elements / of LX{G) for which | | / | | = J \AX)[v(tfiX < « . That is,
R{p, G) is an algebra of functions / : f(t) = $ f(X)X(t)d% defined on G
with norm | | / | | as defined above and with pointwise operations. R(p, G)
is well known to be isomorphic and isometric to the group algebra
L^p, G) with a "weight function" p. It is also known [3] that

(a) every maximal regular ideal of R(p, G) is determined by an
element of G (Mt = {/: f(t) = 0}) and the space of maximal regular
ideals of R(p, G) with the Gelfand topology is homeomorphic to (?,

(b) R(p, G) is a semi-simple completely regular Banach algebra
in the sense of Silov (Rickart's terminology [5]),

(c) R{p, G) is closed under translation by elements of G if fsR(p, G)
and hεG then fhsR(p, G), where fh(t) = f(t - h) for all feG,

(d) the norm in R(p,G) is translation invariant; | | / | | = | |Λ| | for
all / and h,

(e) the elements of R(p, G) are continuous under translation
II/-ΛII — 0 as A->0,

(f) R{p, G) is Tauberian in the sense that the set of elements
with compact support is dense.

These are the defining conditions for a Silov-homogeneous algebra.
In addition, one can show that

(g) R(P> G) is closed under multiplication by elements of G if
fεR(p^G) and χεG then the function χf: (χf)(t) = χ(t)f(t) is also in
R(p, G). In fact, χf is the Fourier transform of the translate / χ of
the function / whose transform is /,

(h) the mapping f—*χf is continuous on R{p,G) for each χeG
and the mapping χ —> χf is continuous on G for each / with compact
support.

(i) Gf spans R{p, G)f topologically if / has compact support.
R(p, G) is not of type C but its C-completion is locally isomorphie

to an algebra TKω(G) [8]. An argument similar to that on page 129&
of [8] shows that if p(χn) — o(n) then the C-completion of R(p, G) is
the algebra C0(G) of all continuous complex functions vanishing at oα
on G. Thus every closed primary ideal in R{p, G) is maximal [8, p.
1293].

Now suppose that S is a measurable subsemigroup of G which,
contains the identity and generates G (in the sense that G is the
smallest subgroup containing S). Suppose, further, that p is a real
measurable function defined on S satisfying conditions (1.1) and (1.2)
for characters in S. Let R{p, S) be the subset of R(p, G) determined by
those / which vanish a. e. outside of S"1. The algebras R(p, S) are van-
ishing algebras in the sense of Simon [7] and others and include the alge-
bras of generalized analytic functions of Arens and Singer [1]. R(p, £>
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is actually a closed subalgebra of R(p, G) and, as a Banach algebra,
has many, but not all, of the properties which we have listed above.

THEOREM 1. R(p, S) is a closed translation invariant subalgebra
of R(p, G) which separates points of G and has the following addi-
tional properties:

(a) R(p, S) is closed under multiplication by elements of S,
(b) The algebra [Sf] generated by Sf is dense in R(p, S)f,
(c) The mapping f—+χf is continuous in f for each χεS,
(d) If p satisfies condition (1.3) for all χεS then the mapping

χ —• χ/ is continuous on S for each feR(p, S) with compact support.

Proof. Let R = R{p, S) and suppose that f,geR. If / and g
are the Fourier transforms of / and g then fg is the transform of
f*g. Since

and since S"1 is a semigroup, it is easy to see that f*g(χ) = 0 a. e.
for χ $ S"1. Thus fg e R. Straightforward computations show that
f + g and af belong to R, where a is a complex number, and that R
is closed in R{p, G). From the fact that the translate f8 of / is the
transform of the function g(χ) = χ(s)f(x) it follows that R is closed
under translation. Since S is a generating subsemigroup of G it
separates points of G and it follows easily that R does also,

(a) Let &eS. Then

Since χΓ'eS" 1 then, for all χφS'\ χχx<£S~\ Thus f(XXi) = 0 for
almost every χ $ S~\ Thus fafe R.

(b) Let feR and let / be the closure of the space [Sf]. I is
then the transfrom of the closure / in Lx(p9 G) of the space spanned
by the translates of / by members of S. Thus I is S-invariant in
Li(P, G). An argument analogous to the by-now-classical one for group
algebras [4, S1F] with the use of Domar's representation of the linear
functionals on R{p, G) as Borel measures on G [3, p. 10] shows that
I is an ideal in R. Thus, if geR, gfel so gf is a limit of linear
combinations of elements of Sf.

(c) and (d) are obvious since R is a subalgebra of R(p, G).
We will refer to the parts of Theorem 1 as conditions (1, a), (1, b)

and (1, c).
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In general, not every maximal regular ideal in R{pi S) is deter-
mined by an element of G. It is natural, therefore, to look for a
characterization of these ideals in such an algebra. If t e G then the
set of all elements of R(p, S) which vanish at t is a maximal regular
ideal, and distinct elements of G determine distinct maximal regular
ideals because R(p, S) separates points of G. But if there are other
maximal regular ideals in R{p, S) what do they look like ? An answer
to this question is not hard to find by more-or-less standard techniques
of harmonic analysis. The maximal regular ideals are determined
uniquely by the homomorphisms φ of S into the multiplicative group of
the complexes which take the identity into 1 and satisfy the condition

for all x e S. However, we will delay the proof of this fact in order
to proceed to the more general class of algebras to which we referred
in the opening paragraph. We will see that these algebras share
with R(p, S) weakened forms of conditions (1, a), (1, b) and (1, c) and
will show that these properties result in a preliminary form of the
above characterization of the maximal regular ideals.

2* Let G be a connected locally compact abelian group. An
algebra R of functions on G will be called a homogeneous algebra on
G if:

(2.1) R is a Banach algebra of continuous complex valued functions
vanishing at oo on G, having the usual pointwise operations and in
which convergence in the norm implies pointwise convergence,

(2.2) R is completely regular on G; i.e., R contains functions
which are 1 on arbitrary compact sets and 0 on arbitrary disjoint
closed sets,

(2.3) R is closed under translation by elements of G and has a
translation invariant norm,

(2.4) the mapping t—*ft (ft(s) — f(s — t) for all s) is continuous
from G to R for each fixed f$R,

(2.5) the set Rr of elements of R with compact support in G is
dense in R,

(2.6) if fn and gn are sequences of elements of R such that gn

has support in a fixed compact set C and for each toeC there exists
an h e G such that | gn(t) | ^ | (fn)h(t) \ holds for all t in a neighborhood
of t0, then fn —• 0 implies gn —* 0 in R.

If we assume, in addition to the six properties above, that every
maximal regular ideal of R consists of the set of elements which vanish
at a specified t e G then R is a Silov-homogeneous algebra in the sense
of [8]. Actually, we have assumed a bit more. Condition (2.6) is,
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under these conditions, similar to the type C condition which was em-
ployed in [8] For our present purposes, however, we require a con-
dition on the algebra analogous to the type C condition but which in-
volves only the underlying group G. This analog could be stated as
follows: For feR and teG define | | / | | t to be the infinum of \\g\\ for
all g which agree with / on a neighborhood of t, and define | | | / | | | =
sup Wf\\t:teG. Then the norm in R is stronger that the uniform
norm and weaker than ||| ||| (hence is equivalent to ||| | | |).

It is not hard to show that, given conditions (2.1) — (2.5), this
condition implies condition (2.6). However, (2.6) may actually be weaker
and is in a form which will be most easily applied in the proof of the
next theorem.

Examples of algebras which satisfy the above conditions can be
found among the algebras TKJG) discussed in [8]. These are certain
algebras of functions on G with values in a primary JB-algebra K. If
such an algebra is (isomorphic to) an algebra of complex functions on G
and is completely regular on G in the sense of (2.2) then it is a homo-
geneous algebra. Another example is the algebra of complex continuous
functions vanishing at oo on the reals which are boundary values of
analytic functions on the half-plane.

In case G is compact abelian a Silov-homogeneous algebra contains
all of the characters of G and these elements generate the algebra.
In case G is connected, locally compact and abelian a type C Silov-
homogeneous algebra is closed under multiplication by elements of G
(hence, by complete regularity, contains these characters modulo com-
pact sets), and, for each feR, Rf is generated by Gf. In neither of
these cases does a homogeneous algebra necessarily contain aίl charac-
acters (mod compact sets). However, as deLeeuw points out in the
compact case, R is generated by a semigroup of characters which also
generates G in the group sense. We have something like this here.

THEOREM 2. Let R be a homogeneous algebra on a connected
locally compact abelian group G. There exists ά generating subsemi-
group S of G containing the identity such that

(a) R' is closed under multiplication by elements of S,
(b) For each feR', Sf generates Rf topologically,
(c) For each compact subset C of G and each χ e S, the mapping

f—*Xf is bounded on the set Ro of all elements of R with support C.

Proof. Since the argument repeats certain of the constructions
of [8] we will omit many of the details. It is well known that
G — Em x Gc, where Em is the m-dimensional vector group and Ge is
-compact. Denote an element of G by (s, t) where s — (xlf x2, , xm) e Em
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and t G Gc. Consider an m-tuple a — (alf a2, , am) of positive real
numbers, and define

CΛ = {(8,t):\xi\£ai, teGc}

and Da = {(s, 1): s = (fc^, A ^ , , fcwαm), k{ an integer} ,

where in the definition of Da 1 denotes the identity element of Ge.
If we make the usual identifications, Ca is isomorphic and homeomorphie
to the quotient group G/Da. Moreover, G is covered by the compact
sets Cka, k = 1, 2, .

If / is an element of R which vanishes outside of Ca then by
adding together the appropriate translates of / we may obtain an ele-
ment g of R which agrees with / on Ca and is ZVperiodic on Ckoΰ for
any prechosen k. That is, g is periodic on Cka and any element of Da

is a period. We call g a ZVperiodic extension of / to Cka.
Let C = C*, D = Dm and Ck = Cka, k = 2, 3, . Denote by k(C)

the set of elements of R which vanish on C and by R the difference
algebra R/k(C). By complete regularity on G, R has an identity e.
Let Ra be the subalgebra of R generated by e and the images in R
of all / in R with support in C and their translates by elements of C,
D-periodically extended to C2. Ra is a homogenous space of functions
on G/D in the sense of Silov, so is generated by a set S of characters
of G/D [6, 2.7]. Each element of S is uniquely associated with a
character χ of G such that χ(£) = 1 on ΰ . Call the set of characters
of G determined in this way SΛ.

By complete regularity of R, Ra, and hence S, separates points
of G/D. It follows that S generates the character group of G/D and
hence that Sa generates the subgroup of G consisting of those elements
which are 1 on D.

If χ e Sa let χ be the corresponding element of Rω. Then χ = / + μe
where / = lim/w and each fn is a suitably extended translate of an
element of R supported by C. Let fi be a Cauchy sequence in R with
f» = fή and let fή' be a D-periodic extension of / . to C4. If g is an
element of R which is 1 on C2 and 0 outside of C4 then the sequence
gn — fή'g satisfies condition (2.6) relative to the Cauchy sequence
fήl\\g\\. It follows that gn is Cauchy and converges to an element of
R which is χ(t) — μ on C2. Thus R contains an element which is
χ(t) on C2. The above construction could be repeated for each Ck so
we conclude that R contains elements which are χ(t) on arbitrary com*
pact sets. Thus R' is closed under multiplication by elements of Sa.
It is also clear from the above that Saf generates Rf for any / which
vanishes outside ofC = CΛ.

Let S be the set of all χ e G which belong to R on arbitrary com-
pact sets. This is, χeS if and only if given any compact set C in
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G there exists an element / of R such that f(t) — X(t) on C. We have
seen that Sa c S so S is not vacuous. Clearly S is a subsemigroup
of G. Moreover, since G = Em x Gc it follows that any character χ
of G is identically 1 on some subgroup Da of the type discussed above.
Thus, as we have seen, χ = χ^1 where χlf χ2 e Sa c S, so S is a
generating subsemigroup of G. By complete regularity of R, S contains
the identity character. It also follows from what we have proved
above that Rf is closed under multiplication by S and that, for feRr

Sf generates Rf.
If g(t) = χ(t) on C and / vanishes outside of C, then

so the mapping f—>χf is bounded on Rc. This completes the proof
of the theorem.

Conditions (2, a), (2, c) and (2, c) are weakened forms of conditions
(1, a), (1, b) and (1, c) which are satisfied by the algebras R(p, S) of
§ 1. We are now ready to prove a lemma which can be considered as
providing the algebraic part of our principle results.

3* If S is a semigroup of characters of G denote by P(S) the
set of complex linear combinations of elements of S. Let R be an
algebra of continuous complex functions vanishing at co on a connected
locally compact abelian group G, and suppose that R contains a dense
subset Rf such that

(3, a) R' is closed under multiplication by a semigroup S of char-
acters of G containing the identity,

(3, b) for fe R\ P(S)f is dense in Rf,
(3, c) for each feR' the mapping g—>χg is continuous on P(S)f.
Both algebras R(p, S) and homogeneous algebras satisfy these

conditions as we have seen. In R(p, S) the subset Rf may to taken
to be the entire algebra.

Let Horn {S, C) be the set of all homomorphisms of S into the
multiplicative group of complex numbers which carry the identity into
1. If φeΈLom(S, C) and yeP(S) define φ(i) = Σ*ai<P(Xi)f where
7 = Σα<Z* We will call an element φ of Horn (S, C) an R-semίckar-
acter of S if there exists an element / G J B ' such that

(3.1) \φ(y)\ ^ | |7/1| for all yeP(S) and

(3.2) if lim7%/ = / 2 then lim^(7j exists and is not 0 .

In the following, if M is a maximal regular ideal in R we will
use the notation f(M) for the image of / in the difference algebra
R/M, considered as the complex field.
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LEMMA 3. Under the conditons stated above, there is a one-to-one
correspondence between the set of maximal regular ideals of R and
the set of R-semicharacters of S. The maximal regular ideal M cor-
responds to the R-semicharacter φ if and only if

g(M) = lim φ{jn) whenever Ίnf-*gf ,

where f is as in the definition of the semicharacter φ, and

= (χf)(M) ,
f(M) '

where f is any element of Rr such that f(M) Φ 0.

Proof. Let φ be an 72-semicharacter of S. Let feR' satify the
conditions, relative to φ, of the definition. If g e R then, by hypo-
thesis, there exists a sequence 7n in P(S) such that lim ynf = gf.
Define φ{g) — lim<p(7w). φ is clearly a linear functional on R. Sup-
pose that lim ynf = gf, lim σnf = hf and lim pnf = ghf. Then
lim (Ίj)(σJ) = lim {Ίnσn)Γ - ghf" and lim pj2 = ghf* so lim {Ίnσn -
Pn)Γ = 0. By condition (3.1),

lim φ(Ίnσn - ρn) = lim φ(Ύn)φ[σn) - lim φ(pn) - 0 ,

so φ(gh) = φ(g)φ(h). Thus φ is multiplicative and determines a maxi-
mal regular ideal M = {g : ^(^) = 0}. φ(g) = g(M) for all # e -B.

If 7,/ — / 2 then ΊΊJ^ΊP by (3, c). Thus φ(yf) = φ(y)φ{f)9

and ^(/) ^ 0 by (3.2). Thus

for all yeP(S).
Now suppose that / ' 6 R' also satisfies the condition of the defini-

tion of the iϋ-semicharacter φ. Let Mr be the maximal regular ideal
constructed as above using / ' in place of /. Then also

φ{Ί) =

f'(M')

for all 7 e P(S). There exists an element g 6 R' such that

g(M) ΦOΦ g(M') ,

and it is easy to see that

= (yg)(Mr)
g(M) g(M')
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for all 7. Let lim ρng = hg, then by the above we see that

]im φ(p%) = h(M) = h{M')

for all he R. Thus M = M* and M is independent of the choice of
the function /.

Now let M be a maximal regular ideal. Since Rf is dense in R
there exists an / e Rf such that /(M) ^ 0. Define

/(M)

for all χ e S. It is clear that φ is independent of the choice of / with
the above properties, φ is a homomorphism of S9 for

f\M)

P(M)

If we choose / so that /(M) = 1 then, by the obvious linearity,
|^(7) | = | (7/)(Λf) |^ | |7/ | | for all yeP(S). Moreover, if Ύnf->f2

then lim φ(Ύn) = /(Λf) ^ 0. Thus <ρ is an i2-semicharacter of S.
It is easily seen that this correspondence between maximal regular

ideal and JR-semicharacters is one-to-one.

COROLLARY. If R satisfies the conditions of Lemma 3 and if,
for each feR', the mapping %—+χf is continuous on S in the G-
topology, then the maximal regular ideals of R correspond to the
continuous R-semicharacters of S.

4* For both R(p, S) and homogeneous algebras we can sharpen
somewhat the above characterization of the maximal regular ideals.

In the case of i?(p, S) suppose that φ is an i?-semicharacter of S.
Then \φ(χ)\ ^ ||%/11 where / is any element of R not in the corre-
sponding maximal regular ideal. But in R{p, S) it is easy to see that
IIZ/II ^ P(X) 11/II so we conclude that

(4.1) \<P{χ)\ίkp{χ) for a l l χ e S .

Conversely, suppose ^ e Horn (S, C) satisfies (4.1). Then, if φ is

not a. e. 0, we can find in R a function / which is the Fourier trans-

form of a function / for which γ*f(χ)φ(χ)dχ = [J/(χMχ)eZχ]2 - 1.

If 7 = Σ<^%i then
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I <P{Ί) I = φ'a) \jΛxMχ)dχ | =1 \^aj%i{χ)φ{χ)dχ

Moreover,

I <PW) - 11 - I \Σ*«j%i<X)<p(x)dχ - \M(xMx)dx| ^ || 7/ - p \\,
so if lim 7 n / = P then lim £>(7W) = 1. Thus φ is an i?-semieharaeter
of S.

If we call an element of Horn (S, C) which satisfies (4.1) a p-semi-
character of iϋ then we have shown that the i?-semicharacters of S
are precisesly the p-semicharacters of S. Thus we have.

THEOREM 4. The maximal regular ideals of R(p, S) are in one-
to-one correspondence with the p-semicharacters of S.

Observe that this result is indeed a sharpening of the earlier char-
acterization of the maximal resular ideals of R(p, S). For one thing,
the conditions for a p-semicharacter involve only the elements of S
while those for an JS-semicharacter involve all of P(S). For another,
the conditions for a p-semicharacter do not involve one in the actual
structure of R(p, S).

Theorem 4 is a natural generalization of the well-known results
for R(p> G). If, for instance, S — G and p satisfies (1.3) is it not
hard to see that p must be identically 1. Thus the p-semicharacters
of S become the continuous characters of G, that is, by the duality
theorem, the elements of G.

Now suppose that R is a homogeous algebra of functions on G,
which we again assume to be connected as well as locally compact and
abelian. If S is the semigroup of characters whose existence is asserted
in Theorem 2, suppose that φ is an jβ-semicharacter of S and that M
is the corresponding maximal regular ideal in R. Choose feR' with
f(M) Φ 0 and let C be the compact supporting set for /. If y e P(S)
and geR is such that g(t) = y(t) for all teC then 7/ = gf. Thus

= (yf)(M)/f(M) - g(M) and | φ{y) \<k\\g \\. Thus

(4.2) I φ(y) I ̂  inf {|| g \\ : g(t) = 7(ί)on C} .

Conversely, if φeΉ.om(S, G) satisfies (4.2) for some compact set
C then let e e R' be a unit modulo C and e' 6 Rf be a unit modulo the
support of e. Then ye and ye' are both identically 7 on C, so

(4.3) \Ψ{Ί)\S II Ύe II and | φ(y) \ g | |7β' | |
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If lim 7»e' = (e')2 then, since e'e = (e'fe = β, lim 7ne — e. Thus
lim (7n - l)e = 0, so, by (4.3), lim φ(jn - 1) = lim φ ( 7 j - 1 = 0. Thus
<p is an j?-semicharacter of S.

Now suppose that φ satisfies the formally weaker condition

(4.4) I φ(χ) I ^ inf {|| g \\ : g(t) = χ(t) on C} for all χ e S .

The let Ca be a compact set of the type employed in the proof of
Theorem 2 with C c Ca. Then, certainly, φ satisfies (4.4) for all
χ e Saf the corresponding subset of S. The whole problem may then
be transfered to the algebra Ra in the proof of Theorem 2 which is
an algebra of functions on the compact abelian group G/Da. Methods
of deLeeuw [2] may then be used to show that φ satisfies (4.2) for
all yeP(Sa).

The proof of Theorem 2 shows that Sωf generates Rf topologically
if / is supported by CΛ9 and it is easily seen that this, together with
(4.2) for all 7 6 P(Sa)9 is enough in the proof of Theorem 3 to show
that φ determines a maximal regular ideal. Hence φ is an .β-semi-
character of Sf and the iϋ-semicharacters of S may therefore be de-
scribed as the elements of Horn (S, C) which satisfy condition (4.4) for
some compact set in G.

Given a compact C define

Pcτ(χ) = inf{||ί/||:flr(ί) = χ(t) on C] .

Since pc(X) is just the norm of the element "χ" in the difference
algebra R/k(C), it is clear that pσ has properties (1.1) and (1.2) on S.
Let Ci c C 2 c be a ^-covering of G by compact sets and let pn be
the function pOn. Then {pn} is a nondecreasing sequence of functions
satisfying (1.1) and (1.2) on S, and ψ e Horn (S, C) is an i?-semicharacter
of S if and only if there exists an n such that

(4.5) \ φ { χ ) \ ^ P n { χ ) f o r a l l χ e S 9

that is, if φ is a p%-semicharacter of S.
To summarize what we have proved:

THEOREM 5. If R is a homogeneous algebra over the connected
locally compact abelian group G then there exists a generating sub-
semigroup S of G containing the identity and a nondecreasing sequence
of real valued functions pn each satisfying conditions (1.1) and (1.2)
on S such that the maximal regular ideals of R are in one-to-one
correspondence with the pn-semicharacters of S for n — 1, 2, .

We conclude with two rather obvious corollaries of Theorem 5.
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COROLLARY. //, in the homogenous algebra R, convergence is
uniform convergence then the maximal regular ideals correspond to
the continuous pn-semicharacters of S.

This follows from the fact that in this case the mapping χ—*χf
is continuous for each feR'.

COROLLARY. If the homogeneous algebra R contains a bounded
(in the norm) sequence of units modulo a σ-covering {Cn} of G and
if the mapping f—*χf is bounded on Rf then, for each x£S,pn(χ)
is bounded. If p(χ) — sup pn(%) then p is also a real function satisfying
(1.1) and (1.2) on S and every R-semicharacter of S is a p-semichar-
acter of S.

Whether, in the setting of this corollary, every £>-semicharacter
of S is an iϋ-semicharacter of S remains a matter of conjecture at the
present.

REFERENCES

1. R. Arens and I. Singer, Generalized analytic functions Trans. Amer. Math. Soc,
8 1 (1956), 379-393.
2. K. deLeeuw, Homogeneous algebras on compact abelian groups, Trans. Amer. Math.
Soc, 8 7 (1958), 372-386.
3. Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta
Math. 96 (1956), 1-66.
4. L. H. Loomis, An introduction to abstract harmonic analysis, New York (1953).
5. C. E. Rickart, General theory of Banach algebras, Princeton, N. J. (1960).
6. G. E. Silov, Homogeneous rings of functions, Uspehi Math. Nau, (N. S.) 6, No. 1
(41), 91-137, (1951) in Russian Amer. Math. Soc. Transl. No. 92.
7. A. B. Simon, Vanishing algebras, Trans. Amer. Math. Soc, 92 (1959), 154-167.
8. A. B. Willcox, Silov type C algebras over a connected locally compact abelian group,
Pacific J. Math., 9 (1959), 1279-1294.

AMHERST COLLEGE




