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Introduction* By a Lie algebra of classical type we shall mean
a Lie algebra L over an algebraically closed field K of characteristic
p > 7 which possesses a standard Cartan subalgebra, that is, an abelian
Cartan subalgebra H such that L and H satisfy the axioms of Mills
and Seligman [11].

Let G be the algebraic component of the identity in the automorphism
group of L. In [7] Curtis constructs an irreducible protective repre-
sentation of G from each of the irreducible restricted representations
of L and a group G* which is a covering group for G in the sense that

(i) there is a covering homomorphism mapping G* onto G whose
kernel is contained in the center of G*;

(ii) each of the protective representations of G constructed can be
lifted to an irreducible representation of G*.

It is the purpose of this paper to investigate the structure of this
covering group and to identify it. The main structure theorem presented
here, after noting that G* is an irreducible linear algebraic group, is
that the decomposition of L as the direct sum of simple ideals induces
a decomposition of G and G* as the direct product of the corresponding
groups for the simple ideals. The identification problem is thus reduced
to the "simple case" and for Lie algebras of type An or Cn results have
been obtained by Curtis [7]. In the last section we give a complete
treatment for the orthogonal Lie algebra with respect to a quadratic
form Q, that is, for types Bn and Dn. The principal result obtained
is that the covering group is birationally isomorphic to the reduced
Clifford group associated with Q.

These results are of some interest in view of recent work of
Steinberg [13]. Working with the simple groups defined by Chevalley
[5] Steinberg constructs a covering group in terms of generators and
relations which is naturally isomorphic to the simply connected covering
group of the simple Chevalley group. Combining Steinberg's results
with ours it is not difficult to show that the two covering groups are
birationally isomorphic.
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1* The group of invariant automorphisms* Let L be a Lie
algebra of classical type and H a standard Cartan subalgebra of L.
We assume that

( i ) a basis for L is chosen such that the basis elements e(a),
e(—a) spanning the one dimensional root spaces of the roots a, —a
(zero is not counted as a root) are normalized to give a(h(a)) = 2 where
h(a) = [e(—α), β(α)], and the basis elements spanning H are h{a^), , h(an)
for some roots au , αw;

(ii) an ordering of the roots has been introduced which is compatible
with the additive structure of the set of roots [6, pp. 95-96];

(iii) a p-power operation has been defined in L with respect to
which L is a restricted Lie algebra.

Let S be the set whose elements are the automorphisms

s = s(a, k) = exp (k ad e(a))

where k runs over K and a runs over the roots of L with respect to H.
Let G be the subgroup of the group A(L) of all automorphisms of L
generated by the set S. G will be called the group of invariant
automorphisms associated with H.

An immediate extension of Theorem 3 [7] and a theorem of Ono
(Jour. Math. Soc. Japan 10 (1958), 307-313) made possible by the work
of Block [1, Cor. 6.1, Th. 7.1] is

1.1. G is an irreducible algebraic group of linear transformations
on L. If L possesses a nondegenerate trace form then G is the
algebraic component of the identity in A(L) and the Lie algebra of
G is isomorphic to L.

2* The covering group of (?• Let U be the ϊJ-algebra of L
(see [10, p. 192]). Since the center of L is trivial every automorphism
is a restricted map and can be extended to an automorphism of U.
We use the same notation for an automorphism in G and the extended
automorphism of U.

When M is a finite dimensional irreducible right (/-module Curtis
[7, pp. 317-319] has constructed an irreducible projective representation
of G, F, acting in M such that

(1) (x-u) F(g) = (xF(g))-u9, xeM,ueU,geG.

Moreover, if x+(xJ) is a maximal (minimal) vector in M then F is
normalized so that for any seS

(x+ F(s) = x+,s = s(a9 k)9 a > 0 ,

[x- F(s) = #-, 8 = s(α, fc), a < 0 .
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Immediate consequences of (1), (2), and the definitions which will be
used are:

2.1. For any s(a, k) e S, and k, k' e K,

F(s(a, k + k')) = F(s(a, k))F(s{a, k')) .

2.2. (Curtis [7, II. 2.1]). For any x Φ 0 in M and any root a
there exist vectors x2, xΛ, •••,&« in M, depending upon x and α, such
that for all k e K

xF(s(a, k)) = x + kx-e(a) + k2x2 + + k% .

Let ^€ be a nonempty set of nonisomorphic, finite dimensional,
irreducible right [/"-modules, and for each M in ^ let G(M) be the
group consisting of the linear transformations FM(Si) FM(sr), where
T ^ 1, Stβ S, and FM is an irreducible protective representation of G
acting in M which satisfies (1) and (2). Denote by G{^) the sub-group
of 77 G(M) (Me ^ ) generated by the elements g(su •••,§,.) for every
nonempty ordered sequence (sl9 , sr) of elements from S where
g(su -- ,s r) has as its Mth coordinate F^fa) FM(sr). When ^
contains a representative from each of the pn, n = rank L, isomorphism
classes of irreducible {/-modules G(^t) = G* is the covering group
defined by Curtis, the covering homomorphism ω mapping g(su , sr)
onto sx sr.

THEOREM 1. For any nonempty set of nonisomorphic irreducible
U-modules ^ , G(^£) is an irreducible linear algebraic group on
M— XM (Me^f). The center of G(^£) is finite and has order
relatively prime to p.

Proof. M is made into a right ?7-module by defining for any

u e U and m = (m, m', •) e M

m-u — (m-u, m' u, •••,).

The action of G(^) on M is given by

mg(s(a, k)) = (mFM(s(a, k)), m'FM,(s{a, k)), •) ,

and therefore since each FM, J l ί e ^ satisfies (1) we have

( 3 ) (m u)g(su , βr) = (mg(s19 , sr))-u8^'8r,

for any me M,ue U, and g(slf •••,«,.)€ G{^). By similar reasoning
we obtain 2.1 and 2.2 for the elements g(s(a, k)) and the module M.
It follows from 2.1 and 2.2 that for each root a the mapping &—>
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g(s(a, k)) is a polynomial representation of the additive group of K, hence
Proposition 2, [2, p. 121] enables us to conclude that {g(s(a, k)):ke K\
is an irreducible algebraic group. But these subgroups generate G{^t)
therefore the first assertion follows from Corollary 3, [2, p. 123]. For
any M^^ 2.1 implies that G(M) is a subgroup of the unimodular
group on M. FM is an irreducible projective representation hence the
center of G(M) is finite and has order relatively prime to p. The
second assertion follows from the fact that G{^?) is a subdirect product
of the groups G(M),

3* The structure of the covering group* Before discussing
structure theorems for G* some remarks are in order concerning the
dependence of the groups G(M) and G{^£) upon the method of construction..
Two projective representations of G on an irreducible [/-module M which
satisfy (1) and (2) yield the same group G(M), and if M' is an irredu-
cible [/-module, θ a [/-module isomorphism of M onto M\ then the
mapping g-+ θ~1FM(g)θ is a projective representation of G on M' satisfying
(1) and (2). This mapping induces naturally an isomorphism of G(M)
onto G{Mr) which is birational (both the isomorphism and its inverse
are rational maps). Thus we see that G{^) is determined up to
birational isomorphism by the isomorphism classes of the irreducible
right 17-modules contained in ^ C

For any nonempty set of nonisomorphic irreducible [/-modules Λt
let M be defined and given the structure of right [/"-module as in
Theorem 1. For any x in L the linear transformation on M representing
x can be extended uniquely to a derivation D(x) of the tensor algebra
T(M) over the vector space M. The map x—>D(x) is a restricted-
representation of L, hence T(M) is a right [/-module. Finally let ^£'
be a complete set of nonisomorphic irreducible right [/-modules containing
^y£. The covering group G* is birationally isomorpic to G(^€") and
we shall denote by π{^£) the composite of this isomorphism with the.
projection of G(^£f) onto

THEOREM 2. Let ^£ he a nonempty set of nonisomorphic irredu-
cible right U-modules such that every irreducible right U-module is
the homomorphic image of a finite dimensional U-submodule of T(M).
Then π{^) is a birational isomorphism of G* onto

Proof. Without loss of generality we may assume G* =
where ^ ' is a complete set of nonisomorphic irreducible [/"-modules*
containing ^ ^ and that π(^t) is the canonical projection of
onto G(^Γ). Thus π{^£) is a polynomial representation of

Equation (3), 2.1, and 2.2 hold for the [/-module M and the elements
g(s),seS, hence the proof of Theorem 5 [7, p. 321] carries over to*
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this situation. As in Curtis' proof one shows that for each Me
there exists a group homomorphism τr(Λf), τt(M): G{^£) —> G{M), sending
g(sl9 , sr) onto i^fe) FM(sr). From the construction of π(M) (see
[7, p. 321-322]) and Proposition 2 [3, p. 11] it is easily deduced that π(M)
is a polynomial representation of G{^€). For each Me ^£' π{^Jt) o π(M)
is the coordinate projection of G(^£') onto G(M) hence π ( ^ C ) is an
isomorphism. π{^Yλ is the homomorphism Δoψ where Δ is the
canonical isomorphism of G(^C) with the diagonal of G{^)q, q == p% =
cardinality of ^ C , and α/r the homomorphism τt(Af) x π(ikΓ) x •••,
^ " = {M, M\ ••*}. Our proof is now complete since both Δ and ^
are polynomial representations.

REMARK. Let λ l f , λn be a basis for the space of integral linear
functions on H [7, p. 313]; take Mif i e [1, n] to be an irreducible right
ZJ-module with maximal weight Xif and set ^ — {M*: i e [1, n]}. Then
^ satisfies the hypothesis of Theorem 2.

Let L = Lx + + Lf be the decomposition of L into the direct
sum of simple ideals, then H Π Li is a standard Cartan subalgebϊa of
Li and 11=^+ + Ht (direct). In terms of this decomposition
we have

THEOREM 3. Let Lif ί e [1, ί], be the simple ideals in the decom-
position of L and Gi the group of invariant automorphism of Li
determined by JHΓ4 = L4 Π H. If Gf is the covering group of Gif G*
the covering group of G, then G is birationally isomorphic to
Oi x ••• x Gu and G* is birationally isomorphic to Gf x ••• x Gf.

Proof. For each i e [1, t] let Ti be the set of all automorphisms
s = s(α, k) e S whose restriction to Hh j Φ i is the identity transformation.
For any s(α, k), s{af, k') e S, s(a, k) = s(a\ kf) if and only if k = k' = 0,
in which case s(a, k) is the identity automorphism on L, or k — k* Φ 0
and a = a'. This fact together with the partitioning of the roots
implied by the decomposition of L enables one to construct a birational
isomorphism between the subgroup GU) of G generated by Ti and the
group G^ As G is the direct product of the subgroups G(i\ i e [1, t], G
is birationally isomorphic to Gx x x Gt. For future use we denote
the composite of this isomorphism with the projection of Gx x x Gt

onto Gi by p{.
For each i let \iti9 j e [1, % ] , be a basis for the space of integral

linear functions on Hif and take Mitj to be an irreducible restricted
LΓmodule with maximal weight XitJ. The canonical projection of L
onto Li followed by the restricted representation of Li defining the
Li-module structure in Mitί is an irreducible restricted representation
of L. We identify \itj with its image under the canonical injection
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of H? into i ί* and note that as an irreducible restricted L-module
Mifj has maximal weight Xit3:

Let FitJ be an irreducible protective representation of G* acting in
Mifj which satisfies (1) and (2) when Mifj is considered as an LΓmodule.
Setting Fitj = piθFif3 we obtain an irreducible projective representation
of G acting in Mitΰ which satisfies (1) and (2) when Mit3 is viewed as
an L-module. The mapping ψitj sending Fi9S(8^) Fitj(sr) to
Fi,APi(si)) Fi,j(Pi(Sr)), T ̂  1, Si e S, is a birational isomorphism of
G(Mitj) onto Gi(Mi9i). For each i let ̂  = {Mitj: j e [1, %]}. It follows
that ψi9 the restriction of ψifl x x ψifn. to G{^£Ί), is a birational
isomorphism of G(^fi) onto G<(^#i). If ^ Γ is the union of the sets
^ 5 , TΓi the canonical projection of G(^) onto G(^€^ (along the
coordinates in ^ — ̂ ^ ) then δ © (^ x x πt) o ( ^ x x <̂ t) is a
birational isomorphism of G{<^€) onto Gx{^^) x x G t(^i) , where
δ is the natural isomorphism of G(^€) with the diagonal of
G(^T) x G(^T) x G(^T) (t factors). But G^^ti) is birationally
isomorphic to G* by our choice of ^ i and the remark following
Theorem 2. The elements Xiti, j e [1, wjf i e [1, t], are basis elements
for the space of integral linear functions on H hence G* is birationally
isomorphic to G{^£), and Theorem 3 is proved.

We are now in a position to establish the following:

THEOREM 4. / / co is the covering homomorphism of G* onto G
then ω is a rational representation of G* and the kernel of ω is the
center of G*.

Proof. In view of Theorem 3, it is sufficient to consider the case
where L is simple. In this situation the adjoint representation is
irreducible, and if FL is an irreducible projective representation of G
acting in L which satisfies (1) and (2) then FL(s) = s for any se S,
hence G(L) — G. Let ̂  be a complete set of nonisomorphic irreducible
Z7-modules which contains L. Let π(L) be the canonical projection of

onto G(L) = G and ψ the birational isomorphism of G* onto
Then we have ω — ψoπ(L) and hence ω is rational.

From the definition of G* it follows that ker ω is contained in the
center of G*. The enveloping algebra of G contains the Lie algebra
of G. The latter however contains ad L, hence any element in the
center of G commutes with the elements of ad L. Thus the center of
G is {1} and this establishes the second assertion.

THEOREM 5. // L possesses a nondegenerate trace form then the
Lie algebra of G* is isomorphic to the Lie algebra of G. In particular
the differential of the covering homomorphism is such an isomorphism.



COVERINGS OF ALGEBRAIC GROUPS 1455

Proof. It is sufficient to prove the following.

if ^€ is any nonempty set of nonisomorphic irreducible [/-modules
(*) and R the representation of L afforded by the [/-module M =

X M(Me ^£) then the Lie algebra of G{^) contains R(L).

Indeed, we have G* = G(^f0) where ^f0 is a complete set of irreducible
[/-modules, hence the Lie algebra of Cr* contains R0(L) an isomorphic
copy of L. The hypothesis on L implies (see 1.1) that the Lie algebra
of G is isomorphic to L, consequently the first assertion of the theorem
follows from Theorem 4.

In view of Theorem 3 and Proposition 3 [2, p. 139; 3, p. 13] it is
sufficient to prove the second assertion when L is simple. If ^Q is a
complete set of irreducible [/-modules containing L then there is a
birational isomorphism ψ mapping G* onto G(^f0). The group G(L)
is G (see the proof of Theorem 4) consequently dω — dψ o dπ where
π = π(L) is the projection of G(^o) onto G{L). dψ is an isomorphism
(see [2, Prop. 5, p. 140]). Since the Lie algebra of G{^fQ) is R0(L)
we obtain that dπ is the mapping RQ(l)—>adi, leL, hence dω is an
isomorphism.

We prove (*) by direct computation using Proposition 4 [2, p. 132].
Let X be transcendental over K and set Ω — K(X). For any root a
the maps

Qa k~-+.go(k) — g(s(a, k)) and sa: k -* sa(k) = s(α, k)

are polynomial representations of 3ίΓ the additive group of the. field
K. We denote by gf

a{sf

a) the unique polynomial representation of J?ΓΩ

which extends ga(sa). J%ΓΩ is the additive group of the field Ω and for
any k' e Ω, s'a{kr) is the automorphism s(α, fc') of LΩ. As MΩ is naturally
a restricted IΛmodule we obtain from (3)

( 4 ) (m-x)g'a(k) = (m&'a(k))'Xs{a>k), me MΩ, xe L,ke Ω ,

and

m+g'a(k) = m+ if a > 0, fc e Ω ,

m-g'a{k) •= m_ if α < 0, Jk e β ,

where m+(m-) is the image of a maximal (minimal) vector in M, Me ^ ,
under the canonical injection of Λf into J ί .

Let D be the derivation with respect to X in fl. If V is any
finite dimensional vector space over K, D induces a unique endomprphism
in VΩ, also denoted by D, which commutes with every linear function
on V. Furthermore, if V is an algebra over K then the induced
endomorphism of VΩ is a derivation of the algebra VΩ. With these
conventions in mind we shall prove that if Δ is a maximal simple
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system of roots of L with respect to H then

(**) m{g'a(X)-D) = (mg'a(X))-e(a), me MΩ, ±ae Δ .

For a given a e Δ let N be the set of all m in MΩ for which (**) holds.
Applying D to the first of the equations in (5) yield that N contains
the image of a maximal vector in M under the canonical injection of
M into M for each M in ^ . If meN Π M and x = e(—a) then upon
applying D to the right side of (4) we obtain with the aid of Lemma
3 [2, p. 132]

i-ay^D = [(mg'a(X))-(e(-a) + Xh(a) - X*e(a))]D

= (mg'a(X))-(e(a) [e(-a) + Xh(a) - X2e(a)] + h(a) - 2Xe(a))

Thus m e(—a) belongs to N Π M whenever m does. Similar calculations
with x — e(— 6), b e Δ, b Φ a, give m-e(—b)e JVΠ M whenever m e Nf) M.
But each M in ^£ is spanned over K by vector monomials [8, p.
853-855] consequently N = MΩ. An analogous argument can be given
for the case — aeΔ.

Now (**) and Proposition 4 [2, p. 132] imply that e(a)R, ±aeΔ,
belongs to the Lie algebra of G{^£) which gives the desired conclusion.

4* The covering group of the orthogonal Lie algebra* Let
V be an m-dimensional vector space over K, B a nondegenerate sym-
metric bilinear form on V, and L the set of all iΓ-endomorphisms T
of Fsuch that B(xT, y) + B(x, yT) = 0. L is a Lie subalgebra of the
associative algebra of all iΓ-endomorphisms of V which is closed under
the associative ptiι power, hence a restricted Lie algebra over K. We
refer to L as the orthogonal Lie algebra determined by B.

The nondegeneracy of B enables one to identify the space of K-
endomorphisms of Vwith F ® F, v <g) w: x —> B(x, v)w for any x,v,we V;
to show that the elements T(v, w) = v ® w — w (g) v, v, w e V, span L;
and to show that the identity mapping is a restricted representation
with nondegenerate trace form. When m > 4 L is simple [9, or the
remark following 4.1.1], and is of classical type Dn for m = 2n, n ^ 4,
and of type Bn for m = 2n + 1, w ̂  3.

THEOREM 6. Lei L 6e ίfee orthogonal Lie algebra determined by
a nondegenerate, symmetric, bilinear form B on an m-dimensional
vector space V over K. The group G* is birationally isomorphic to
the reduced Clifford group associated with the orthagonal group of B.

Proof. In 4.2 and 4.4 a set of modules ^£ is determined which
satisfies the hypothesis of Theorem 2. For m even V together with
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the spaces of half spinors constitute such a set while for m odd we
obtain V and the space of spinors (we are following the terminology
of [4]). The projective representation of the group G associated with
the modules in ^£ are computed in 4.3 and 4.5 utilizing the formula
y'βxp(adx) = exp(—x)yexp(x) which holds in any associative algebra
at characteristic p provided x* = 0, t ^ (p + l)/2. In all cases we have
FM(s(a, k)) = exp (k e{a)B) where R is the representation of L in
M9 Me ^£. Lemma 4.1.3 concerning generators of the reduced Clifford
group Γt enables us to show that G{ V) is the image of Γi under the
vector representation while if M is the space of spinors (respectively:
one of the spaces of half-spinors) then G(M) is the image of Γt under
the spin representation (respectively: one of the half spin representations).
These facts lead easily to the conclusion of the theorem.

4.1. Preliminary results on the representations of L. For each
integer r e [1, m] let A(r) be the space of skew-symmetric tensors of
rank r in the tensor algebra on V. Each JK-endomorphism in L can
be uniquely extended to a derivation of the tensor algebra, and it is
well known that A(r) is invariant under each such derivation. Thus
A{r) becomes a Z7-module, and as is the case when K is of characteristic
zero

4.1.1. For each positive integer r such that 2r < m the space A(r)
is an irreducible Z7-module.

Proof. A basis v(ϊ), •••, v(m) for V determines a basis for A(r)
as follows: let Σ(r) be the set of strictly increasing sequences of length
r from the integers 1, , m then the basis for A(r) consists of the
elements a(τ), τ 6 Σ(r), where if τ = {i19 , %}

a(τ) = Σy v(il) v(if

T)

the summation extending over all permutations P = (V " * ' V) of the
V&x, , %rj

set τ, while 7 equals the signature of P.
L has been identified with A(2) hence the elements T(v(ί), v(j)) =

a({ί> ΰ}), it 3 € [1, m], i < j , form a basis for L, and choosing the v(i)'&
to be an orthogonal basis gives

<6, « „ . J ™ . « Λ > = | ° :" {' Λ " - ftΛc<[1 m l - r )

l±o(τ Π {if3})a,(τjf otherwise ,

where τx is the sequence in Σ(r) whose elements comprise the set
(f U {<, Λ) - (τ n {i, Λ), and b(i) = B(v(i), v(i)), i e [1, m].

Let W Φ {0} be an irreducible ϊ7-submodule of A(r), and for each
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w Φ 0 set l(w) equal to the number of α(r), τ e Σ{r), which appear with
nonzero coefficient in the expansion of w. Let w0 Φ 0 be an element
of W with l(w0) minimal. Assume l(w0) > 1 and suppose that α(τΊ),
α(̂ 2)> ^i =£ ̂ 2> appear with nonzero coefficients in the expansion of wQ.
Since 2r < m there exist i, j.e [1, m] such that ί Φ j , i e τ1 f] ([1, m] — τ2),
while i 6 ([1, m] - τO Π ([1, m] - τ2). Then wx = w0 Γ(i;(i), i (i)) =£ 0 and
ϊ(^i) < l(w0), consequently W contains an element α(r) for some τ e JS(r).
Repeated application of (6) yields the desired result.

REMARK, (i) The adjoint representation of L is equivalent to the
representation of A(2) just discussed, thus we obtain another proof of
the simplicity of L.

(ii) Whereas 4.1.1 seems to be in the domain of common knowl-
edge the above proof is included for its simplicity and characteristic
free nature.

Let C be the Clifford algebra on V with respect to the quadratic
form B(x, x). Identifying V with its image under the canonical injection
of V into C, we have

( 7 ) v2 = B(v,v)-l,ve V.

and

(8) vw + wv = 2B{v, w)Λ,v,we V.

We obtain additional irreducible [/-modules from the spin representa-
tion of C+ since

4.1.2 The subspace [V, V] of C spanned by all elements [v, w] =
vw — wv, v, w e F, is a Lie algebra, and the linear mapping of L onto
[V, V] given by T(v,w)φ — 4~1[/y, w] is a restricted isomorphism. The
enveloping algebra of φ(L) in C is C+ the subalgebra of even elements.

Proof. Except for the restrictedness of φ these results follow
from the identity

( 9 ) wT(x, y) =,[w, T(x, yfl x,y,weV,

(see [10, Th. 7, p. 231]). For any x, y in V, (T(x, y)f = kT(x, y) and
(T(x, y)φf = 4"1&T(x, y)φ. These relations imply that φ is restricted.

4.1.3. If v(i), v(—ϊ), (v(0), v(i)f v(—i))9 i e [1, n], constitute a basis
for V such t h a t B{v{i), v(j)) Φ 0 if and only if i + j = 0 then t h e

elements exp(kv(ί)v(j)) 9 \i\ Φ \j\,i<j,keK, generate the reduced

Clifford group Γo

+.

Proof. For | i \ Φ \j |, ί < j , B(v(ϊ), v(j)) = 0 and at least one of
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v(ϊ)t VU) is isotropic so (v(i)v(j))* = 0 and exp (k v(i)v(j)) is well defined
by the exponential power series. Equations (7)-(9) imply

(10) exp (—k v(i)v(j))x exp (k v(i)v(j)) — # exp (2k T(v(i), v(j))) .

As exp (k v(ί)v(j)) is an invertible element of C+ which has norm one
[4, p. 52] (10) tells us that it belongs to Γ$ the reduced Clifford group.
Let G' be the subgroup of Γi generated by the elements exp (k v(i)v(j))9

ke K, \i\ Φ \j\,i < j , and v the vector representation of the group ΓΌ+.
For jΦ 0 exp (k T(v(i), v(j))) = Wj>itk while for j = 0 exp (k T(v(i), v(0))) =
yL<fiϊ where Wj,itk and F_ί>fc are the generators of the commutator
subgroup of the orthogonal group given in [12, p. 397, 398]. For
0 < i < j set g(i, j) = exp (VΊΓ/2 v(i)i;(—i)) exp (—V 2~/2 v(i)t;(—i)) then
#(i, i) and g(—i,j) belong to G' as does (g(i, j)g(—i,j)Y = — 1. Thus
v(Cr') = v(Γ0

+) and G' contains {±1}, the kernel of v, implying that
G' = Γi.

4.2. Assume m = 2w, ^ ^ 4. Since V has maximal index with
respect to B we may select a basis w(i), | i \ e [1, w], for V such that
J5(w(i), w(j)) = 0 if i + j =7̂  0, B{w(-i), w{ϊj) = 1. With respect to this
basis for V, L has a basis consisting of the transformations T(i, j) =
T(w(i), w(j)), I i I, I j I e [1, w], i < i . The subspace H spanned by the
JΓ(—i, ί), i e [1, n], is a standard Cartan subalgebra, and the root
elements of L with regard to H are e(a) = T(ί,j), i < j , \i | Φ \j |.
The root a belonging to T(i, j) is the linear function μi + μs where
for any i9 w(ί) h = i«<(fc)w(i), he H. A maximal simple system of roots
J is given by

α» = ft + j«-(i+i), * e [1, w - 1], an = ^Λ + / ^ ,

and canonical generators for L in terms of Δ are

β(α4) = T(-ί - 1 , i), i G [1, rc - 1], β(α.) = T(n, n - 1)

Λ(α4) - Γ(- i , i) - Γ(- i , - 1 , i + 1), ie [1, n - 1] ,

λ(<O - Γ ( - Λ , n) + T(-n + 1, n - 1)

β(-α4) = T(-i , i + 1), ie [1, n - 1], e(an) - Γ ( - n + 1, -n) .

If λ<, ΐ e [1, w], is the basis for H* dual to the basis /&(&*)> i € [1, n],
for £Γ, then the λ< span the space of integral linear functions on H.
The irreducible Z7-module A(r), r e [1, w — 2], has maximal weight λ r

since the basis element α({l, , r}) is a maximal vector. The irreducible
E7-modules with maximal weight Xn-X and λn are obtained from the
spin representation of C+ as follows: in C set f — w(l) * w(n) and
let / be the right ideal of C generated by /. / has a basis consisting
of the elements/= /(0),/(τ) =f-w(—it) ••• w(—ί8), w h e r e τ ^ ^ , v ,ί s}
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belongs to the set Σ of all strictly increasing sequences of integers
from [1, ri\. I is a minimal right ideal of C and can be taken as the
space of spinors (see [4, p. 55]). The restriction to C+ of the repre-
sentation of C afforded by I is the spin representation of C+, and the
subspace /+(/_) spanned by the elements /(τ), length of τ even (odd)>
is an irreducible C+ submodule of I ([4, p. 45)] hence an irreducible
t7-module. The mapping φ sends

T(ί, j) — -2-1w(j)w(i), i<j,\i\Φ\j\;

T(-i, j) -> 2~1(1 - w(ί)w(-ί)), ί G [1, n] .

Ήence (7) and (8) imply that f({n}) (f(0) = /) is a maximal vector of
weight λΛ-i(λΛ) in I-.(I+). Since the tensor algebra on V x J_ x 1+
contains a maximal vector of weight \k9 he [1, ri\, Λ€ — {V, J_, 1+}
satisfies the hypothesis of Theorem 2.

4.3. The root elements of L are represented on the modules in
^£ by nilpotent linear transformations of degree 2 consequently the
formula yexv(adx) = exp(—x)yexγ>{x) can be applied when y and x
are linear transformations representing the root elements of L on these
spaces. Computing the value of FM(s(a, k)) on "vector monomials" with
the aid of this formula and (1) we obtain that for each M in ^
FM(s(at k)) = exp (k e(a)*), s(a, k)eG, R the representation of L afforded
by M. Since the root elements of L are the transformations T(ί,j),
i < j,\i\ ^ \j\, 4.1.3 together with the above result implies that
Fv(s(a, k)) — v(exp (k e(a)φ)), FI±(s(a, k)) = |0±(exp (k e(a)φ)) where v is the
vector representation of Γt and p± are the half-spin representations.

Let 7] be the canonical isomorphism of Γt with the diagonal of
Γt x Γt X Γt. Then ψ = V°(v x p- x p+) is a homomorphism of Γt
onto G{^£) whose kernel, the intersection of the kernels of v, p-, and
p+, is {1} [4, HI. 6.1].

The structure of C [4, II. 2.1] enables one to view the elements
of Γt as linear automorphisms on the 2w-dimensional vector space I.
Γt is an irreducible linear algebraic group being generated by the one
dimensional irreducible subgroups {exp (k e(ά)φ : k e K}. The subspace
J+(/_) is an invariant subspace under the identity representation of Γt
and the induced representation of Γt is p+(P-)- Thus ψ~λ is easily seen
to be a rational representation of G ( ^ ) . The rationality of ψ follows
immediately from Proposition 2 [3, p. 11] and Proposition 6 [2, p. 141].

4.4. Assume m = 2n + 1, n ^ 3. Select a basis w(i), \ ί \ e [0, n),
for V such that

= 0 if i + j Φ 0, j?(w(-ί), w(i)) = 1, i e [1, ̂ ] ,
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and

B(w(0), w(0)) = 2 .

With respect to this basis for V, L has basis T(i, j) = T(w(ϊ), w(j))9

I i l> l i I e [0, w], i < y. The subspace of L spanned by the elements
T(—i, i) ie [1, n], is a standard Cartan subalgebra H, and the root
elements of L with respect to H are the transformations e(a) = T(i, j),
I i U i I e [0, n], I ί I =£ \j I, i < j . The root a belonging to T(i, j) is the
linear function μi + μSι where for any i, μ* is defined by w{i)*h —
μi(h)w(i), heH. A maximal simple system of roots is given by α̂  =.
μi + μ_(ί+1) ie[l,n— 1], an — μn + μ0 = μn9 and generators of L are

β(α4) = T(-(i + 1), ΐ), ίe[l,n- 1], β(αj - Γ(0, w)

fc(a*) - Γ(- i , ΐ) - T(-(i + 1), i + 1), i e [1, n - 1], Λ(̂  ) - 2T(-n, n) f

β ( - α < ) = T(- i , i + 1), i e [1, n - 1], e(an) = T{-n, 0) .

If λ;, i e [1, n], is the basis in H* dual to /KαO, i e [1, n], then A{r),
r e [ l , w - l ] , has maximal weight λr since α({l, , r}) is a maximal
vector with respect to the chosen basis for V.

Let V be a 2%-dimensional vector space over K with basis v(i),
I i 16 [1, w], and Br a symmetric bilinear form on V defined by
B'(v(i), v(j)) = 0 if i + jVO, B(v(-i), v(i)) = - 2 , i e [1, Λ]. Let C
be the Clifford algebra on V with respect to Q'(#) = B(x, x). C is
isomorphic to C+ [4, II. 2.6], the isomorphism sends w{0)w(i) to v(ί),
\ί\e[l,n], C is represented faithfully on the minimum right ideal
Γ = / C , / = v(l) v(ri), and the isomorphism of C+ onto C following
φ maps

Γ(ΐ, j)->4-Mί>(ΐ), Ii U i l e [1, n], | i | Φ \ j\

(-i, 0) - - 2 - M - ί ) , * € [1, Λ]

Thus / is a maximal vector of weight λft in Γ and ^ — {V, Γ\
satisfies the hypothesis of Theorem 2.

4.5. As in 4.3 we have the reduced Clifford group Γ£ generated
by the elements exp (k e(α)φ), and

Fv(s(α, k)) = y'(exp (k e(α)φ) ,

where v' is the restriction of the vector representation to Γ£, and p is
the composite of the isomorphism of C+ onto C" with the representation
of C on Γ. p induces a group monomorphism pf on Γ£, and so ψ =
tf o(vf x p'),rjf the canonical injection of /"ΐ onto the diagonal of
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Γ$ x Γ$, is the required isomorphism. The birationality of ψ follows
exactly as in 4.3.
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