ARENS MULTIPLICATION AND CONVOLUTION

JAMES D. STAFNEY

1. Introduction. Let L denote the group algebra of a locally
compact Abelian (LCA) group &. For elements ¢ and y in L the
product of 2 and ¥ is given by

2y(B) = §x<ﬁ — ay@)da Bew,

where the integral is taken over the entire group and with respect to
Haar measure.

Let L* and L** denote the first and second conjugate spaces of
L, respectively. As a result of [1], a multiplication can be introduced
in L** in the following manner. Let x, ye L; f, g€ L*; and F, G ¢ L**,
The elements %f and Fof in L* and GoF in L** are defined by:

(1.1) zf (y) = f(2y) yelL,
1.2) Fof(x) = F(xf) xel,
(1.3) GoF(f)=GFof) feL*.

The multiplication in L** given by (1.3) will be referred to as the
Arens product. Some of the properties of the Arens product in L**
have been developed in [2].

It is well-known that the spaces L* and L** have realizations in
terms of functions on & [5, p. 148] and finitely additive measures on
< |6], respectively. One difficulty which arises with the Arens
product is that there seems to be no means of obtaining the functions
and measures which correspond to elements of the form Fof and Go F,
respectively. To avoid excessive notation we will use f, g, --- to denote
elements of L* and their corresponding realizations as functions. Any
statement involving f, g, -+ as functions will be interpreted as a locally
almost everywhere statement (see [5, p. 141]) even though a reference
to locally almost everywhere (l.a.e.) may not appear. Similarly, F,G, .-
will denote elements of L** and their corresponding realizations as
finitely additive measures.

In the case of xzf, an obvious application of the Fubini theorem
yields

(1.4) 27 (6) = |F(6 + Wa@da  Bez,
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which provides a realization of 2f as a function. Proceeding formally,
one obtains the following “equations’:

15 For@) = (|76 + wn@dadr) = ||£(6 + maF@)me)da,
W8 GoF(f) = ||7(6 + WdF(B)IG@ .

If the equations in (1.5) were valid, then the function A(a) =
f(B + a)dF(B) would be a realization of F'of; however, as a general
statement, (1.5) is invalid on two counts. In 4.8 it is shown that the
function Z(«) need not even be measurable (measurability will always
be with respect to Haar measure) and in 3.5 it is shown that even if
h(c) is measurable, the second “equality” in (1.5) may not be valid.

The formal equations in (1.5) and (1.6) suggest a second pair of
operations analogous to the operations defined in (1.2) and (1.3).

For each F in L**, f in L* and B in &, Tsf and Fxf are defined
as follows:

.7 Tef@)=fl@+p) acy,
1.8) Fxf(B) = F(Tsf) BeZ .

Thus, for each 8 in &, Ty is an operator (bounded linear transformation)
on L*. Let 9 ={Tw:BecZ}. Also, for each f in L* and each F' in
L**, Fxf is a well-defined functon on &, though it may not be
measurable. For simplicity, the expression F'(T:f) is used instead of

76 + waF@).

Let <# denote {F'e L**: F'xf is a measurable function for each
f in L*}. Again, to avoid excessive notation, the function Fxf for
each f in L* and F in <# will be identified with the element of L*
of which F'xf is a realization. Let 7w denote the natural map of L
into L**. Clearly ma*f = «f for each « in L and f in L*. Also, an
easy computation shows that wx*f is a continuous function, so TLC .

For each F' in &Z and G in L**, GxF, the convolution of G and
F, is defined by

1.9) GxF(f)=G(Fx*f) feL*.

It is clear that G+F is an element of L** and that G*F(f) =
“f (B + a)dF(a)dG(B) for each f in L*.

Formulas (1.8) and (1.9) define the operations which are suggested
by (1.5) and (1.6) and which are analogous to (1.2) and (1.3).

The two main objectives of this paper are: (i) to compare the
operations introduced above and (ii) to compare various algebras obtained
from these operations.
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In § 2 it is noted that {Fe <#: Fxmx = mxxF for each x in L},
which will be denoted by .o, is the largest set which contains 7L
and in which the Arens product agrees with convolution. It is also
noted that &7 = L** in cagse & is a discrete group. In §83 and 4
examples are given to show that .o may be different from <# and
<# may be different from L**, respectively. In §6 it is established
that for all non-compact groups and for certain compact groups 7L is
a proper subset of .&7.

In § 2 it is also observed that convolution and the Arens product
can be used to make various subspaces of L** Banach algebras and
that L* is a module over these algebras when the module operation
is chosen as in (1.2) or (1.8), depending on the multiplication in the
algebra. The fact that L* is a module over these algebras is then
used in §5 to identify various quotients of these algebras with alge-
bras of operators on certain subspaces of L*. These identifications
are used in the latter part of 5 to characterize the measure algebra
of & as a certain operator algebra and to relate the measure algebra
to the various quotient algebras mentioned above.

The following notation, as well as all notation introduced above,
will be used throughout this paper. If X is a normed linear space,
then X* will denote the conjugate space of X, O(X) will denote the
Banach algebra of operators on X and for each sebset X; of X, °X,
will denote {fe X*:f(x) =0,xe€ X,}. For a subset & of a Banach
algebra &, C(&, & will denote {A € & AB = BA, Be &}. For each subset
E of a given set S, C, will denote the characteristic function of E
and S\E will denote the complement of E in S.

2. Properties of the Arens product and convolution. This
section contains a list, in the form of lemmas and theorems, of some
of the properties of the operations introduced in §1. In particular,
Theorems 2.4, 2.8, and 2.9 summarize the information needed in 5.
In the remaining theorems, the Arens product and convolution are
compared.

The following lemma is an immediate consequence of the definitions.

2.1. LEMMA. For each F' in L** the following conditions are
satisfied.

(i) Formx =mxoF xel,
(ii) FoTef = Te(Fof) Bez,fel”,
i) [([Fofll =IFIISLI felL*.

Let C, denote the subspace of L* consisting of the elements which
can be realized as uniformly continuous functions. Whenever an element
f in C, is identified with a function, it will be assumed that the
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function is the unique realization of f as a uniformly continuous
function.

2.2. LeMMA. The set {¢f:xc L, fe L*} is a dense subset of C,.

Proof. An easy computation shows that xfe C, for each x in L
and f in L*. Let m denote Haar measure and for each compact
neighborhood V of the identity in &, let e, = (m(V))7C,. If feC,,
then ||e,f — f||—0 as V—0. Therefore, the closure of {xf:xcL,
feL*} = C,.

2.3. LEMMA. The following statements are equivalent:
(i) Fe°C,.
(ii) Fof=0 felL*.
(ili) GoF =0 GeL**.

Proof. ()= (ii). If Fe'C, then Fof(x) = F(xf) =0 for each
2 in L and f in L*. Therefore, Flof =0 for each f in L*. (ii)= (iii).
If Ge L**, then GoF(f) = G(Fof) =0 for each f in L*. (iii) = (i).
For 2 in L and f in L*, F(xf) = Fonx(f) = mwxoF(f) = 0. Since
{xf: xe L, fe L*} is dense in C,, F'e€°C,, which completes the proof.

For each F' in L** and f in L*, let Ayf = Fof. Let & =
{A.,: xe L}. For convenience A, will be used instead of A,, when x € L.

2.4. THEOREM. (i) With the Arens multiplication L** is a
Banach algebra. (ii) With the operation defined as in (1.2) L* s
a left (L**, o) module. (iii) The map F— A, for each F in L**
is a continuous algebraic homomorphism of (L**, o) into C(7 U &,
O(L*)) with kermel °C,. (iv) °C, is a closed ideal im (L**, o),

Proof. (i) and (ii) follow easily from the definitions given in
(1.1)—(1.8). Statement (iii) follows from (ii), 2.1 and 2.3. Statement
(iv) is a consequence of (iii).

Similar theorems will now be obtained for .o and <Z.

2.5. LEMMA. For each F in <& the following conditions are

satisfied:

(i) F*fecy, fecuy
(ii) FxTef = T{(Fxf) BeZ,fel*,
(i) [F=fl = FIUISLI felL*.

Proof. (i) If a, Be &, then | Fxf(a)—Fxf(B)|=|F(T.f—Tsf)| =<
WE || Taf — Tefll and || Tof — Tpf|[— 0 as « — 8— 0. Conditions (ii)
and (iii) are obvious.
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Let & ={Fe <#: Fxf =0 (lLa.e.) for each f in L*}.

2.6. LEMMA. The following statements are equivalent.
(i) Fee.
(ii) Fe <& and HxF =0 for each H in <Z.
(iii) Fe <7 and wxxF =0 for each x in L.

Proof. ()= (ii). Clearly & c &#. If Feg and feL* then
for H in &%, HxF(f) = H(Fxf) = 0. (ii)= (iii). 7Lc <. (iii)=
(i). 7e(Fxf) = mexF(f)=0. Therefore, F'xf = 0, which proves that
Feg.

2.7. LEMMA. & =°C,N 5.

Proof. Let Fe o N°C,. For « in L and f in L*, wxxF(f) =
Fxnx(f) = F(xf) =0 since xfeC,. Therefore, nx+«F = 0 for each
xin L, so Fe .

Now assume that Feg. If feC,, then Fxfe(C, and Fxf =0
(l.a.e.). Therefore, Fxf(8) =0 for each 8 in &. In particular,
F(f)= Fx+f(0)=0. Hence, Fe°C,. Since Feg, nexF =0 for
each « in L; on the other hand, if fe L*, then Fxnx(f) = F(xf) = 0.
Therefore, wxx F = Fxma for each « in L, so Fe o by definition,
which completes the proof.

For each F'in <& and f in L* let B,f = Fxf. Note that for
each « in L, B, = A,.

2.8. THEOREM. (i) (<Z,*) is a Banach algebra. (ii) With the
operation defined as in (1.8) L* is a left (<&, =) module. (iii) The
map F— By for each F in <7 1s a continuous algebraic homomor-
phism of <& imto C(7, 0(L*)) with kernel <. (iv) « 1is a closed
ideal i <7 .

Proof. From the definitions it is easily verified that (<7, ) is a
normed algebra. For each n=1,2, ---, let F, € <& such that F,— F,
an element of L**. If feL* and Be %, then F (Tsf)— F(Tsf).
Therefore, Fxf is the pointwise limit of a sequence of measurable
functions, so F'xf is measurable. Hence, f€ <#. Therefore, <# is
a closed subspace of L** and since L** is complete, <% is also complete.
(ii) follows easily from the definitions. (iii) is a consequence of (ii),
2.5 and the definition of . (iv) follows from (iii).

2.9. THEOREM. (i) (%7, *) 18 @ Banach algebra. (i) With the
operation defined as in (1.8) L* is a left (&7, *) module. (iii) The
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map F— B, for each F' in 7 1is a continuous algebraic homomor-
phism of & into C(I~ U .Z, O(L*)) with kernel <. (iv) & 1is a
closed ideal in 7.

Proof. (i) Since & = C(nL, &), & is a closed subalgebra of
of <% and therefore . is a Banach algebra.

From the definition of .&7 it is clear that B,e C(<?, 0(L*)) for
each F in &, Therefore, (ii), (iii) and (iv) follow from (ii), (iii) and
(iv) of 2.8, respectively.

In the remaining theorems a comparison of convolution and the
Arens product is made.

2.10. THEOREM. (i) For each F and G in L** and f in L¥*,
(GoF)xf =Gx«(Fof). (ii) The sets &7 and <& are right ideals in
(L**, o).

Proof. For Be &, GoF(Tsf) =G(Fo Tsf) = G(TsFof); however,
Go F(Tsf) and G(TeFof) as functions of B are realizations of (GoF') xf
and Gx(Fof), respectively. (ii) Let Ge <% and FeL**. Then
(GoF)xf =Gx*(Fof), a measurable function. Since (GoF)xf is
measurable for each f in L*, GoFe <% by definition. To prove that
& is a right ideal, let Ge %, Fe L**,2c¢L and feL*. Then
(GoF)xma(f) = (Go F)(af) = G(Fo(xf)) = G(Fof)) = Gxre(Fof) =
nxxG(Fof) = na(G*(Fof)) = nx((Go F)xf) = nx«(Go F)(f). There-
fore, (Go F)xmx = max(Go F') for each ¢ in L, so GoFe . by the
definition of &7

2.11. THEOREM. The following statements are equivalent.
(i) Few.
(iil) Fe<# and Fxf= Fof felL*.
(iiiy) Fe<F and GxF =GoF Ge L** .
(iv) Fe<Z and mexF = nxo N xeL.

Proof. (i)=(ii). If xe L and fe L* then mwa(Fof) = Fof(x)=
Fxra(f) = ne« F(f) = ne(F*f). Therefore, Fof = Fxf. (ii) = (iii).
If feL* and Ge L**, then GoF(f) = G(Fof) = G(Fxf)=G*+F(f).
Clearly (iii) implies (iv). (iv)= (i). If xe L and fe L*, then Fozmx(f)=
F(xf) = Fxma(f). Therefore, mxx F' = o F' = Fomy = Fxmx, which
proves that Fe .o,

2.12. COROLLARY. . s the maximum subalgebra of (<Z, *)
which contains L and in which the Arens product and convolution
agree.
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Proof. Let & be a subalgebra of (<, ) which contains =L and
in which the two products agree. If Fe &, then naxo F' = mx* F for
each ¢ in L, and by 2.11, Fe.o. Therefore, & C ..

2.13. THEOREM. If & is discrete, then & = L**,

Proof. Let FelL**, feL* and xe€ L. Let {a, a,, ---} be the
support of . Then xf(8) = X7, f(B + apz(a;) and 37, f(B + a)x(a;)
converges uniformly to f(8) in the variable B since | >, f(B +
ayr@;)| S || f Il Zicwsal@(@;) . Therefore, Fxzma(f) = F(zf) =
[ lim, . 5078 + @)dF(B) = tim,... S, o(@) [£(8 + a)aF (@) =
wex F(f). Since mxxF = Fxmx for each ¢ in L, F e ., which com-
pletes the proof.

3. Groups for which & differs from <. In 3.4 a sufficient
condition for . to be different than <% is given in terms of the
existance of a certain type of measurable subset of the group. It is
then shown in 8.18 that for second countable groups this certain type
of measurable subset is very numerous. Theorem 3.5 summerizes the
results in this section. Lemmas 3.10 and 3.11 contain the main ideas
for the proof of 3.12. Throughout this section g will denote Haar
measure.

A proof for the following lemma can be obtained by slightly
modifying the proofs of 2.1, 2.2 and 3.1 (a) in [7].

3.1. LEMMA. Let V be a complex vector space with pseudonorm
g. Let V, be a subspace of V. Let & be a commutative semigroup
of linear transformations on V such that
(i) Tw)eV, Te&,veV,,
Gi) o(Tw) = q() Te &, veV.
If k is a liner functional on V, such that
(i) k()| =qv) veV,,
(iv) k(Tw) = k(v) Te s, veV,,
then k has a linear homogeneous extension k, to all of V such that
(v) k(v =q(v) weV,
Vi) k(Tv)=k(®w) Te<,veV.

3.2. LEMMA. If an LCA group Z contains a measurable subset
E such that for each finite subset {8y, «--, B.} of & and each open
set Vof &,
(i) 2N E+B.NV) >0,
(ii) N E'+B8.NV) >0,
then there exists a monzero translation invariant element in °C,.
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Proof. Let E be a subset of & satisfying the hypothesis. Let
f=0Cy. For each g in L* let N(g9) =inf{2||g — h|:heC,}. Let X
denote the linear span of {T,f:B8e€<}. For 0 <k =m let a, be a
complex number and let 8,€%. It will be shown that if g =

Z}c,;l 122 Tka’ then
(1) | 2 ae| = N(9).

Assume that (1) has already been established and for g =
ST, f, an arbitrary element of X, let I(g) = 2,0, If 9 =0,
then by (1), >, a, = 0. This shows that I is a well-defined on X.
Clearly I, is a homogeneous linear function on X. Let .~ denote
{Ts: Be &}, which is a commutative semi-group of linear transfor-
mations on L*. In 81 let V=L* V=X, =9, k=1 and
g = N. Conditions (i) and (iv) of 3.1 are clearly satisfied in this case.
Condition (iii) follows from (1). Condition (ii) follows from the

translation invariance of C,.
Therefore, by 3.1 there exists a linear homogeneous extension [

of I, to all of L* such that

(2) [I(g)| = N(g) geL*,
(3) I(Tg) = I(g) Te g ,geL*.

Conditions (2) and (3) imply that I is a translation invariant element
of °C,. Since I(f) = I(f) = 1, the proof will be complete when (1)
is established.

Let g be as in (1) and note that >, a,Tp f = > a,Cpp,. Let
he(C, and €>0. Choose an open set V in & such that | i{a) — h(B) | < ¢
for any « and B in V. Let

Dl=f_11E—6an and DzzﬁE’—BkﬂV.

By the hypothesis, p#(D,) > 0 and ¢(D,) > 0. Let
x = (2(D)))*Cp, — (2 Dy))*Cp, .

Clearly € L and ||«|| = 1. A simple computation shows that 2¢(x) =
Swe,a;, and |h(z)| <e. Since ¢ was chosen arbitrarily, 2|9 — || =
| 3™ a,|. Therefore, N(g) = | >, a,| since & was chosen arbitrarily
in C,.

3.38. LemMA. If I1is a translation invariant element in °C, N 7,
then I =0.

Proof. Since I is translation invariant, Ixf = I(f)e for each f
in L*. Therefore, I(f)rx(e) = na(I(f)e) = na(Ixf) = nxxI(f) =
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I(xf) = 0, since 2feC, for each  in L and f in L*. Since there
exists an « in L such that wa(e) = 0, I(f) =0 for each f in L* and
that completes the proof.

As a consequence of 3.2 and 3.3 we have the following theorem.

3.4. THEOREM. If a group & contains a measurable set satis-
Jying the conditions of 8.2, then the corresponding sets &7 and <&
are different.

In the remainder of this section it will be assumed that ¢ is a
second countable group. An important result is Theorem 3.13, which
shows that for second countable groups, the measurable subsets which
satisfy the conditions of 3.2 are in some sense very numerous. As a
consequence of this theorem and Theorem 3.4, we obtain the following
result, which is the main theorem of this section.

3.5. THEOREM. For every second countable group, the corre-
sponding sets & and <& are different.

The following notation, in addition to the notation already intro-
duced, will be used throughout the remainder of this section. If A4
and B are measurable subsets of &, then “A is equivalent to B” will
mean that #(A A B) =0. Let " denote the resulting equivalence
classes. As usual, a measurable set E will be identified with its
eqivalence class. For A and B in 777, let 0(4, B) = arctan p(A A\ B).
It is shown in [4, p. 156] that p is a metric on 2" and that (77, p)
is a complete metric space. Let %/ denote the sets of finite measure.
Since 7% is a closed subset of 2¥", (%, p) is also a complete metric
space. We will let & denote the sets of finite measure (equivalence
classes of 7)) which satisfy the conditions of 3.2, Let {V;:5=1,2, ...}
be a basis of open sets of finite measure for the topology of <. Let
{D;:5=1,2, ---} be an increasing sequence of compact sets such that
g =U{D;:7=1,2,---}. The direct product of D,, » times, with
the product topology will be denoted by (D,)*. For each measurable
set E, open set V and each w = (6, ---, 8,) in (D,)", let

H,(E,u, V) =p(N{E + B;:5 =n}NV) and
K,(E, V) =inf{H,(E, u, V):uwe(D,)"}.

Finally, for any sequence {A;:j =1, 2, +--} of measurable sets, lim 4;
will denote the pointwise limit (see [4, p. 126]) when this limit exists.

3.6. LEMMA. Let V be an open set of finite measure, n a
positive integer and E a measurable set. Then
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(i) K(F,V)—>KJ(E, V) as WM{FAE)—0 and
(i) K.E,V)—KJ(E,V) as k-— o if E=1mkE,.
Proof. The following inequality will be established:

|H(E, w, V) — H(F,u, V)|
(4) = n(sup {(V — BN E\F): Be D,}
+sup{(V — BN F\E): Be D,})

where F' is any measurable set and u € (D,)". First note that for any
sets A and B of finite measure,

|MA) — (B) | = (AN B') + (BN A).
So for v = (B, +++, 8,) we have that
| H(E, u, V) — H(F,u, V)|

(5) =r(AE+6.0V)0(GEF+80VY))

+r(AF+B07V)n(UE+ENVY)).
Considering the first term of the right side of (5), we have that
f(AE+en7)n (0@ +8,07Y))
= (U ((AE+e0V)n@E+pnVY))

= (U @+ 80 VINEF+8,0VY))
Snpe((E+B;NVINEF + B;,NT)) for some j < n.
But,
np(E + BN VINE + B;N V) =n(V— ;N EF) .

Since B;¢€ D,, it follows that the first term of the right side of (5) is
no greater than

n(sup {(V — BN E\F):BeD,}.

The inequality (4) now follows by applying the same argument to the
second term of the right side of (5).

It follows from (4) that H,(F,w, V) — H,(E, u, V) as ((F' /\ E)—0
uniformly for e (D,)", so (i) is established.

Let {E.:k=1,2, .-} be a sequence of measurable sets such that
E =lim FE,. For each 8 in D,,

MV —-—BNE\E)—0 as k— oo
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since V has finite measure. The family of functions {¢(V — (-) N E\E,):
k=1,2 ...} form an equicontinuous family on D, since V has finite
measure and

(V-8B NE\E) -V —-BNE\E)| =V -FBAV—-8
for any £ and B in D,. Therefore,
MV —BNE\E)—0 as k— o uniformly for Se D, .

The same argument applies to #(V — BN E,\E). It follows from (4)
that H,(E,, u, V)— H(E, u, V) as k— o uniformly for » in (D,)".
Therefore,

Kn(Elu V) - Kn(E’ V) as k'_) oo,

which completes the proof.

3.7. LEMMA. If E and D are measurable sets and D has finite
measure, then
(i) DN E\(E+B)—0as 8—0 and
(i) #DNE+B\E)—0as B8—0.

Proof. Consider (i) and assume, first of all, that D is compact.
For any B in &, DN E\(E + B) =

DNE\DN(E+B)=DNE(D—-BNE)+AH).

If, in addition, B is in V, a compact symmetric neighborhood of 0,
then

DNE\(D—-BNE)+ B
=DNEND+ VID —-BNEND+ V) +8)
=DN((END+VNEND+V)+hB).

Hence, for Be V ‘
(6) HDNEE+R)=mMEND+VNEND+V)+A).

The set D + V is compact so E N (D + V) has finite measure. There-
fore, the characteristic function of EN(D+ V) is in L and since
translation is continuous in L (see [9, p. 8]), the right hand member
of (6) tends to 0 as B tends to 0. A proof for the case of an arbitrary
set D of finite measure can now be obtained by approximating D from
below by a compact set. A proof of (ii) can be obtained by slightly
modifying the above proof.

3.8. LEMMA. Let V be an open set of finite measure. If E is
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a measurable set and n s a positive integer such that
H(E,»,V)>0 ue(D,),

then K (E,V)>0. In particular, if E is a dense open set, them
Kn(Ey V) >0 fO’r n = 1, 2’ e,

Proof. If E is a dense open set, then H,(E,u, V) >0 for each
% in (D,)*. So the last assertion is a consequence of the first assertion,
which will now be established.

Let u = (B, +++,8,) and v = (7, -++,7,) be elements of (D,)".
By an argument similar to the one used in the proof of 3.6 it can be
shown that

lHn(Ey u, V) - H’IL(E? v, V)l
< 3LV = BN ENE + (7 — 8)
+ (V=8N E+(;— BINE).

Since V — B; has finite measure for each j=1,2, ---,n it follows
from 3.7 that the jth term in the above sum can be made small by
choosing 7v; close to B;. Therefore, the sum can be made small by
choosing v close to « in (D,)*. So, H,(E, u, V) is a continuous function
of w as u ranges over the compact space (D,)". Hence, H,(E, u, V)
assumes its infimum K, ,(E, V) on (D,)". It follows from the hypothesis
that K.(E, V) >0, which completes the proof.

3.9. LemMMA. For a measurable set E the following conditions
are equivalent:
(i) K(E,V,))>0 n=12, .-
(ii) ﬂ(n{E+Ba5j = 1’ 2’ "',m}n V) > 0
whenever V is a monvoid open set, m is a positive integer and

{181) ”'iﬁm}cg'

Proof. Assume (i) and let V be a non-void open set, m a positive
integer and {8, +++, B.} © ¥ . There exists an integer n = m such
that {8, +-+, Ba} C D, (recall that {D,:n =1,2, ---} is an increasing
sequence) and V,C V., Therefore,

#(n {E+18.7:j = 17 2’ "',m}ﬂ V) = Kn(E’ Vn) >0.
It is immediate from 3.8 that (i) implies (i).
3.10. LEMMA. Let B be a measurable set of finite measure ah,d

V be an open set of finite measure. Given a positive integer n and
a positive real number ¢, there exists a closed mowhere dense set E
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such that:
(i) o(E,B)<e and
(i) K.(E,V)>0.

Proof. Choose a dense open set U of finite measure such that
Bc U and o(B, U) < ¢/8. This can be done by forming the union of
a tight open cover of B and a tight open cover of a countable dense
set. By 3.8 K, (U, V) > 0. From 3.6 and the regularity of ¢ it follows
that there exists a compact set D contained in U such that K, (D, V)>0
and o(U, D) < ¢/3. Again by using 3.6 we can choose a dense open
set W of small enough measure so that o(D\W, D)< ¢/3 and
K,(D\W,V)> 0. Setting E = D\W we see that E is a closed nowhere
dense set, that K,(¥, V) > 0 and that o(¥, B) < e, which completes
the proof.

3.11. LEMMA. Given a measurable set B of finite measure and
o positive real number e, there exists a sequence {E;:j =1,2, «--} of
measurable sets such that for each positive integer k:
(i) oB,U{E:j =k} <e,
(ii) E, 1is closed and nowhere dense,
(iii) Ky (E,, Vi) >0,
{iv) Ku(U, V;) > a;/2 1=12 -k
where U, = \U{E;:7 <k} and a; = K(Uj, V;) for 3 =1, 2,

Proof. Let 9 be the class of all finite sequences {E;:5 =1, 2,
---,n} of measurable sets satisfying conditions (@i)-(iv). If M =
{E;;7=1,2,+--,m} and N={F;:j=1,2, .-+, n} are elements of 9",
then M < N means that m <nand D; = E; for =1,2, ---, m. With
the ordering =<, .9 is a partially ordered set. It follows from 38.10
that there exists a measurable set E, such that {E} satisfies conditions
(i)-(iii). Since U, is a dense open set, a, = K (U, V) >0 by 3.8.
Therefore, {E,} is an element of 27

Now let {E;:7=1,2, +-++,n} be any element of .9°. By 8.6 and
the triangle inequality for the metric, there exists a 6 > 0 such that
if A is a measurable set with p¢(4) < 4, then

p(B, UEUA)<e and
i=1
KJ(U‘IL\A’ Vj)>a’j/2 j:]-’ 2: e, M
Using 3.10 with B taken as the empty set it follows that there exists

a closed nowhere dense set E,., such that p(E,,) <d and
K, .(E,.,, V,ur) > 0. So, in particular,
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oB,U{E;:j=1,2+,m+1})<e and
Kj(Un+17 Vy) > CLj/2 j = 1, 2’ e, M.

Since U,,, = U,\E,; is a dense open set, a,., = K, \(Up1s, Vo) > 0
by 3.8, so

KU1y, V;) > a;/2 j=n+1.

Therefore, {E;:5=1,2,.--,n + 1} is also an element of 7. This
argument shows that any maximal chain in .9 is infinite. That &~
has a maximal chain follows from the axiom of choice. The desired
sequence is obtained from a maximal chain in the obvious way, which
completes the proof.

3.12. LEMMA. The set & 1is a dense subset of Z/.

Proof. Let B be a measurable set of finite measure and let
0<e<m?2 Let{E;:5=1,2, +--} be chosen as in 3.11 corresponding
to Band . Let E=U{E;:5=1,2,---}. The set E is the limit of
the increasing sequence {F,:k =1,2, ---} of measurable sets where
F,.=U{E:7=1,2,---,k}. By3.1, o(B, F,)<eforeachk =1,2,---,
where o(B, F}) = arctan ((B\F},) + ((F;\B)). If the measure of E
were infinite, then p(F,\B)— « as k— . But, arctan g(F,\B) =
o(B, F,) < e < w2 for k=1,2, ---, which implies that {¢(F,\B):k =
1,2, ---} is a bounded sequence. Hence, ((E) < « and p(F,\B)—
ME\B) as k— oo. Also, since B has finite measure, #(B\F},) — ((B\E)
as k— oo, Therefore, o(B, F,) — 0(B, E) as k— «, so o(B, E) Ze.
To complete the proof it is sufficient to show that E'e & and since
E has finite measure, showing that X belongs to .&# reduces to showing
that E satisfies the conditions of 3.2.

For each » =1, -+, it is clear that K(E,, V,) < K,(E, V,), so it
follows from (iii) of 3.1 that

(6) K,E,V,) >0 n=1,2 -«

The sequence {U,:n =1,2, ---} is decreasing and E’' = N{U,:n =
1,2, -+-}. Therefore, by (i) of 3.6

lim K(U,, V;) = K&, V)) J=12,---
It follows from (iv) of 3.11 that
(7) K(E'\V)=Za;/2>0 J=1,2 .

From (6), (7) and 3.9 we conclude that E satisfies the conditions of
3.2, which completes the proof.
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It was pointed out that % is a complete metric space, so % is a
space of second category. The set % 1is compared with % in the
following theorem.

3.13. THEOREM. For second countable groups, the [complement
of F imn Z 1s a set of first catagory in Z/ .

Proof. A set E of finite measure is in the complement of & if
and only if condition (i) of 3.9 fails for at least one of the sets E or
E’. Therefore, it follows from 3.9 that the complement of & in %
is the set

Ql {E: (E) < «~, K,(E,V,)=0U 7';,1 (B: (E) < oo, K(E', V,) = 0} .

The sets {£: ((E) < =, K,(E, V,) =0} and {E: (F) < =, K (E’, V,) =0}
are the zero sets in %/ of the maps £ — K, (E,V,) and E— K, (E', V,),
respectively. The first map is continuous on 2~ by 8.6. The second
map is a composition of the first map and the map EF— E’, which is
clearly continuous. Therefore, the sets {E; (E) < ~, K, (E, V,) = 0}
and {E: ((E) < o, K,(E’, V,) = 0} are closed, and since the complement
of each of these sets contains the set &, which is dense in %/, the
complement of &% in %/ is a countable union of nowhere dense sets.

4. A group for which &% differs from L**. In this section
(see 4.3) it is established that in the case of the real numbers, <&
and L** are different.

The following notation will be used in this section in addition to
notation already introduced. The sets I,,,, &, Ex,, and U are defined
as follows:

IL,,={ak2"<a<E+ 12 0sk<2n=1,2 +--
P ={K,n): Kc{k:k an integer, 0=k <2}, n=1,2, -}
Ex,. = U{(k2™, k27" + 27"7"); ke K}, (K,n)e &

U =(0,2"\{j2™: j an integer, n =1,2, ---}.

For each pair (K, n) in & let a(K,n) be an integer such that
the map (K, n)— a(K, n) is one-to-one (< is countable). Let E =
U {EK,n + a(K, ’I’I/)Z (K’ ’l’b) € ﬁ}'

4.1. LEMMA. Let H be a finite subset of U. Let n be a positive
integer such that I, N H has at most one element for each k, 0 =<
k<2, Let H, (H,) be the elements of H which are contained in
sets of the form Ly,i(Liiins). If M;C Hf(i=1,2) and M; =+ ¢,
then
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HO{E - B:Be MNU{E —v:ve H\M}) > 0.

Proof. Consider the case of M,. Let K=1{k:I,,N M + ¢}. If
Be M, then B¢€ Eg,. Since E., is an open set, there exists a positive
real number # depending on B such that (—u,0) + 8C Eg,.. If
v€ H\M,, then v is not in the closure of FEg,,. So there exists a
positive real number v depending on v such that (—v, 0) + v N Ex,, = ¢.
Since H is a finite set, it follows that there exists a positive real
number ¢ < 27 such that

(—t,0) + BC Eg,, Be M,
(=%,0) +7NEg,, = ¢ vye H\M, .

Therefore, it follows that
(1) (—t,0) + a(K, n) C Ex,, + (K, n) — B Be M,
(2) (—t0)+a(K,n)N Eg, +a(K,n) —v=¢ ye H\M, .
For any non-zero integer s,

(274,290 0,2) +s=4.

Since (—t,0) + vy (—27, 2™ and E;, C (0, 27") for each (L, m) in 27,
it follows that
(3) (-—t,O)+a(K’n)nEL,m+a(Lym)_7:¢

for (L, m) # (K, n) and vye H\M, .

It follows from (1), (2) and (3) that
(—t,0) + (K, n)cN{E — B: 8e MNU{E — 7:ve H\M},

which completes the proof in the case of M,.

In the case of M, let K = {k: I,,, N M, = ¢}. By noting that for
BeM, and vye H\M,, B — 27" is in E,, and v — 27"' ig in the comple-
ment of the closure of Ey,,, one can give a proof similar to the above
proof in the case of M,. This proof is omitted.

4.2, Let N be a subset of U, H a finite subset of U and az a
complex number for each B in H. Then

| Zeennmle] = 2|| Zpen6Crsgll
In particular, {Cz—s: B U} is a linearly independent set in L...
Proof. Let m be a positive integer such that H N [,,, has at most

one element for 0 < k < 2"'. Let H, and H, be as in 4.1 and let
M,=H,NN(\=1,2,). If M;+# ¢, then it follows from 4.1 that
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(4) KN{E - B:Be MPN\U{E —v:ve H\M,) > 0.
However, in any case,

| Zpewnals| = | Zoex,@s| + | Zoen,2e]
= 2| Zoea@Crsll ,

since if M; + 4, then (4) guarantees that the value Xz, 0, is assumed
on a set of positive measure.
To prove the last assertion assume that Y. za5C5s = 0. By letting
N = {6} with 8 an arbitrary element of H, we conclude from the
inequality that ag = 0 for each B8 in H, which completes the proof.
Let X denote the linear span in L., of the set {Cy_s: Be U}.

4.3. THEOREM. For the group of real mumbers there exists an
element F in L** and an element f in L* such that Fxf is a non-
measurable function.

Proof. Let N be a non-measurable subset of U. For an arbitrary
element g in X, g = Ypcg0sCy—p, for some finite subset H of U and
for some choice of complex numbers az corresponding to each B in H.
For each g in X, let

Fy(9) = Zgennals .

It follows from 4.2 that F, is a well defined function on X and,
moreover, that F, is a bounded linear functional on X. Therefore,
there exists an F in L** such that the restriction of F' to X agrees
with F,. Let f= Cp and note that Cy(B)Fxf(B) = Cx(B)F(Cy_p) =
Cy(B)Fy(Cz—p) = Cx(B). Since C, is a measurable function and C, is
not measurable, it follows that F'xf is a non-measurable function,
which completes the proof.

5. Identification of some algebras. In this section it will be
assumed that & has the following property.

Property A. There exists an element E in L** such that || E||=1
and Exf = f for each f in L*.

5.1. LeEMMA. If, for a group &, there exists a sequence
{,:n=1,2, «--}C L such that

(1) llz.ll=1 n=1,--

(ii) «,f(B)— f(B) la.e. as n — = for each feL*, then & has
property A.
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Proof. Let E be a w* limit point of the set {vr,:mn=1,2, -}
in the unit ball of L**. Let V be an abitrary non-void open set of
finite measure. There exists a set D of measure 0 (assuming a par-
ticular realization of f) such that «,f(8) — f(B8) for each Be V\D.
Hence, given B¢ V\D and & >0, there exists a positive integer %,
such that

e, f(B) — f(B) | <e n=mn,.
However, for some 7 = n,
| E(Tef) — ma(Tef)| < e.

Therefore, since 2.(Tef) = .f(8), | E(Tsf) — f(B)| < 2¢. It follows
that E(T.f) = f(B) for B V\D. Since V was chosen arbitrarily we
have shown that Exf and f have realizations which agree l.a.e.
Therefore, E*f = f, which completes the proof.

Let S, be a cube in euclidean k-space which contains 0 and which
has edges of length 1/n. Let , = (24(S,))*Cs,. Then [/z,| =1 and
it follows from the classical differentiation theory (see [4, III. 12.6,
p. 214]) that {x,:n =1, 2, .- -} satisfies (ii) of 5.1. Therefore, euclidean
k-space has property A for each positive integer k. The question of
whether or not all LCA groups have property A is unanswered.

Recall that whenever an element f in C, is identified with a
function, that funection is assumed to be the unique uniformly continuous
realization of f.

5.2. LEMMA. If E 18 an element of L** such that Exf = f
for each f in L*, then

(i) E(f)=r0) feC,
(i) Eewr
(ili) GoE=G GeL**.

Proof. (i) If feC,, then ExfeC, by 2.5. Therefore, Exf(B)=
f(B) for each B in &. In particular, f(0) = Exf(0) = E(f). (i) If
feL* and we L, then nx+ E(f) = nu(Ex*f) = ne(f). Also, Exnx(f)=
E(xf) = 2f(0) = nx(f) since zfeC,. Therefore, by the definition of
&, Ee 7. (iii) Since Ee .7, by 2.11, Eof = Exf =f for each f
in L*. Therefore, Go E(f) = G(Eof) = G(f) for each G in L** and
f in L*, which completes the proof.

The following lemma and its proof are due to R. J. Lindahl,

5.3. LEMMA. If k is an element of CJ, then there exists an
element F in & such that || F|| = || k|| and F agrees with k on C,.
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Proof. Let k be an element of C;f. By the Hahn-Banach theorem
there exists an element F) in L** such that || F}|| = || k|| and F} agrees
with & on C,. Choose E as in the definition of property A and let
F = EoF,. 1t follows from the preceding lemma that EF €., so by
2.10, F is also in .%7. If Ge L**, then Go(EoF, — F,) =0 since K
is a right identity. Therefore, by 2.3, EoF, — F,e°C,. Hence, F
agrees with ¥ on C,. Since F and k agree on C,, ||F| = | k|;
however, ||F|| = || Fi||||E]|| = ||k||. Therefore, ||F|| =|lk||, which
completes the proof.

For the proofs of 5.4 and 5.8 recall that A, and B, are defined
in the paragraphs preceding 2.4 and 2.8, respectively. As a result of
2.8 it is clear that (<#/«?, *) with the quotient norm is a Banach
algebra.

5.4, THEOREM. The algebra (Z|«?, =) is topologically isomorphic
to C(.7~, O(L*)).

Proof. For each F in &# let W(F' 4+ &) = B,. By 2.8, v is an
isomorphism of <Z/« into C(77, 0(L*)). Let A be an arbitrary
element in C(7, 0(L*)). Let E be as in the definition of property A
and let F' be the element of L** whose value at f in E(Af) for each
fin L*. Then Fxf(8) = F(Tsf) = E(ATsf) = E(T:Af) = ExAf(B)
and E«Af = Af. Therefore, F'e &% and v(F' + &)f = Fxf = Af, so
v(F + «) = A. Hence, v maps <% /2 onto C(7, 0(L*)).

To see that v is continuous let F' be an element in <% and ¢ a
positive real number. Choose G in & such that ||F+ & | +¢=
| F+ G|l. Now

| F + G| =sup{{(F + GNTef)|: ||l =1, fe L*; Be &}
= sup {esssup {| (F' + G)(Tpf)|: Be Z}: || fIl =1, fe L*}
=sup{l| F«f[:[Ifll =L, fe L'} =B, || = [|[v(F + )| .

We conclude that || F 4+ < || = ||v(F + ) || for each F' in L**, which
implies that v is continuous.

Since C(77, 0(L*)) is a Banach space, v~ is continuous by the
interior mapping theorem.

5.5. COROLLARY. Fach element of C(Z,0(L*)) leaves C, in-
variant.

Proof. If AeC(7, 0(L*)), then for some F in &, Af = Fxf
for each f in L*. By 2.5, Fxfe C, whenever fe C,, which completes
the proof.

In the remainder of this section .7’ will denote the translation
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operators in 0(C,).
As a result of 2.9 it is clear that (& /&?, *) with the quotient
norm is a Banach algebra.

5.6. THEOREM. The algebra (7], *) is topologically isomorphic
to C(7, 0(C,)).

Proof. For each F in & let v(F + &) = By. By 2.9, v, is an
isomorphism of &7/« into C(o U.&”, 0(L*)) and since v, is the
restriction to ¥ /«” of the map defined in the proof of 5.4, v, is a
bicontinuous map.

Let B be an arbitrary element of C(7 U.&, 0(L*)). By 5.5, B
leaves C, invariant. Therefore, if v,(B) denotes the element of 0(C,)
obtained by restricting B to C,, then v, is clearly a homomorphism of
C(7 U, 0(L*)) into C(Z’, 0(C,)).

To complete the proof it suffices to show that v, is an isometry
and that vy = y,v, is an onto map.

To see that v, is an isometry, first note that if Be 0(L*), then

| Bll = sup{| BTef ()| : fe L*, || fll = Lwe L, [[o][= 1, B &} .

For Be C(7 U&7, O(L*)), BTsf(x) = A,BTsf(0) =TsBA,f(0)=BA,f(B)
and sup {|BA,f(B)|:Be £} =||BA,f|| since BA,fcC,. Therefore,

| Bll = sup {|| BA.f[|: fe L* |Ifll = Lwe L, ||x]| = 1}
=sup{|| Bgll:9eCy, llgll =1} = [[»(B) |l .

The equality preceding the last equality is a consequence of 2.2.

To see that v is an onto map, let Ae C(Z, 0(C,)) and let k£ denote
that element of C;} whose value at f is Af(0) for each f in C,. By
5.8, there exists an element F' in . such that F' agrees with k& on
C,. Since Fxf(B) = k(Tsf) = AT:f(0) = TgAf(0) = Af(B) for each
Bin & and fin C,, v(F + «) = A. Since A was chosen arbitrarily
in C(77, 0(C,)), we conclude that v is an onto map, which completes
the proof.

The following corollary is an immediate consequence of the pre-
ceding proof.

5.7 COROLLARY. The restriction map is an isometric isomorphism
of C(77 U&7, 0(L*)) onto C(7', 0(CL)).

It follows from 2.4 that (L**/C,, o) with the quotient norm is a
Banach algebra.

5.8. THEOREM. The algebra (L**/C,, ) s topologically iso-
morphic to C(Z', 0(C,)).
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Proof. For each F in L**, let vi(F + °C,) = A;. It follows from
2.4 that v, is an isomorphism of L**/°C, into C(7 U.&, 0(L*)). Let
v, be as in the proof of 5.6. Then v =y, is an isomorphism of
L**/°C, into C(.7', 0(C,)).

Because of the interior mapping theorem, to complete the proof it
suffices to. show that v is a continuous onto map.

Let AeC(9,0(C,). By 5.6, there exists an F in . such that
Fx«f = Af for each f in C,. Since Fe., by 2.11, Fxf = Fof for
each f in L*. Therefore, v(F + °C,)f = Fof = Fxf = Af for each f
in C,, which shows that v is an onto map.

To prove that v is continuous, let FeL** and ¢ > 0. Choose
Ge'C, such that || F+°C,||+e=||F+ G|l. Now

such {|(F' + G)(f)|: fe L* ||f]| = 1}
= sup{| F(xf)|:xweL, [|x|| =1;feC, || fll =1}
=sup{|| Fof||:feC, || fll =1} = ||»(F + CHl .
Therefore, || F' + °C, || = ||v(F + °C,)|| for each F in L**, which implies

that v is continuous. The proof is now complete.
The following result is a consequence of 5.6 and 5.8.

I

F+Gl

5.9. THEOREM. The algebras (7 /&, *) and (L**/°C,, o) are
topologically isomorphic.

In the remainder of this paper M will denote the measure algebra
of the group <. The convolution (product) of two elements f, and
M, in M will be denoted by 42t,. It will be assumed that L is em-
bedded in M in the natural way. For each g in M, the operator A,
on L* is defined by

Auf (@) = f(pe) felL* welL.

For f in L*, A,f and pf will be used interchangeably. As usual, 2
will denote the Fourier-Stieljes transform of p. Finally, for each A
in 0(L*) which leaves C, invariant, A’ will denote the element of
0(C,) obtained by restricting 4 to C,.

The previous theorems and the following lemmas will be used to
obtain a characterization of M as an operator algebra on C,.

5.10. LeEMMA. If X is a normed linear space and Hec0(X*),
then H 4s the adjoint of an element in O(X) if and only if H 1is
continuous in the X topology on X*,

Proof. If H is the adjoint of an element K in 0(X), then since
Hf(x) = f(Kx) for each f in X* and 2 in X, H must be continuous
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in the X topology. Conversely, if H is continuous in the X topology,
then for each « in X the function f-— Hf(x) for each f in X* is
continuous in the X topology on X*. Therefore, there exists [4, V.
3.9.] an element Kz in X such that Hf(x) = f(Kx) for all f in X*.
Clearly K is a linear transformation on X. Furthermore,

K|l =sup{|f(K2)|: feX* ||[fll=sLeeX |z =1} =|H].
Therefore, K€ 0(X) and H = K*, the adjoint of K.

5.11. LEMMA. An element A in O(L*) is an L continuous element
of C(77, 0(L*)) if and only if A= A, for some p in M.

Proof. By 5.10, an element A in 0(L*) is continuous in the L
topology if and only if A is the adjoint of an element K in 0(L). The
adjoint A of an element K in 0(L) is an element of C(7, 0(L*)) if
and only if K commutes with the translation operators on L. There-
fore, A is an L continuous element of C(Z, 0(L*)) if and only if
A = A, for some ¢ in M (see [10, 3.8.4]), which completes the proof.

Note that by 2.5, each F' in &, B, leaves C, invariant so B} is
well-defined.

5.12. LEMMA. If F is an element of &7, then By is continuous
wn the L topology on L*, if and only if Bj is continuous in the L
topology on C,.

Proof. Suppose that Ge .7 and that Bj is continuous in the L
topology on C,. Let {fy:Mxe€4} be a net in L* which converges in
the L topology to an element f in L*. Note that for each f in L*
and « in L, xf = A,f and A, is the adjoint of an element of O(L).
Therefore, by 5.10, {xf,: A€ 4} is a net in C, which converges in the
L topology to xf. Hence, Bj(xf,) converges in the L topology to
Bi(xf), so Bixf,)(y) converges to Bi(xf)(y) for each y in L. However,
for each g in L*, Bi(xg)(y) = F'x(xg)(y) = Fo(zg)(y) = F(ayg) =
Fog(xy) = Fxg(xy) = Brg(xy). Therefore, B.f\(xy) converges to B(2y)
for each # and v in L. Since each element of L is the product of
two elements of L (see [3]), Brf» converges to Brf in the L topology
on L* and we conclude that B, is continuous in the L topology on L*.

5.13. THEOREM. The mapping p— A for each p in M is an
tsometric isomorphism of M onto the L continuous elements of

C(7", 0(C.)).

Proof. Let e M., It is easily verified that for each f in C,, A.f
can be realized as the function whose value at B is Sf (B + a)dp(a)
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for each B in . Therefore, it is clear that A, leaves C, invariant
and that A,eC(Z, 0(C,). Since A, is an adjoint operator, from
5.11 we conclude that A, is L continuous. Therefore, A, is continuous
in the L topology on C,. The mapping p¢— A is clearly an isometry,
S0 to complete the proof we must show that this mapping is onto.
Let A be an L continuous element of C(<’, 0(C,)). By 5.6, there
exists an F in & such that A = B;. By 5.12, B is L continuous
and by 2.5, Bre C(7, 0(L*)). Therefore, from 5.11 we conclude that
B, = A, for some g in M. Hence, A = A}, which completes the proof.

6. Groups for which nL differs from .. The content of

this section is Theorem 6.1, which is a summary of Theorems, 6.2
and 6.5.

6.1. THEOREM. For any mnoncompact group or for any group
with property A, wL is a proper subset of 7.

It was first pointed out by R. J. Lindahl that the following

theorem is a consequence of 5.3. A proof can be gotten from the
proof of 5.6.

6.2. THEOREM. In any group & with property A, wL is a
proper subset of .7,

Proof. The map v in the proof of 4.6 maps {rx + & : x € L} onto
{AlL: x e L} and {A;: x € L} is properly contained in {A}: e M}. However,
{Al: pe M}c C(Z, 0(C,)), and since v maps %7 /& onto C(.7’, 0(C.,)),
we conclude that for every group & with property A, wL is a proper
subset of &, which completes the proof.

The remainder of this section is devoted to establishing the existance
of a special translation invariant element in L** of a noncompact
group. Notation introduced in the paragraph followmg 5.9 will be
used in the following theorems.

6.3. THEOREM. For a mnoncompact group <&, there exists an
element I wn L** such that

(i) I(f)=0 feL*f=z0
(i) I(ef) = KOI(f) peM, feL*
(i) [ I =1.

Proof. Let X = {fe L*: f has a real valued realization} and X+ =
{feX:f has a nonnegative realization}. Let %7 ={4ec0(L*):A =
A,pr=0,lpl=1}. Let & ={De0(X):D=A|X,Aec %#}. The
family & is a commutative semi-group of operators on X which leaves



1446 JAMES D. STAFNEY

X+ invariant and e (the element of L* having the identically 1 function
as a realization) is an interior point of X+ such that D(e¢) = e for
each D in &, It follows from [8, 3.1, p. 33] that there exists an
element 4 in X* such that

(1) () =0 feX+
(2) P(AS) = ¥ (f) Ae s, feX.
(3) vl =1.

For each f in L*, let I(f) = ¥(f) + 1y (f;) where fi, and f, are the
real and imaginary parts of f, respestively. Then I satisfies the
following conditions:

(4) I(f) =0 feXr
(5) I(Af) = I(¥) Ae o, feL*.
(6) )] =1.

Condition (5) follows from the fact that the real and imaginary parts
of Af are Af, and Af,, respectively. To establish (6) let fe L* such
that [|f]| 1. Then |[I(f)|=e"I(f)= I(e*f) for some 6 and
I(e™f) = yw(RBe™“f) = [[¥ || [|fll.  Therefore, [I||=|[lv| =1, so
I|Il] =1. To complete the proof of 6.3 we need only verify that I
satisfies (ii).

Note that (5) is equivalent to

(7) I(pf) = HO)I(S) 2Oy =1,llpll=1,feL*.

Now let ¢t be any real valued measure in M. Then there exist non-
negative elements p#* and g~ in M such that ¢ = p+ — p~. Let a =
leet]] and b = || g~ ||. Without loss of generality, we may assume that
a # 0% b. Then for each f in L* I(¢f) = I(p*f — pf) = I(p*f) —
I(¢rrf) = al(@™' et f) — DI f) = (@ — B)I(f), since a™'p* and b~ p~
are measures which correspond to operators in %#°. However, a — b=
£(0). Therefore, I(¢tf) = f(0)I(f) for each real valued measure g in
M and each f in L*. Finally, if g is an arbitrary element of M,
then there exist real valued elements f, and g, in M such that g =
M+ iy, and (ii) now follows from the linearity of I and the above
remarks, which completes the proof.

6.4. THEOREM. If I is an element of L** and
(1) I(pf) = BO)(f) peM, feL*,

then I is a tramslation invariant element in .

Proof. If p is a unit point mass at B, then Z(0) =1 and pf =
Tef for each f in L*. Therefore, (i) implies that I is translation
invariant.
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Since I is translation invariant, I€ <. To show that 1€ .o, let
feL* and e L. Then Ixnx(f) = I(xf) = Z0)I(f) and wx+I(f) =
wx(Ix f) = wa(I(f)e) = wx(e)I(f) = £(0)I(f). Therefore, by the definition
of &7, Ie o,

6.5. THEOREM. For any mnoncompact group, wL is a proper
subset of 7.

Proof. In 6.8 and 6.4 it is established that in the case of a non-
compact LCA group, .& contains a nonzero translation invariant
element; however, wL contains no such element.
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