
ARENS MULTIPLICATION AND CONVOLUTION

JAMES D. STAFNEY

1* Introduction* Let L denote the group algebra of a locally
compact Abelian (LCA) group &. For elements x and y in L the
product of x and y is given by

xy(β) = [χ(β - a)y{a)da

where the integral is taken over the entire group and with respect to
Haar measure.

Let L* and L** denote the first and second conjugate spaces of
L, respectively. As a result of [1], a multiplication can be introduced
in L** in the following manner. Let x,yeL; f, geL*; and ^ G e L * * .
The elements xf and Fof in L* and GoF in L** are defined by:

(1.1) χf(y)=f(χy) v^L,

(1.2) Fof(x) - F(xf) xeL,

(1.8) G° W ) - G(*V) /eL* .

The multiplication in L** given by (1.3) will be referred to as the
Arens product. Some of the properties of the Arens product in L**
have been developed in [2].

It is well-known that the spaces L* and L** have realizations in
terms of functions on ^ [5, p. 148] and finitely additive measures on
& [6], respectively. One difficulty which arises with the Arens
product is that there seems to be no means of obtaining the functions
and measures which correspond to elements of the form Fof and GoF,
respectively. To avoid excessive notation we will use /, g, to denote
elements of L* and their corresponding realizations as functions. Any
statement involving /, g, as functions will be interpreted as a locally
almost everywhere statement (see [5, p. 141]) even though a reference
to locally almost everywhere (l.a.e.) may not appear. Similarly, F,G,
will denote elements of L** and their corresponding realizations as
finitely additive measures.

In the case of xf, an obvious application of the Fubini theorem
yields

(1.4) xf{β) = J/(/3 + a)x(a)da β e gf ,
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which provides a realization of xf as a function. Proceeding formally,
one obtains the following "equations":

(1.5) Fof(χ) - jj/08 + a)x(a)dadF{β) =

(1.6) G o F(f) = j j/CS + a)dF(β)dG(a) .

If the equations in (1.5) were valid, then the function h(a) =

l/(/3 + a)dF(β) would be a realization of Fof; however, as a general

statement, (1.5) is invalid on two counts. In 4.3 it is shown that the
function h(a) need not even be measurable (measurability will always
be with respect to Haar measure) and in 3.5 it is shown that even if
h(a) is measurable, the second "equality" in (1.5) may not be valid.

The formal equations in (1.5) and (1.6) suggest a second pair of
operations analogous to the operations defined in (1.2) and (1.8).

For each F in L**, / in L* and β in gf, Tβf and F*f are defined
as follows:

(1.7) Tβf(a) =f(a + β) a e gf ,

(1.8) F*f(β) = F(Tβf)

Thus, for each β in &, Tβ is an operator (bounded linear transformation)
on L*. Let &~ = {Tβ: β e gf}. Also, for each / in L* and each F in
L**, F*f is a well-defined functon on S ,̂ though it may not be
measurable. For simplicity, the expression F{Tβf) is used instead of

J/C8 + a)dF{a).
Let & denote {FeL**: F*f is a measurable function for each

/ in L*}. Again, to avoid excessive notation, the function F*f for
each / in L* and F in & will be identified with the element of L*
of which F*f is a realization. Let TΓ denote the natural map of L
into L**. Clearly πx*f = »/ for each x in L and / i n L*. Also, an
easy computation shows that πx*f is a continuous function, so πLc&.

For each F in ^ and (T in L**, G*^, the convolution of Cr and
.F, is defined by

It

ίί

(1.9) G * F(f) = Gίί7*/) / e L* .

It is clear that G*.F is an element of L** and that G*F(f) =

ίί/(/3 + a)dF{a)dG{β) for each / in L*.

Formulas (1.8) and (1.9) define the operations which are suggested
by (1.5) and (1.6) and which are analogous to (1.2) and (1.8).

The two main objectives of this paper are: (i) to compare the
operations introduced above and (ii) to compare various algebras obtained
from these operations.
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In §2 it is noted that {Fe&: F*πx = πx*F for each x in L},
which will be denoted by J^ , is the largest set which contains πL
and in which the Arens product agrees with convolution. It is also
noted that j y = L** in case gf is a discrete group. In §§3 and 4
examples are given to show that S*f may be different from & and
& may be different from L**, respectively. In §6 it is established
that for all non-compact groups and for certain compact groups πL is
a proper subset of j y .

In §2 it is also observed that convolution and the Arens product
can be used to make various subspaces of L** Banach algebras and
that L* is a module over these algebras when the module operation
is chosen as in (1.2) or (1.8), depending on the multiplication in the
algebra. The fact that L* is a module over these algebras is then
used in § 5 to identify various quotients of these algebras with alge-
bras of operators on certain subspaces of L*. These identifications
are used in the latter part of 5 to characterize the measure algebra
of g7 as a certain operator algebra and to relate the measure algebra
to the various quotient algebras mentioned above.

The following notation, as well as all notation introduced above,
will be used throughout this paper. If X is a normed linear space,
then X* will denote the conjugate space of X, O(X) will denote the
Banach algebra of operators on X and for each sebset Xx of X, °X1

will denote {feX*:f(x) = O,xeX1}. For a subset ξx of a Banach
algebra ξ, C(ξl9 ξ) will denote {A e ξ: AB = BA, B e &}. For each subset
E of a given set S, CE will denote the characteristic function of E
and S\E will denote the complement of E in S.

2* Properties of the Arens product and convolution* This
section contains a list, in the form of lemmas and theorems, of some
of the properties of the operations introduced in § 1. In particular,
Theorems 2.4, 2.8, and 2.9 summarize the information needed in 5.
In the remaining theorems, the Arens product and convolution are
compared.

The following lemma is an immediate consequence of the definitions.

2.1. LEMMA. For each F in L** the following conditions are
satisfied.
( i ) Fo πx — πxoF xe L ,
(ii) FoTβf=Tβ(Fof) βeS?,feL*,
(iii) | |Fo/| |^| |F| | | |/ | | feL*.

Let Cu denote the subspace of L* consisting of the elements which
can be realized as uniformly continuous functions. Whenever an element
/ in Cu is identified with a function, it will be assumed that the
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function is the unique realization of / as a uniformly continuous
function.

2.2. LEMMA. The set {xf:xeL,feL*} is a dense subset of Cu.

Proof. An easy computation shows that xf e Cu for each x in L
and / in L*. Let m denote Haar measure and for each compact
neighborhood V of the identity in gf, let ev = (miV))-1^. If fe Cu,
then \\evf — f\\-+0 as V—>0. Therefore, the closure of {x/:xeL,

2.3. LEMMA. The following statements are equivalent:
( i ) Fe°Cu.
(ϋ) Fof=0 feL* .
(iii) GoF^o GeL**.

Proof, (i) — (ii). If F e °CM, then Fof(χ) = ̂ (α/) = 0 for each
a in L and / in L*. Therefore, Fof = 0 for each / in ZΛ (ii) => (iii).
If G e L**, then Go F(f) = G(Fo/) - 0 for each / in L*. (iii) =- (i).
For x in L and / in L*, F(xf) = Foπx(f) = πχoF(f) = 0. Since
{α;/: a? e L, / e L*} is dense in Cw, Fe°Cu, which completes the proof.

For each F in L** and / in L*, let Arf=Fof. Let ̂  =
{A<τa;: x € L}. For convenience Aβ will be used instead of Axx when x e L.

2.4. THEOREM, (i) Wϊί/& ί/te Arens multiplication L** is α
Banach algebra, (ii) TFitfo £/&β operation defined as in (1.2) L* is
α iβ/ί (L**, o) module, (iii) T%e map JP—> A F for each F in L**
is a continuous algebraic homomorphism of (L**, o) into C(_^~ U j£f9

0(L*)) ^ ΐ ί^ kernel °CU. (iv) °C% is a closed ideal in (L**, o).

Proof, (i) and (ii) follow easily from the definitions given in
(1.1)-(1.3) Statement (iii) follows from (ii), 2.1 and 2.3. Statement
(iv) is a consequence of (iii).

Similar theorems will now be obtained for j&f and &?.

2.5. LEMMA. For each F in & the following conditions are
satisfied:
( i ) F*/eC. feC%,

(ii) F*Tβf=Tβ(F*f) βe5?,feL*,

(iϋ) 1 1 ^ / 1 1 ^11 ^11 ll/ll /eL*.

Proo/. (i) If a, β e 5f, then |F*f(a)-F*f(β)\-1F(TΛ/- T,/)| ^
ΓΛ/ - Tβf\\ and || Γβ/ - Γβ/| | — 0 as α - /3 — 0. Conditions (ii)

and (iii) are obvious.
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Let ^ = { F e ^ : F*f = 0 (l.a.e.) for each / in L*}.

2.6. LEMMA. The following statements are equivalent.
( i )
(ii) Fe & and H*F = 0 for each H in &.
(iii) Fe & and πx*F — 0 for each x in L.

Proof. (i)=>(ii). Clearly <£>€:&. If Fe & and feL*, then
for H in ^ , H*F(f) = H(F*f) - 0. (ii) =* (iii). πL c ^ . (iii) =>
(i). πx(F*f) = πx*F(f) = 0. Therefore, ί7*/ = 0, which proves that

2.7. LEMMA. ^ = °CM n

Proof. Let F e j / Π °Ctt. For x in L and / in L*, πx*F(f) =
F*πx(f) = F(a/) = 0 since xfeCu. Therefore, T Γ ^ ^ F ^ O for each
a? in L, so F G ^ .

Now assume that Fe&. If feCu, then ί ^ / e Ctt and F*f = 0
(l.a.e.). Therefore, F*f(β) = 0 for each /3 in ^ . In particular,
iΓ(/) = F*f(0) = 0. Hence, F G ° C % . Since .Fe ^ , τrx*F=: o for
each x in L; on the other hand, if feL*, then F*πx(f) = i ^ / ) = 0.
Therefore, πx*F — F*πx for each a; in L, so Fejzf by definition,
which completes the proof.

For each F in & and / in L* let .B^/ = F * / . Note that for
each x in L, 5 ^ == Aβ.

2.8. THEOREM, (i) ( ^ , *) is a Banach algebra, (ii) With the
operation defined as in (1.8) L* is α left (&, *) module, (iii) T%e
map F-^BF for each F in &? is a continuous algebraic homomor-
phism of & into C{^7~, 0(L*)) with kernel &. (iv) & is a closed
ideal in &.

Proof. From the definitions it is easily verified that ( ^ , *) is a
normed algebra. For each n = 1, 2, , let JPΛ G ̂  such that Fn—>F,
an element of L**. If fe L* and /3e ̂ , then Fn(Tβf)~> F(Tβf).
Therefore, F*f is the pointwise limit of a sequence of measurable
functions, so F*f is measurable. Hence, fe&?. Therefore, έ%? is
a closed subspace of L** and since L** is complete, ^ is also complete,
(ii) follows easily from the definitions, (iii) is a consequence of (ii),
2.5 and the definition of &. (iv) follows from (iii).

2.9. THEOREM, (i) (j^% *) is a Banach algebra, (ii) With the
operation defined as in (1.8) L* is a left (Jtf, *) module, (iii)
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map F-+BF for each F in Ssf is a continuous algebraic homomor-
phism of j y into C(^" U Sf, 0(L*)) with kernel &. (iv) & is a
closed ideal in

Proof, (i) Since Jzf = C(πL, &\ sf is a closed subalgebra of
of & and therefore J ^ is a Banach algebra.

From the definition of Stf it is clear that BF e C{j2f, 0(L*)) for
each F in jaΛ Therefore, (ii), (iii) and (iv) follow from (ii), (iii) and
(iv) of 2.8, respectively.

In the remaining theorems a comparison of convolution and the
Arens product is made.

2.10. THEOREM, (i) For each F and G in L** and f in L*,
(GoF)*f — G*(Fof). (ϋ) The sets s/ and & are right ideals in
(L**, o).

Proof. For β e gf, GoF(Tβf) = G(Fo Tβf) - G(TβFof); however,
GoF(Tβf) and G(TβFof) as functions of β are realizations of (GoF)*f
and G*(Fof), respectively, (ii) Let Ge^ and FeL**. Then
(GoF)*f=G*(Fof), a measurable function. Since (GoF)*f is
measurable for each / in L*, GoFe & by definition. To prove that
J / is a right ideal, let Gejtf, FeL**, xeL and feL*. Then
(GoF)*τcx(f) = (GoF)(xf) = G(Fo(χf)) = G(x(Fof)) = G*πx(Fof) =
TΓίc * G(Fo/) = τrx(G * (Fo/)) = τrx((G o F) */) = THE * (G o F)(jf). There-
fore, (GoF)*πx = πα;*(GoJP) for each cc in L, so GoFe Sz? by the
definition of

2.11. THEOREM. The following statements are equivalent.
( i ) Fesf.
(ii) Fe & and F*f = Fof feL*.
(iii) Fe^ and G*F=GoF GeL** .
(iv) Fe & and πx * F = πx o F xeL .

Proof, (i) =* (ii). If a e L and / e L * , then πx(Fof) = Fof(χ) =
F* πx(f) = πx * F(/) = πx(F*f). Therefore, JPO/ = F * / . (ii) => (iii).
If / e L * and GeL**, then 6oF(/) = G(Fo/) = G(F*f) - G*F(f).
Clearly (iii) implies (iv). (iv) ==> (i). lίxeL and feL*, then Foπx(f) =
F{xf) = F*τrx(/). Therefore, πx*F = πxoF — Foπx = F*πx, which
proves that Fes/.

2.12. COROLLARY, J ^ is ίfte maximum subalgebra of (&, *)
which contains πL and in which the Arens product and convolution
agree.
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Proof. Let ^ be a subalgebra of (&, *) which contains πL and
in which the two products agree. If F e S , then πxoF = πx*F for
each x in L, and by 2.11, F G J / . Therefore, ^

2.13. THEOREM. If & is discrete, then Ssf — L**.

Proof. Let F e L * * , / e L * and #eZ,. Let {αx, αa, •••} be the

support of x. Then xf(β) = ΣΓ=i/(/3 + «/)«(«/) and ΣUfiP + «*)&(«/)

converges uniformly to #/(/9) in the variable β since | ΣΓ=n+i/(iS +

) I ^ || / || ΣΓ= +i I «(«*) I- Therefore, F*τra?(/) - F(a/) -

j Σi=i/(/5 + aά)dF{β) = l i m _ Σ?=i α(«i) j / ( £ + aό)dF{β) -

πx*F(f). Since πx*F — F*πx for each & in L, F G J / , which com-
pletes the proof.

3* Groups for which J ^ differs from ^ * In 3.4 a sufficient
condition for J ^ to be different than & is given in terms of the
existance of a certain type of measurable subset of the group. It is
then shown in 8.13 that for second countable groups this certain type
of measurable subset is very numerous. Theorem 3.5 summerizes the
results in this section. Lemmas 3.10 and 3.11 contain the main ideas
for the proof of 3.12. Throughout this section μ will denote Haar
measure.

A proof for the following lemma can be obtained by slightly
modifying the proofs of 2.1, 2.2 and 3.1 (a) in [7].

3.1. LEMMA. Let V be a complex vector space with pseudonorm
q. Let V1 be a subspace of V. Let 6^ be a commutative semigroup
of linear transformations on V such that
(i) T(v)eV1 Te^,veV19

(ii) q(Tv) ^ q(v) TeS^,veV.
If k is a liner functional on Vx such that
(in) \k(v)\^q(v) veVlf

(iv) k( Tv) - k(v) Te<9*,veVly

then k has a linear homogeneous extension kx to all of V such that
(v) \kx{v)\^q{v) veV,
(vi) kx{ Tv) - Jφ) Te^9veV.

3.2. LEMMA. If an LCA group & contains a measurable subset
E such that for each finite subset {βl9 , βm) of & and each open
set V of 5?,
( i )

(ϋ)
then there exists a nonzero translation invariant element in °CU.
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Proof. Let E be a subset of ^ satisfying the hypothesis. Let
/ = CE. For each g in L* let N(g) - inf {21| g - Λ ||: λ e Cu). Let X
denote the linear span of {Tβf: βe gf}. For 0 ̂  k ̂  m let α/c be a
complex number and let βk e gf. It will be shown that if g =
ΣlUakTβkf, then

(1) IΣ?=iα*l^#(ί/) .

Assume that (1) has already been established and for # =
2jk=1akTβkf, an arbitrary element of X, let Ix(g) = Σ*Uα* H 0 = 0,
then by (1), Σ?=i α/* — 0 This shows that Λ is a well-defined on X
Clearly Ix is a homogeneous linear function on X. Let ̂ ~ denote
{Tβ:βe^}9 which is a commutative semi-group of linear transfor-
mations on ZΛ In 3.1 let V = L*9 V, = X, ̂  = ̂ " , & - Ix and
q = N. Conditions (i) and (iv) of 8.1 are clearly satisfied in this case.
Condition (iii) follows from (1). Condition (ii) follows from the
translation invariance of Cu.

Therefore, by 3.1 there exists a linear homogeneous extension I
of Ji to all of L* such that

(2) \I(g)\^N(g) geL*,

(3) /(Γflf) = /((/) TejT,geL*.

Conditions (2) and (3) imply that I is a translation invariant element
of °CU. Since /(/) = Ix{f) = 1, the proof will be complete when (1)
is established.

Let g be as in (1) and note that Σ Γ = i α * ^ Λ / : = : Σ?=iα*C^-βΛ Let
heCu and ε>0. Choose an open set V in ^ such that ] &(α) — ΛGS) I < ε

for any α: and β in F. Let

A = n # - & n 7 and A = n^-AnF.

By the hypothesis, μ(A) > 0 and ^(A) > 0. Let

x =

Clearly xeL and | | # | | = 1. A simple computation shows that 2g(x) =
Σ?=iαΛ a n ( i \Hχ)\ ^ ε Since ε was chosen arbitrarily, 2\\g — h\\ ^
I Σ ? = i α * l Therefore, N(g) ^ | Σ ? = i α * l since /̂  was chosen arbitrarily
in C .

3.3. LEMMA. If I is a translation invariant element in °CU Π J ^ ,
ίAβw / = 0.

Proof. Since I is translation invariant, I * / = I(f)e for each /
in IΛ Therefore, I(f)πx(e) = πx(I(f)e) = πx(I*f) = πx*I(f) =
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I(xf) = 0, since xfeCu for each x in L and / in L*. Since there
exists an x in L such that πx(e) Φ 0, /(/) = 0 for each / in L* and
that completes the proof.

As a consequence of 8.2 and 3.3 we have the following theorem.

8.4. THEOREM. If a group gf contains a measurable set satis-
fying the conditions of 3.2, then the corresponding sets s/ and &
are different.

In the remainder of this section it will be assumed that ^ is a
second countable group. An important result is Theorem 8.13, which
shows that for second countable groups, the measurable subsets which
satisfy the conditions of 3.2 are in some sense very numerous. As a
consequence of this theorem and Theorem 3.4, we obtain the following
result, which is the main theorem of this section.

8.5. THEOREM. For every second countable group, the corre-
sponding sets S^/ and & are different.

The following notation, in addition to the notation already intro-
duced, will be used throughout the remainder of this section. If A
and B are measurable subsets of S?, then "A is equivalent to B" will
mean that μ(A A B) = 0. Let 5^ denote the resulting equivalence
classes. As usual, a measurable set E will be identified with its
eqivalence class. For A and B in 3*~, let ρ{A, B) = arctan μ(A Δ B).
It is shown in [4, p. 156] that p is a metric on 3^- and that {y\ p)
is a complete metric space. Let <%/ denote the sets of finite measure.
Since ^ is a closed subset of 3^, ( ^ , P) is also a complete metric
space. We will let j ^ denote the sets of finite measure (equivalence
classes of ^ ) which satisfy the conditions of 3.2. Let {V,: j = 1, 2, •}
be a basis of open sets of finite measure for the topology of 2^. Let
{D3:j = 1, 2, •••} be an increasing sequence of compact sets such that
& = UiDj-3 = 1, 2, •••}. The direct product of Dny n times, with
the product topology will be denoted by (Dn)

n. For each measurable
set E, open set V and each u = (βl9 , βn) in (Dn)

n, let

Hn(E, u, V) - μ(Π ίE + fa 3 ^ n) n V) a n d

Kn(E, V) - inf {Hn(E, u, V): u e (£.)•} .

Finally, for any sequence {Aji j = 1, 2, •••} of measurable sets, limA,-
will denote the pointwise limit (see [4, p. 126]) when this limit exists.

3.6. LEMMA. Let V be an open set of finite measure, n a
positive integer and E a measurable set. Then
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(i) Kn(F,V)->Kn(E,V) as μ(FAE)^O and
(ii) Kn(Ek, V) -> Kn(E, V) as k - «> if E = lim Ek.

Proof. The following inequality will be established:

I Hn(E, u, V) - Hn(F, u, V) I

(4) ^
+ sup{μ(V-βf] F\E): βe Dn})

where F is any measurable set and u e (Dn)
n. First note that for any

sets A and B of finite measure,

I μ(A) - μ(B) | g μ(A Π ̂ ') + μ(B Π A') .

So for % — (/?! , /3J we have that

\Hn(E,u, V)-Hn(F,u, V)\

(5) ^ ^((Q s + A n F ) n (u (F + βs n F)'))

+ μ((n F + β3-r)v)n (jj (£7 + & n vγ)) .

Considering the first term of the right side of (5), we have that

JM((Q E + A n F ) n (u (ί7 + ̂  n F)'))

= /ι(jj ( (ns + ftn7)n(F+ βjn F)'))

^ Λβ(jj ((E + βj n F) n (F + & n F)'))

^ ^.^((ί; + /S, n V)\(F + /S. Π F» for some i ^ n .

But,

^ n F)) =nμ(V- βj Π

Since ^ e D%, it follows that the first term of the right side of (5) is
no greater than

^(sup {μ{ V - β ΓΊ E\F): βeDn}.

The inequality (4) now follows by applying the same argument to the
second term of the right side of (5).

It follows from (4) that Hn(F, u, V) -* Hn(E, u, V) as μ(F A E)-+0
uniformly for u e {Dn)

n, so (i) is established.
Let {Ek: k = 1, 2, •} be a sequence of measurable sets such that

E = lim Ek. For each β in Dn,

μ( V - β Π E\Ek) -> 0 as fc ~> oo
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since V has finite measure. The family of functions {μ(V — (•) Π E\Ek):
k — l,2, •••} form an equicontinuous family on Dn since V has finite
measure and

\μ(V- β> ΠE\Ek) - μ(V - β ΓlE\Ek)\£ μ(V - βΆV - β)

for any βf and β in Dn. Therefore,

μ{ V - β Π 2£\2£fc) —• 0 as & -^ oo uniformly for β e Dn .

The same argument applies to μ( V — β Π Ek\E). It follows from (4)
that Hn(Eh, u, V) — # „ ( # , w, F) as k -> °o uniformly for w in (DΛ)\
Therefore,

Kn(Ek,V)-+Kn(E, V) asfc^oo ,

which completes the proof.

3.7. LEMMA. If E and D are measurable sets and D has finite
measure, then
(i) μ(D Π E\(E + β)) -> 0 as β -> 0
(ίi) μ φ Π (£7 +^)W) - O a s / S - 0 .

Proof. Consider (i) and assume, first of all, that D is compact.
For any β in gf, JD Π J5\(S + /3) =

z?nE\(Dn(E + β)) = Dn E\((D- βn E) + β).

If, in addition, β is in V, & compact symmetric neighborhood of 0,
then

D n E\((D - β n E) + β)
= DΠ(EΠ(D+ V))\((D-βΓί(EΓi(D+ V))) + β)

= DΠ((EΠD+ V)\(E Π (D + V) + β) .

Hence, for βe V

(6) μ(DΠ E\(E + β)) £ μ(E Π(D + V)\(E f) (D + V)) + β) .

The set D + V is compact so E Π (-D + F) has finite measure. There-
fore, the characteristic function of E Π (D + V) is in L and since
translation is continuous in L (see [9, p. 3]), the right hand member
of (6) tends to 0 as β tends to 0. A proof for the case of an arbitrary
set D of finite measure can now be obtained by approximating D from
below by a compact set. A proof of (ii) can be obtained by slightly
modifying the above proof.

3.8. LEMMA. Let V be an open set of finite measure. If E is
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a measurable set and n is a positive integer such that

Hn(E,u,V)>0 ue(Dny,

then Kn{E, V) > 0. In particular, if E is a dense open set, then
Kn(E,V)>0for w = l,2, . . . .

Proof. If E is a dense open set, then Hn(E, u, V) > 0 for each
u in (Dn)

n. So the last assertion is a consequence of the first assertion,
which will now be established.

Let u = (βl9 •••,&,) and v = (τlf , Ύn) be elements of {D^71.
By an argument similar to the one used in the proof of 3.6 it can be
shown that

\Hn(E,u,V)-Hn(E,v,V)\

^ Σ M V - β, Π #\(tf + (7, - /3,)))

+ μ{ V - βj Π (E + (7y - /Sy))\JE7> .

Since F — /3y has finite measure for each j = 1, 2, , n it follows
from 3.7 that the ith term in the above sum can be made small by
choosing ys close to βjm Therefore, the sum can be made small by
choosing v close to u in (Dn)

n. So, Hn(E, u, V) is a continuous function
of u as u ranges over the compact space (Dn)

n. Hence, Hn(E, u, V)
assumes its infimum Kn(E, V) on (Dn)

n. It follows from the hypothesis
that Kn(E, V) > 0, which completes the proof.

3.9. LEMMA. For a measurable set E the following conditions
are equivalent:
(i) Kn(E,Vn)>0 w = l f 2 , . . .
(ii) jM(Π{ί? + ft:i = l , 2 , . . . , m } n 7 ) > 0
whenever V is a nonvoid open set, m is a positive integer and
\βu ...,/9 m }c5f.

Proof. Assume (i) and let V be a non-void open set, m a positive
integer and {βlf •• ,/3w}cί^\ There exists an integer n^m such
that {βl9 , βm} c Dn (recall that {Dn: n = 1, 2, •} is an increasing
sequence) and Vn c V. Therefore,

μ(Π {E + βd:j - 1 , 2 , •-., m} n V) ̂  κn(E, vn)>o.

It is immediate from 3.8 that (ii) implies (i).

3.10. LEMMA. Let B be a measurable set of finite measure and
V be an open set of finite measure. Given a positive integer n and
a positive real number ε, there exists a closed nowhere dense set E
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such that:
<i) p(E,B)<e and
(ii) Kn(E,V)>0.

Proof. Choose a dense open set U of finite measure such that
Ball and p(B, U) < e/3. This can be done by forming the union of
a tight open cover of B and a tight open cover of a countable dense
set. By 3.8 KJJJ, V) > 0. From 3.6 and the regularity of μ it follows
that there exists a compact set D contained in U such that Kn(D, V) > 0
and p(U, D) < ε/3. Again by using 3.6 we can choose a dense open
set W of small enough measure so that p{D\W, D) < ε/3 and
Kn(D\W, V) > 0. Setting E = D\W we see that E is a closed nowhere
dense set, that KJJE, V) > 0 and that p(E, B) < ε, which completes
the proof.

3.11. LEMMA. Given a measurable set B of finite measure and
a positive real number ε, there exists a sequence {E3:j = 1, 2, •••} of
measurable sets such that for each positive integer k:

(ii) i?fc is closed and nowhere dense,
(Hi) JζΛVJX),
(iv) K^UkfVi)>aJl2 i = l,2, ... ffc
wλβre C4 - Sf \U {^: ί ^ &} αwd α, = JΓ^ Uj9 Vs) for j - 1, 2, . . .

Proof. Let J ^ be the class of all finite sequences {Esι j = 1, 2,
* ,flj of measurable sets satisfying conditions (i)-(iv). If Λf =
{£7/. j = 1, 2, , m} and iSΓ = {F^ : j = 1, 2, , w} are elements of ^T\
then M^N means that m^n and Zλ, = J^ for i == 1, 2, , m. With
the ordering ^ , J ^ is a partially ordered set. It follows from 3.10
that there exists a measurable set Et such that {JEΊ} satisfies conditions
(i)-(iii). Since Ut is a dense open set, αx = K^U^ VJ > 0 by 3.8.
Therefore, {Eλ} is an element of 3ίΓ.

Now let {Eά\j = 1, 2, , ̂ } be any element of ^ Γ . By 3.6 and
the triangle inequality for the metric, there exists a δ > 0 such that
if A is a measurable set with μ(A) < δ, then

B, U Ei U A) < ε and

( V y ) > α y / 2 i = 1,2, . . . , n .

Using 3.10 with JB taken as the empty set it follows that there exists
a closed nowhere dense set En+1 such that μ(En+1) < δ and
Xn+1(En+1, Vn+1) > 0. So, in particular,
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p(B,\J{E3:j = l,2, . . . , n + l } ) < e and

K3{Un+1, Vj) > aj/2 j = 1, 2, , n .

Since Un+1 = Un\En+1 is a dense open set, an+1 = Kn+1(Un+1, Vn+1) > 0
by 3.8, so

Therefore, {Eό:j = 1, 2, , w + 1} is also an element of 3fΓ. This
argument shows that any maximal chain in 3ίΓ is infinite. That J%Γ
has a maximal chain follows from the axiom of choice. The desired
sequence is obtained from a maximal chain in the obvious way, which
completes the proof.

3.12. LEMMA. The set ^ is a dense subset of <%/.

Proof. Let B be a measurable set of finite measure and let
0 < ε < π/2. Let {Eό:j — 1, 2, •} be chosen as in 3.11 corresponding
to B and ε. Let E = U {Ef- 3 = 1, 2, •}. The set £7 is the limit of
the increasing sequence {Fk: k = 1, 2, •} of measurable sets where
Fk = L W i = 1>2, ••-,*}. By 3.1, pCB, F , ) < ε for each k - 1, 2, ,
where ρ{B, Fk) = arctan (μ(B\Fk) + μ{Fk\B)). If the measure of #
were infinite, then μ(Fk\B) —> oo as fc—>oo. But, arctan μ(Fk\B) ^
ρ{B, Fk)<e< π/2 for fc = 1, 2, , which implies that {μ(Fk\B): k =
1, 2, •••} is a bounded sequence. Hence, μ(E) < oo and μ(Fk\B)-+
μ(E\B) as k—>oou Also, since 5 has finite measure, μ(B\Fk)-*μ(B\E}
as fc-> oo. Therefore, iθ(£, F Λ ) - • p(.B, £7) as fc-> oo, s o ^(β, S ) ^ ε.
To complete the proof it is sufficient to show that Ee^ and since
E has finite measure, showing that E belongs to ̂  reduces to showing
that E satisfies the conditions of 3.2.

For each n = 1, , it is clear that Kn(En, Vn) ^ Kn(E, Vn), so it
follows from (iii) of 3.1 that

( 6 ) Kn(E,Vn)>0 n = l , 2 , . .. '•

The sequence {Un: n = 1, 2, •} is decreasing and Ef ~ f[{Un\n~
1,2, •••}. Therefore, by (ii) of 3.6

lim Kj( UnJ Vj) - K3.(E', Vd) j = 1, 2, . . .

It follows from (iv) of 3.11 that

( 7 ) K;(E', Vj) ^ aj/2 > 0 i = l f 2 f •••

From (6), (7) and 3.9 we conclude that E satisfies the conditions of
3.2, which completes the proof.
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It was pointed out that ^ is a complete metric space, so ^ is a
space of second category. The set ^ r is compared with <%/ in the
following theorem.

3.13. THEOREM. For second countable groups, the [complement
of ^ in ^ is a set of first catagory in <%/.

Proof. A set E of finite measure is in the complement of ά^ if
and only if condition (ii) of 3.9 fails for at least one of the sets E or
E1. Therefore, it follows from 3.9 that the complement of ^ in <%s
is the set

U {E: μ(E) < <*>, Kn(E, V.) = 0} U U {E: μ(E) < oo, Kn(E', V.) = 0} .

The sets {E: μ(E) < oo, Kn(E, Vn) = 0} and {E: μ(E) < oo, Kn(E', Vn) = 0}
are the zero sets in ^ of the maps E--> Kn(E, Vn) and E-+Kn{Er, Vn),
respectively. The first map is continuous on 5^ by 3.6. The second
map is a composition of the first map and the map E—*E\ which is
clearly continuous. Therefore, the sets {E; μ(E) < oo, Kn(E, Vn) = 0}
and {E: μ(E) < oo f Kn(Ef, Vn) = 0} are closed, and since the complement
of each of these sets contains the set ^ , which is dense in ^ , the
complement of ^ in ^ is a countable union of nowhere dense sets.

4* A group for which <S& differs from L*** In this section
(see 4.3) it is established that in the case of the real numbers, &
and L** are different.

The following notation will be used in this section in addition to
notation already introduced. The sets Ik,n, &>, EKin and U are defined
.as follows:

Ik>n = {a: k2~n < a < (k + 1)2~%} 0 ^ k < 2n~u, n = 1, 2,

& = {(K, n): Kd {k: k an integer, 0 ^ k < 2%-1}, n = 1, 2, •}

#*,» = U {(fc2-, k2~n + 2-w"1); & e K) , (iΓ, w) G &

U = (0, 2-1)\{i2~w: i an integer, w = 1, 2, •} .

For each pair {K, n) in <3P let α(iί, n) be an integer such that
the map (K, n) —> a(K, n) is one-to-one ( ^ is countable). Let E =

4.1. LEMMA. Lei H be a finite subset of U. Let nbe a positive
integer such that Iktn f] H has at most one element for each k, 0 ^
k < 2n-\ Lei ίZi (H2) be the elements of H which are contained in
sets of the form /afcfW+i(ίifc+i,»+i). / / Mi c H^i = 1, 2,) α^d Λf4 ^ Φ,
then
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μ(Π {E ~ β .βeMΛWJ {E-Ί :yeH\M<}) > 0 .

Proof. Consider the case of Mx. Let K = [k : Iktn Γ\ MXΦ Φ}. If
β e Ml9 then β e EKtn. Since EKyn is an open set, there exists a positive
real number u depending on β such that (—u,0) + βc:EKtn. If
7eH\Ml9 then 7 is not in the closure of EKt%. So there exists a
positive real number v depending on 7 such that (—v, 0) + 7 Π - E ^ = 0
Since J ϊ is a finite set, it follows that there exists a positive real
number t < 2"1 such that

H,0) + /Sc^,w βeM,

(-«, 0) + 7 Π #*,„ = 0 j

Therefore, it follows that

(1) (-t, 0) + α(JΓ, ^ ) c ^ , % + α(Z, n) - β βeM1

(2) (-ί, 0) + a(K9 n) Π Eκ>n + α(X", Λ) - 7 = ̂  y

For any non-zero integer s,

(-2-1,2-1) n (o, 2-1) + β - Φ .

Since (-*, 0) + 7 c (-2" 1 , 2"1) and EL>m c (0, 2"1) for each (L, m) in &>,
it follows that

( 3 ) (- ί , 0) + α(ΛΓ, n) Π ̂ z , m + α(L, m) - 7 - Φ

for (L, m) ^ {K, n) and 7 e H\M1 .

It follows from (1), (2) and (3) that

(- ί, 0) + a(K, n)aΓ\{E-β:βe MJ\\J {E - 7: 7 e H ^ } ,

which completes the proof in the case of Mλ.

In the case of M2, let K = {k: Ik,n Π M2 Φ Φ). By noting that for
β e M2 and 7 e ff\Jlfa, β — 2~n~1 is in Eκ>n and 7 — 2-"71"1 is in the comple-
ment of the closure of EKi%, one can give a proof similar to the above
proof in the case of M2. This proof is omitted.

4.2. Let N be a subset of U, H a finite subset of U and aβ a
complex number for each β in H. Then

\ΣβeimBaβ\ ^ 2 I I ^ 6 H α β C M I I

In particular, {CE-β: β e U} is a linearly independent set in LM.

Proof. Let n be a positive integer such that H Π Ik,» has at most
one element for 0 ̂  k < 2n~1. Let Hλ and H2 be as in 4.1 and let
Mi = Hi Pi N(i = 1, 2,). If M{ Φ Φ, then it follows from 4.1 that
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(4) μ(Π{E- βiβeMάWJ {E - r.yeHW > 0 .

However, in any case,

I ΣβeNΓ[Baβ I = I ΣβeMflβ I + I ΣβeM2

aβ I

= 2 1 | ΣβeHaβCE-β II ,

since if M{ Φ φ, then (4) guarantees that the value ΣβeMiaβ is assumed
on a set of positive measure.

To prove the last assertion assume that ΣβesaβCE-β = 0. By letting
N = {β} with β an arbitrary element of H, we conclude from the
inequality that aβ = 0 for each β in H, which completes the proof.

Let X denote the linear span in !/«, of the set {CE-β: βe U}.

4.3. THEOREM. For the group of real numbers there exists an
element F in L** and an element f in L* such that F*f is a non-
measurable function.

Proof. Let N be a non-measurable subset of U. For an arbitrary
element g in X, g = ΣβeBaβCE-β, for some finite subset H of U and
for some choice of complex numbers aβ corresponding to each β in H.
For each g in X, let

Fχ{g) = ΣβejsrnΞaβ .

It follows from 4.2 that ί\ is a well defined function on X and,
moreover, that F1 is a bounded linear functional on X. Therefore,
there exists an F in L** such that the restriction of ί7 to X agrees
with Flm Let / = CE and note that Cπ{β)F*f(β) = CΌ{β)F{CE-β) =
Cu(β)F1(CE-β) = CN(β). Since Cσ is a measurable function and C^ is
not measurable, it follows that JF7*/ is a non-measurable function,
which completes the proof.

5* Identification of some algebras* In this section it will be
assumed that & has the following property.

Property A. There exists an element E in L** such that \\ E\\ = 1
and E*f — / for each f in L*.

5.1. LEMMA. //, for a group &, there exists a sequence
{xn: n = 1, 2, •} c L such that

(i) I K I I ^ i * = i , . . .
(ii) xnf(β)—>f(β) l.a.e. as w—• °o /or eacΛ, / G L * ,

property A.
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Proof. Let E be a w* limit point of the set {xn:n = 1, 2, •••}
in the unit ball of L**. Let F be an abitrary non-void open set of
finite measure. There exists a set D of measure 0 (assuming a par-
ticular realization of / ) such that %nf(β)—*f(β) for each βe V\D.
Hence, given β e V\D and ε > 0, there exists a positive integer nx

such that

However, for some n^n±

\E(Tβf)-πxn(Tβf)\<ε.

Therefore, since xn{Tβf)^ xnf(β), \E(Tβf) -f(β)\ < 2ε. It follows
that E(Tβf) = f(β) for βe V\D. Since V was chosen arbitrarily we
have shown that E*f and / have realizations which agree l.a.e.
Therefore, E*f — f, which completes the proof.

Let Sn be a cube in euclidean fc-space which contains 0 and which
has edges of length 1/n. Let xn = (μiS*))-1^. Then ||a?n | | = 1 and
it follows from the classical differentiation theory (see [4, III. 12.6,
p. 214]) that {xn: n = 1, 2, •} satisfies (ii) of 5.1. Therefore, euclidean
fc-space has property A for each positive integer k. The question of
whether or not all LCA groups have property A is unanswered.

Recall that whenever an element / in Cu is identified with a
function, that function is assumed to be the unique uniformly continuous
realization of / .

5.2. LEMMA. If E is an element of L** such that E*f~f
for each f in L*, then
( i ) JS(/)=/(O) feCu

(ii) Eej^f
(iii) GoE^G GeL**.

Proof, (i) lffeCuf then E*feCu by 2.5. Therefore, E*f(β)=
f(β) for each β in gf. In particular, /(0) = E*f(0) = #(/) . (ii) If
fe L* and a? e L, then πx*E(f) = πx(E*f) = τrα?(/). Also, E*πx(f) =
E(xf) = ίc/(0) = ττa?(/) since xfeCu. Therefore, by the definition of
jy, Eejf. (iii) Since Eejzf, by 2.11, # o / = E*f=*f for each /
in L*. Therefore, GoE(f) = G(£Ό/) = G(/) for each G in L** and
/ in L*, which completes the proof.

The following lemma and its proof are due to R. J. Lindahl.

5.3. LEMMA. // k is an element of Cί, then there exists an
element F in sf such that \\F\\ = ||fc|| and F agrees with k on Cu.
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Proof. Let k be an element of CM*. By the Hahn-Banach theorem
there exists an element Fλ in L** such that \\FX\\ = \\k\\ and Fλ agrees
with k on Cu. Choose E as in the definition of property A and let
F = EoFx. It follows from the preceding lemma that Eejzf, so by
2.10, F is also in Szf. If G e L * * , then Go(EoF1 - Fx) = 0 since #
is a right identity. Therefore, by 2.3, EoFx - F1e°Cu. Hence, F
agrees with k on Cu. Since JP and & agree on CUJ \\F\\^\\k\\\
however, || F\\ ^ || Fλ \\ \\E\\ - \\k \\. Therefore, | | F | | = ||fc||, which
completes the proof.

For the proofs of 5.4 and 5.8 recall that AF and BF are defined
in the paragraphs preceding 2.4 and 2.8, respectively. As a result of
2.8 it is clear that ( ^ / ^ , *) with the quotient norm is a Banach
algebra.

5.4. THEOREM. The algebra {^?l&, *) is topologically isomorphic
to C(jT, 0(L*)).

Proof. For each F in & let v(F +<£>) = BF. By 2.8, v is an
isomorphism of &\& into CC^", 0(L*)). Let A be an arbitrary
element in C(J7~9 0(L*)). Let E be as in the definition of property A
and let F be the element of L** whose value at / in E(Af) for each
/ in L*. Then F*f(β) = F(Tβf) - E(ATβf) - E(TβAf) = E*Af(β)
and #*A/ = A/. Therefore, F e ^ and K̂ F7 + <£")/ = F*f = A/, so
v(F + < )̂ = A. Hence, v maps ^ / ^ onto C(J^~, 0(L*)).

To see that v is continuous let F be an element in & and ε a
positive real number. Choose G in '& such that | | i ^ + ^ | | + e ̂ >
| | F + G | | . Now

G || = sup{ | ( ί 7 + G ) ( T β / ) I : Il/H ^ 1, / e L*; /3 e

=£ 1,/eL*} -

We conclude that || F + & \\ ^ || v(,P + ^ ) || for each F in L**, which
implies that v is continuous.

Since C(^~, 0(L*)) is a Banach space, y 1 is continuous by the
interior mapping theorem.

5.5. COROLLARY. Each element of C{^, 0(L*)) leaves Cu in-
variant.

Proof. If 4GC(y,0(L*)), then for some F in ^ , Af=F*f
for each / i n ZΛ By 2.5, F*feCu whenever fe Cu, which completes
the proof.

In the remainder of this section ^' will denote the translation
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operators in 0(Cu).
As a result of 2.9 it is clear that (J^/^ 3 , *) with the quotient

norm is a Banach algebra.

5.6. THEOREM. The algebra (Ssf/&, *) is topologically isomorphic
to C{^-\ 0(CJ).

Proof. For each F i n J / let vx(F + έ?) = J5^. By 2.9, ^ is an
isomorphism of S/\& into C ( ^ " U «£ ,̂ 0(L*)) and since i^ is the
restriction to Szf\& of the map defined in the proof of 5.4, vλ is a
bicontinuous map.

Let B be an arbitrary element of C{^~ \j ^ f 0(L*)). By 5.5, B
leaves Cβ invariant. Therefore, if v2(B) denotes the element of 0(Cu)
obtained by restricting B to Cu, then v2 is clearly a homomorphism of
C(JT U ^ , 0(L*)) into C(^" ' , 0(CJ).

To complete the proof it suffices to show that v2 is an isometry
and that v = v2̂ i is an onto map.

To see that v2 is an isometry, first note that if B e 0(L*), then

\\B\\ = auv{\BTβf(x)\:feL*,\\f\\£l;xeL,\\x\\£l;βeS?}.

For ΰ G C ( ^ U ^ , 0(L*)),
and sup {| BAJ(β) \: /3 e ^} = || BA./|| since BA./e C.. Therefore,

The equality preceding the last equality is a consequence of 2.2.
To see that v is an onto map, let A e C{^~', 0(Cu)) and let k denote

that element of Cϊ whose value at / is A/(0) for each / in C«. By
5.3, there exists an element F in Jzf such that F agrees with k on
Cu. Since F*f(β) = k(Tβf) - ATβf(0) - TβA/(0) - Af(β) for each
/9 in 2^ and / in Cuf v(F + &) = A. Since A was chosen arbitrarily
in C{^~\ 0(Cu)), we conclude that v is an onto map, which completes
the proof.

The following corollary is an immediate consequence of the pre-
ceding proof.

5.7 COROLLARY. The restriction map is an isometric isomorphism
of C(^~ U ^ , 0(L*)) onto C(^', 0(Cu)).

It follows from 2.4 that (L**/Cu, o) with the quotient norm is a
Banach algebra.

5.8. THEOREM. The algebra (L**jCu, o) is topologically iso-
morphic to C(^\ 0(Cw)).
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Proof. For each F in L**, let v1(F+°Cu) = AF. It follows from
2.4 that vx is an isomorphism of L**/°CU into C ( ^ " U _£ ,̂ 0(L*)). Let
y2 be as in the proof of 5.6. Then v = ly^ is an isomorphism of
L**/°CU into C( j^ ' , 0(CJ).

Because of the interior mapping theorem, to complete the proof it
suffices to show that v is a continuous onto map.

Let Ae C(^f, 0(CJ). By 5.6, there exists an F in Sf such that
F*f^ Af for each / in Cu. Since Fejzf, by 2.11, F*f^ i^o/ for
each / in L*. Therefore, v{F + °CJ/ = Fof = . F * / = A/ for each /
in Cw, which shows that v is an onto map.

To prove that v is continuous, let jFeL** and ε > 0. Choose
G G °CU such that || F + °CU\\ + ε ̂  || F + G ||. Now

F+ G\\ - βuch{|(F+

Therefore, || JP + °CU \\ ^ || v{F + °CU) \\ for each F in L**, which implies
that v is continuous. The proof is now complete.

The following result is a consequence of 5.6 and 5.8.

5.9. THEOREM. The algebras (J^/&, *) and (L**/°CU, o) are
topologically isomorphic.

In the remainder of this paper M will denote the measure algebra
of the group Sf. The convolution (product) of two elements μλ and
μ2 in M will be denoted by μλμ2. It will be assumed that L is em-
bedded in M in the natural way. For each μ in M, the operator Aμ

on L* is defined by

AJ{x)=f{μx) feL*,xeL.

For f in L*, Aμf and μ/ will be used interchangeably. As usual, β
will denote the Fourier-Stieljes transform of μ. Finally, for each A
in 0(L*) which leaves Cu invariant, A' will denote the element of
0(Cu) obtained by restricting A to Cu.

The previous theorems and the following lemmas will be used to
obtain a characterization of M as an operator algebra on Cu.

5.10. LEMMA. If X is a normed linear space and iϊeO(X*),
then H is the adjoint of an element in 0(X) if and only if H is
continuous in the X topology on X*

Proof. If H is the adjoint of an element K in 0(X), then since
Hf(x) = f{Kx) for each / in X* and x in X, H must be continuous
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in the X topology. Conversely, if H is continuous in the X topology,
then for each x in X the function f—>Hf(x) for each / i n X* is
continuous in the X topology on X*. Therefore, there exists [4, V.
3.9.] an element Kx in X such that Hf(x) = f{Kx) for all / in X*.
Clearly K is a linear transformation on X. Furthermore,

= suΏ{\f(Kx)\:feX*, \\f\\ <£ l xeX, \\x\\ <Z 1} -

Therefore, KeO(X) and H = K*, the adjoint of K.

5.11. LEMMA. AW element A in 0(L*) is αw L continuous element
of C(^~, 0(L*)) if and only if A = Aμ, for some μ in M.

Proof. By 5.10, an element A in 0(L*) is continuous in the L
topology if and only if A is the adjoint of an element K in 0(L). The
adjoint A of an element K in 0(L) is an element of C(J7~, 0(L*)) if
and only if K commutes with the translation operators on L. There-
fore, A is an L continuous element of C(^~, 0(L*)) if and only if
A = Aμ for some μ in M (see [10, 3.8.4]), which completes the proof.

Note that by 2.5, each F in j y , BF leaves Cu invariant so BF is
well-defined.

5.12. LEMMA. If F is an element of J^f, then BF is continuous
in the L topology on L*9 if and only if BF is continuous in the L
topology on Cu.

Proof. Suppose that G e Jtf and that BF is continuous in the L
topology on C%. Let {/λ: λ e A} be a net in L* which converges in
the L topology to an element / i n L*. Note that for each / in L*
and x in L, xf — Axf and Ax is the adjoint of an element of 0(L).
Therefore, by 5.10, {xfλ :XeA} is a net in Cu which converges in the
L topology to xf. Hence, BF(xfλ) converges in the L topology to
BF(xf)f so BF{xfχ){y) converges to BF(xf)(y) for each y in L. However,
for each g in L*, BF(xg)(y) = F*(xg)(y) = Fo(χg)(y) = F(xyg) =
Fog(χy) = F*g(xy) = BFg(xy). Therefore, BFfλ(xy) converges to B^xy)
for each a? and # in L. Since each element of L is the product of
two elements of L (see [3]), BFfx converges to BFf in the L topology
on L* and we conclude that BF is continuous in the L topology on L*.

5.13. THEOREM. The mapping μ—>Al for each μ in M is an
isometric isomorphism of M onto the L continuous elements of

Proof. Let μe M. It is easily verified that for each / i n Cuf Aμf

can be realized as the function whose value at β is \f(β + a)dμ{a)
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for each β in g\ Therefore, it is clear that Aμ leaves Cu invariant
and that AleC(^~',0(Cu)). Since Aμ, is an adjoint operator, from
5.11 we conclude that Aμ is L continuous. Therefore, A'μ. is continuous
in the L topology on Cu. The mapping μ —> A'μ, is clearly an isometry,
so to complete the proof we must show that this mapping is onto.

Let A be an L continuous element of C(^~'f 0(Cu)). By 5.6, there
exists an F in Sx? such that A = BF. By 5.12, BF is L continuous
and by 2.5, BFeC(^,0(L*)). Therefore, from 5.11 we conclude that
BF = Aμ for some μ in M. Hence, A — A'μ., which completes the proof.

6* Groups for which πL differs from J^\ The content of
this section is Theorem 6.1, which is a summary of Theorems. 6.2
and 6.5.

6.1. THEOREM. For any noncompact group or for any group
with property A> πL is a proper subset of jy\

It was first pointed out by R. J. Lindahl that the following
theorem is a consequence of 5.3. A proof can be gotten from the
proof of 5.6.

6.2. THEOREM. In any group ^ with property A, πL is a
proper subset of Sf.

Proof. The map v in the proof of 4.6 maps {πx + & :xeL} onto
{Ar

x: xeL} and {A'x: x e L) is properly contained in {A'μ: μ e M}. However,
{A'μ.: μeM}a C{^~', 0(Cw)), and since v maps Sx?\& onto C(^" ' , 0(CJ),
we conclude that for every group ^ with property A, πL is a proper
subset of j y , which completes the proof.

The remainder of this section is devoted to establishing the existance
of a special translation invariant element in L** of a noncompact
group. Notation introduced in the paragraph following 5.9 will be
used in the following theorems.

6.3. THEOREM. For a noncompact group &', there exists an
element I in L** such that
(i) I(/)^0 /eL*,/έO
(ii) I(μf) = fiiO)I(f) μeM,feL*
(iϋ)

Proof. Let J = { / G L * : / has a real valued realization} and X+ =
{feX:f has a nonnegative realization}. Let W" = {Ae0(L*): A =
Aμ,μ^0,\\μ\\ = l}. Let & = {De 0(X): D = A | X, Ae 5T~}. The
family S? is a commutative semi-group of operators on X which leaves
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X+ invariant and e (the element of L* having the identically 1 function
as a realization) is an interior point of X+ such that D(e) = e for
each D in £f. It follows from [8, 3.1, p. 33] that there exists an
element f i n l * such that

(1) f(/)^0 feX+

(2) ΉAf) = Ήf) Ae^feX.

( 3 ) 11*11 = 1 .

For each / i n I/*, let /(/) = *(/ί) + i*(/a) where /i and / 2 are the
real and imaginary parts of /, respestively. Then I satisfies the
following conditions:

(4) /(/)^0 feX+

(5) I(Af) =

(6)

Condition (5) follows from the fact that the real and imaginary parts
of Af are Afx and Af2, respectively. To establish (6) let / e L * such
that | | / | | ^ 1 . Then | /(/) | - e~iΘI{f) = I{e~iQf) for some θ and
I(e-ίθf) - Ψ(Re-iθf) s£ || ψ || | | / | | . Therefore, || I\\ £ \\ ψ \\ - 1, so
|| I | | = 1. To complete the proof of 6.3 we need only verify that I
satisfies (ii).

Note that (5) is equivalent to

( 7 ) I(μf) - β(O)I(f) β(0) - 1, || μ \\ = 1, fe L* .

Now let μ be any real valued measure in M. Then there exist non-
negative elements μ+ and μ~ in M such that μ = μ+ — μ~. Let a =
|| μ+ || and 6 = || μ" | |. Without loss of generality, we may assume that
a Φ 0 Φ b. Then for each / in L*, I(^/) = I(μ+f - JM-/) = I(t*+f) -
I(μ~f) = aI(arW) - blφ^μ-f) = (α - δ)I(/), since a~'μ+ and δ " 1 ^
are measures which correspond to operators in *W~. However, a — b==
μ(Q). Therefore, I(μf) = β(0)I(f) for each real valued measure μ in
M and each / i n L*. Finally, if μ is an arbitrary element of M,
then there exist real valued elements μx and μ2 in ikf such that μ =
μx + ίμ2 and (ii) now follows from the linearity of I and the above
remarks, which completes the proof.

6.4. THEOREM. If I is an element of L** and
{i) Iψ) = β(0)Kf) μeM,feL* ,
then I is a translation invariant element in

Proof. If μ is a unit point mass at /3, then μ(0) = 1 and μf =
Γβ/ for each / in L*. Therefore, (i) implies that I is translation
invariant.
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Since I is translation invariant, Ie&. To show that Iejzf, let
/eL* and xeL. Then I*πx(f) = I(xf) = x(0)I(f) and πx*I(f) =
πx(I*f) = πx(I(f)e) = πx(e)I(f) = $(0)I(/). Therefore, by the definition
of J^, l e

6.5. THEOREM. i*br any noncompact group, πL is a proper
subset of

Proof. In 6.3 and 6.4 it is established that in the case of a non-
compact LCA group, J ^ contains a nonzero translation invariant
element; however, πL contains no such element.
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