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0* Introduction* The collection of regular subsets of a semigroup
A is the smallest collection of subsets of A having among its members
the finite subsets of A, the collectionwise products EF and unions
E\J F of any members E and F of it, and the subsemigroups E* of
A generated by each of its members E. For convenience, we set
0 * — 0 for the empty set 0 although a semigroup is required to have
at least one element. By a quotient of a semigroup A we shall mean,
as usual, the set of inverse images of elements of a homomorphic
image of A with multiplication so defined that this partition of A is
isomorphic to the homomorphic image in the natural way.

A theorem of S. C. Kleene [3], first proved a dozen years ago,
not only may be regarded as the fundamental theorem of the traditional
theory of finite automata (compare C. C. Elgot [2] and Section 4 below),
but it may be considered a contribution to the theory of quotients of
certain classes of semigroups. Kleene's results are often summarized
[2] by a statement equivalent to the following: The regular subsets
of a finitely generated free semigroup are the unions of subsets of
finite quotients of the semigroup. This result has two evident parts.
The first we call the Kleene Quotient Theorem: Each element of a
finite quotient of a finitely generated free semigroup is a regular
subset of the semigroup. The second is one of several theorems we
call the Converse Theorems: Every regular subset of a finitely
generated free semigroup is a union of elements of some finite
quotient of the semigroup. This result may be decomposed into two
main parts (Section 3), each of which is also a Converse Theorem:

(a) The collection wise product of unions of elements of finite
quotients of a finitely generated free semigroup is a union of elements
of a finite quotient of the semigroup.

(b) The subsemigroup generated by a union of elements of a
finite quotient of a finitely generated free semigroup is a union of
elements of a finite quotient of the semigroup.

Our main purposes have been to remove the word free from the
Kleene Quotient Theorem and to remove the adjective finitely generated
from all the Converse Theorems. We have indeed been able to give
some general inductive formulas (Section 1) which may themselves be
regarded as a generalization of the Kleene Quotient Theorem, and we
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have given a more incisive proposition (Theorem 5) than the Converse
Theorems. But our main contribution is one of method. For example,
we avoid transformation semigroups completely in our proofs of the
Converse Theorems, introducing instead a class of refinements of
quotients. It would be possible to mimic Kleene's proofs [3] to prove
our major propositions, but the tools we introduce below are much
more transparent.

Section 3 is independent of Sections 1 and 2. It is also easier to
read because there are no long formulas to check and it is more like
conventional algebra.

That part of our terminology which is not simply the language of
general mathematics is found mainly in [1]. Unfortunately, collection-
wise quotients, which are used in almost every branch of algebra, are
not discussed there, but we have no use for any deep properties of
them.

1* Collectionwise quotients of quotient classes* An operation
often associated with the collectionwise product is the collectionwise
quotient a: b defined for each pair of subsets α and b of a semigroup
A. The set a : b consists of all those elements x of A for which xhcza.
It follows trivially that (α: h)h c α; in fact, α: b is the largest of the
subsets c of A for which c b c α . The most familiar uses of collection-
wise quotients require that A be the multiplicative semigroup of a
ring and that a and b be left ideals of the ring. Then α: b is an
ideal called the quotient ideal of α by b. We shall use α: b only when
α and b are elements of a quotient J*f of the semigroup A. In this
case, α:b contains every element of S/ which intersects it nonvacuously;
therefore, a:h is the union of all those quotient classes c e jzf for
which cbcα.

If B is a subsemigroup of A and & is the collection of all non-
empty subsets of B of the form a (Ί B for α in a quotient Szf of A,
then & is a quotient of B, the quotient induced by Suf on B. If
a, he J ^ , then (a:h) Π B is the union of all those C G ^ for which
cbc α. If also b ΓΊ B Φ 0 , then (α : b) Π B = ((α Π B): (b Π B)) Π B.

If 93 is a collection of subsemigroups of A and a a A, we shall
denote by (α)^ the set α (Ί (U 33). If a e j&, where J^f is a quotient
of A, then (α)^ is the union of the induced quotient classes a f] B for
J3e33 and aDBφ 0 . If α,be J * , then (α: b)β = U {(α: 6) Π B: B e 33},
which is the union of all the induced quotient classes c in the quotients
induced by Sxf on elements of S3 for which cb c α. In particular, if
A is generated by 33 (i.e., if A is the smallest subsemigroup of A
containing every element of S3), then for each α e Jzf we have α =
(α)$8 U U {(α ί*)^ δ e *$/}y for each element of α either is an element



KLEENE QUOTIENT THEOREMS 1345

of some element of 35 or has a left factor which is an element of some
element of 35. More explicitly, if x e a and x £ (α)^, then x = yz, where
y € B for some B e 35. But then zeb for some b e J ^ so that x e (a:h)%h.
This observation may be strengthened by factoring each element of α
completely into factors lying in the elements of 35. Thus, if 35 gener-
ates A and α is an element of the quotient S*f of A, then α is the
union of (α) s and all those products of the form (α : α j ^ α i : a2)^
(an-τ: ajjgίa.)^, where a19 , an e J^ί A factor (b : c) s or (b)^ of some
of these products may, of course, be the empty set, but then any such
product is empty.

To simplify our computations we introduce the set %(a, &, b) for
each α e jzf and b e & c J ^ . We define x^(α, ̂ , b) to be the union
of (α : h)ςQ and all sets of the form (α : a^yfa: α2)^ (an : b)^, where
<̂i> , αn e ^ . If 35 generates A, then for any element α of the
quotient Szf we have

( 1 ) α = (α) s U U {x»(α, J ^ , b)(b)^ : b 6

We intend to write x^ία, ^ , b) in a convenient form for later use.
To this end we introduce the sets ^ ( α , ̂ , b) for α e J ^ and b e ^ c j / .
We define ^ ( α , ^ , b) to be the union of all those sets of the form
{α : cO^Qi: c ^ (αn : b)^ for which σx ^ α and alf , an e &, where
we count (α: b)^ as one of these products if α Φ b. We then have, if
α e &y the formulas

ϊ s (α, ^ , α) = (α : α ) | U ̂ ( α , ^ , α) U (α : α)*t>s(α, ^ , α)

{2) and

x^(α, ^ , b) = ^ ( α , ^ , b) U (α : α)*^(α, ^ , b) for α ^ b .

The first of these formulas follows from the fact that the sets
(α : α ^ ί d i : α2)^ (an : α)^ may be classified as those for which each
ak is equal to α, those for which αx Φ α, and those for which αx = α
with some other ak Φ a. The second follows from the fact that for
b Φ a the sets (α : Oj^ί^ : σ2)^ (αn : b)^ and (α : b)^, for σ ^ b, may
be classified as those, including (α: b)^, for which αx Φ a and those
for which aτ — α.

We also have, if α e ^ , the formulas

t> (̂α, &g, α) = [U{x»(α, ^\{α}, c)[(c: α) 8 U (c: α ^ α : α)*] : c e

( 3 ) and

ί>8(α, ^ , b) = %(α, ̂ \{α}, b) U £8(α, ̂ , α)ts(α, ^\{α}, b) for α ^ b .

To show that the first of these equations is valid, we observe
that its right-hand member is the union of all sets of the form
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qA•••$*», where each q2k-x has the form (α: c)^ or (α: α ^ f a : σ2)^ (αm: c) s

for some c, α^ , αm e ^\{α} and q2fc is either (c: α)^ or (c: a^ia: α ) |
for some p. Because of the forms of qlf •••, q2%, each such qx ••• q2Λ

is contained in ^ ( α , &, a) according to its definition. Conversely, if
(α : cti)^ (ag: α)^ is one of the sets which, according to our definition,
makes up ^ ( α , £%, α), then αx Φ α. Either α& =£ α for each k, in which
case ( α : α ^ (aq:α)s is of the form qλq2 above (i.e., (α: α ^ (aq: α)^ c
Xsg(α, ^\{α}, αg)(αg: α) s) or there is a smallest fc for which αfc+1 = α.
In the latter case, there is some p ^ 1 for which α = ak+1 = = αΛ+ί>

and for which either k + p = q or αfc+p+1 =̂  α. If & + p = Q, then again
(α : a^sQ (α g: α ) s is of the form qxq2 above (i.e., (dicti)^ (α g :α)^c
x^(σ, ^\{α}, ak)(ak: a)%(a : α)&). If & + p < q, then (α : α θ s (θg: α) β

is of the form qiq2(α : ak+p+1)^ (αff: α) s , where qx and q2 have the
form specified above. The shorter expression (α : ak+p+1)ςQ (α g: α)^
may be treated exactly as (α : Oj)̂  (α g: α)s^ to produce factors qs

and q4, and by repetition of the above procedure we finally have, for
some n, (α : α ^ (aq: α)^ = qxq2 q2ίl, where the qk are as specified
above. Therefore, ί^(α, &, α) is contained in set expressed in the
right-hand member of the first equation (3).

The second formula of (3) is more easily verified. If α Φ h e &,
the sets (α : b)^ and (α : α^^ct!: α2)^ (an : b)^ for which axΦ a and
^i9 * ,ane& may be classified as those, including (α: ΐ>)̂ , for which
ak Φ a for every k and those for which there is a greatest & satisfying
ak = σ. The union of those of the former class is simply x^(α, ^\{α}, b);
the union of those of the latter is p%(a, &, a)x%(a, &\{a), b).

The pairs (2) and (3) of formulas apply only to the case α e &.
For α g ^ we have the obvious relationships

( 4 ) ϊ^(α, ̂ , b) - ^ ( α , ̂ , b) - (α: b)^ u U {(α: c)^( c » ^ , b): c e ^ } .

The formulas (1)^(4) are valid quite generally. Our reasons for
deriving them are apparent only when the quotient J ^ , the subset
& of J^fj and the collection S3 of subsemigroups of A suffer special
joint conditions. Our first lemma, its corollary (Theorem 1), and the
results of the next section make our reasons clear.

LEMMA 1. If Jzf is a quotient of the semigroup A, if & is a
finite subset of J^, if 33 is a collection of subsemigroups of A, and
if (α : h)ςQ is a regular subset of A for each σ, b 6 &f then t^(a, &, b)
is a regular subset of A for each a, be £@. If, moreover, a quotient
class a e Ssf has the property that (a: b)^ is a regular subset of A
for each b e έ%, then r^(a, ̂ , b) is a regular subset of A for each
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Proof. The second statement follows easily from the first and
formula (4). We prove the first statement by induction on the number
of elements of &'. The first of formulas (2) reduces to x^α, {a}, α) =
(α: α) | for & — {a}. If a e &, then ^\{o] has fewer elements than
has &, and, according to formulas (3), t>$(α, &9 b) is regular if each
set x^(a, ^\{α}, c) is regular for c 6 ̂ \{ά\. Writing x (̂α, ̂ \{α}, c) in
the form prescribed by (4) and invoking the induction hypothesis, we
conclude that x (̂α, ̂ \{α}, c) is regular; hence, ^(α, &, b) is regular.
According to formulas (2), therefore, x (̂α, ̂ , b) is regular.

THEOREM 1. // j& is a finite quotient of the semigroup A, if
35 is a collection of subsemigroups of A generating A, and if a Π (U 83)
is a regular subset of A for each αe s*f9 then each element of Stί is
a regular subset of A.

Proof. According to Lemma 1, x (̂α, j ^ , b) is regular for α, b G Szf y

Formula (1) then leads to our conclusion. Here, and in Lemma 2 below,
the referee has saved the author from the error of adjoining an
"obviously redundant" additional hypothesis that such sets as (α: b) Π (U 35)
be regular.

2* Quotients of finitely generated semigroups* The last section
has provided us with the main tools for carrying out a proof that the
elements of a finite quotient of a finitely generated semigroup are
regular subsets of the semigroup. After one more bit of preparation,
we shall use an argument involving the number of generators of the
semigroup.

LEMMA 2. // Szf is a finite quotient of the finitely generated
semigroup A, if 35 is a collection of subsemigroups of A generating
Ay and if aΠ B is a regular subset of A for each a e Ssf and B 6 35,
then each element of J&f is a regular subset of A.

Proof. Each element of a finite set of generators of A is in the
subsemigroup of A generated by some finite subcollection of 35. There-
fore, there is a finite subset 35' of 35 generating A. Since α Π (U 35') =
U {α Π B : B e 35'} the set αfl(U 35') is regular for α e Sf. The con-
clusion then follows from Theorem 1.

LEMMA 3. If <$/ is a quotient of the semigroup A and if A is
generated by one element, then every element of J^f is a regular
subset of A.

Proof. A is either free or finite. That is, every semigroup with
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a single generator is a homomorphic image of the additive semigroup
of positive integers N. If A is finite, the proposition is trivial. If
A is free, it is isomorphic to N. Since the form of quotient classes
of N is well known, we may regard the proposition as well known
for the free case.

THEOREM 2. // sf is a finite quotient of the finitely generated
semigroup A, then every element of s/ is a regular subset of A.

Proof. If A has several generators, it is generated by a finite
collection S3 of subsemigroups, each of which has fewer generators
than A. For example, 23 may be the cellection of subsemigroups of
A generated by the single elements of a finite set of generators of A.
The result then follows from Lemmas 2 and 3.

COROLLARY. Every element of any restriction of a finite quotient
of a semigroup A to a finitely generated subsemigroup of A is a
regular subset of A.

3* Finite quotients of free semigroups* We shall use some
special refinements of quotients to study regular subsets of free semi-
groups. We shall first define them as refinements in the set-theoretic
sense, proving afterward that they are quotients if the semigroups
are appropriate.

The joint refinement of quotients S*f and ^ of A, written
Λ ^ , is the coarsest covering of A which is a refinement of both
and ^ i.e., Sxf Λ & consists of all nonempty sets of the form

o Π b, where a e jtf and b e &. The composite refinement of the
quotient Szf of A, written πs*f, is the coarsest covering of A by
disjoint subsets which refines Sf and which is such that each άb is
a union of its elements for each α, b 6 jzf; i.e., if x,ye A, then x and
y are in the same element of πjzf if and only if they belong to the
same element of Jzf and the same products άb of elements α and b
of Sf. More generally, if & is a subset of the quotient Szf of A,
we define the composite refinement of Stf modulo &, written π&j&\
Elements x and y of A are in the same element of π&Ssf if and only
if they are in the same element of Jnf and the same products άb for
α, b6 j ^ , and, for a, be Ssf, x is in άb or αq cmb for some q, ,cm e &
if and only if y is in άb or ab^" bnb for some b19 —-,bne &. Obviously,
π — τr0.

We regard the next result as well known and easily proved.
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LEMMA 4. If Sf and & are quotients of a semigroup A, the
joint refinement Ssf t\£% is a quotient of A.

LEMMA 5. If & is a subset of the quotient sf of a free semi-
group A, the composite refinement of Stf modulo & is a quotient
of A.

Proof. We suppose that x and y are in the same element of π
and that %' and yf are in the same element of π&sf. Since xxr and
yyf are obviously in the same element of J ^ , we only have to show
that xx*eah implies yyf eah for a, he s/ and that xxf G αq cJ6 for
some q, , cm e & implies yyr e ah or yy' G αbx bjb for some
bi, , bM G ̂ , where a, he J ^ ,

If xxf G ah, then xx' — ab for some a e α, b e h. If x = a and x' = 6,
then yea and y'eh so that yyf eah. If x Φ α, then, because A is
free, either x is a left factor of a or xf is a right factor of b. In
the former case we have a — xax and xf — aj). There are elements
σ0, aλ e Ssf for which xea0 and ax e ax. Then aoax c a and yf e axh. Since
y e α0, ί/2/' G aQaxh c αb. The latter case is analogous.

If xx' eacx cmb, then ^cc' = acx cm&, where α e o , cfe G cfc and
beh. There are six mutually exclusive cases to consider:

( 1 ) a — xa19

(2 ) a = x,
( 3 ) & = 61a?/,
( 4 ) & = *',
( 5) a; = αCi cA for some k < m, and
( 6 ) a? = αcx Cfc-iCfc for some kfl^k^mf where ĉ  = c'hc" I n

case (1) we have x e α0, ax e ax for some α0, αx G j y , with aoa1 c α and
x' G ĉ q cmb. Then either /̂' e axh or there exist b1? •• ,bne & with
2/' e ciibi * bnb, so that 2/y' e αo^b c αb or 2/2/' e a^λ bTOb c αbx bwb.
In case (2) we have xea and a ' e q cmb. Then either /̂' e qb or
/̂' G qbx bwb for bx, , bn G ^ , so that ^ ' G αqb or yy' e αqbi bJ6.

Our condition is fulfilled since q e &. Cases (3) and (4) are analogous
to cases (1) and (2), respectively. In case (5) we can conclude that
y e ack or yea^ " bnck for some b19 * -,bne& and t h a t y' e cfc+1b or

y' G Cfc+iCx epb for some elf , ê  e ^ , and the desired conclusion
follows easily since c4, c^+ie ̂ . In case (6) y eac'k or yea^ bnc'k
for some bu , bn e &, where c'k e c'k, and y' e cj.'b or y' e cfa eph
for some elf , ep G ^ , where c" G cjf. The desired conclusion follows
easily since cjcjf cc^G ^ .

COROLLARY. 1/ sf is a quotient of a free semigroup A, the
composite refinement of S/ is a quotient of A.
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THEOREM 3. If Jzf and & are finite quotients of the free
semigroup A, then there is a finite quotient W of A so that if E —
U g7 and F = \J J^", where g ^ c j ^ &~ c ^ , there is some
so that EF=\J%?.

Proof. There exists gf', &*'cj/Λ^ for which £7 = \J gf' and
F =\J Jf. If J ^ and ̂  are finite, so is J ^ Λ ̂ . Therefore, it
is enough to prove the theorem for S/ — &', so that Suf = J ^ Λ &
and the notation is simplified. Then if α e g9 and b e ̂ " , αb is a union
of elements of πSzf, as is any product of quotient classes, and EF is
the union of all the products ah for α e g7, b e t ^

r . If s/ is finite,
so is πsf because there are then finitely many sets of products ah
for a, he

THEOREM 4. If Jzf is a finite quotient of the free semigroup
A and E — U g7 for some g* c J ^ , £/&ew ίfcere is a finite quotient
^ of A and some S^c <gf so ίfeαί E* = U ^ .

Proof. For a given subset g7 of j ^ , the elements of ^
contained in some element of J^f are determined by quadruples of
sets of pairs (α, b) of elements of J^\ That is, the element of π^S/
with element x is the subset of the element of Szf with element x
consisting of all those elements y of that element of Szf satisfying:

(1) y is in the intersection of all those products ah, a, he Jzf,
for which x e ah, (V)y is in the intersection of the complements of all
those products ah, a, he jzf, for which x & ah,

(2) if x £ ah for some a, he sf, but x is in the union of those
sets of the form αq, , cmb for q, , cm e g% then y is in the same
union, and (2') if x&ah for some a, he jzf and x is not in the union
of those sets of the form αq, , cwb for clf , cm e g% then 2/ is not
in that union. Therefore, if S/ is finite, so is π^s/.

If x e E*, then x e Ek for some k ^ 1. If fc = 1, then x e α for
some αeg 7 . Then the whole element of πa>s/ of which x is an
element is contained in α c S c ί ? * . If & = 2, then cceαb for some
a, he g7. Then the element of itgjzf of which a? is an element is
contained in aha E2a E*. If k > 2, then a? e αq cΛ_2b for some
α, b, q, •• , (V_2e g*. If y is an element of the element of π^J^f of
which x is an element, then y e ah or y e ab± bwb for some blf , bn e g7

i.e., yeE2aE* or yeEn+2czE* for some w ̂  1. Therefore, # * is
a union of elements of π

THEOREM 5. If sf is a finite quotient of the free semigroup
A, then there is a finite quotient & of A with the following properties:
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( i ) & refines
(ii) Products of elements of s/ are unions of elements of &\

hence, products of unions of elements of Szf are unions of elements
of &.

(iii) The subsemigroup of A generated by any union of elements
of Szf is a union of elements of &.

Proof. Since there are finitely many subsets of Jzf, then according
to Theorems 3 and 4 we have only to form a finite sequence of joint
refinements. In fact, according to the proofs of Theorems 3 and 4
we may use the quotient π%sf /\π$sf A Λ%Stf if g%
are all the subsets of

LEMMA 6. Any finite subset of a free semigroup A is a union
of elements of a finite quotient of A.

Proof. We let E bs the smallest subset of A generating A, F
be a finite subset of A, and Eo a finite subset of E so that Fez Ef.
Then Fa Eo U E0

2 u U Eo

n for some n > 0. The partition of A con-
sisting of the singleton subsets of Eo (J Ef (J U E? and the set
A\(EQ U * U E*) is a finite quotient of A, and F is a union of some
of its elements

THEOREM 6 Each regular subset of a free semigroup A is a
union of elements of a finite quotient of A.

Proof. By Lemma 6 the finite subsets of A are unions of elements
of a finite quotient of A. By Theorems 3 and 4 collectionwise products
of such unions and the subsemigroups of A generated by such unions
are also such unions. The conclusion follows directly from the definition
of regular subsets.

4* Transformation semigroups and automata* If h is a homo-
morphism from the semigroup A to the semigroup (under composition)
of transformations on a set X (i.e., if (A, h) is a transformation
semigroup) and if xQeX, then we may define the subset Ax of A to
consist of all those elements a e A for which h(a)(x0) — x. Each such
Ax is a union of elements of the quotient A/h, and the nonempty sets
Ax constitute a partition of A which we denote by A/(h, xQ). Moreover,
if £/ is a quotient of the semigroup A, then A acts on the semigroup
*S>/+ consisting of J ^ and an identity 1 g Szf as follows: The homo-
morphism h+ from A to the semigroup of transformations on J ^ + is
defined by setting h+(a)(a) equal to the element of S/ containing
h(a)a for a e A, α e 3/+, where h is the natural homomorphism from
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A to sf. Then Jzf = A/(h+, 1). Thus, all quotients of A are of the
form A/(hf xQ) for some transformation semigroup (A, /&). In particular,
finite quotients may be obtained from finite "phase sets" X.

According to Theorem 6 and these last remarks, if E is a regular
subset of the free semigroup A then there is a finite set X, a homo-
morphism h from A to the semigroup of transformations on X, and
an element x0 e X so that E is a union of elements of A/(hf xQ); that
is, there is a set Xo c X so that I? — U {Ax: x e Xo}. According to
Theorem 2 and the remarks, if X is a finite set, x0 an element of Xr

and h a homomorphism from the finitely generated semigroup A to
the semigroup of transformations on X, then each element of A/(hf x0)
is regular; that is, each Ax is regular.

A finite automaton (cf. [2]) is a homomorphism h from a finitely
generated free semigroup A to the semigroup of transformations on a
finite set X together with a subset Xo of X. Each element x0 of X
then determines a regular subset of A consisting of the union of those
elements Ax of A/(h, x0) for which x e Xo. On the other hand, if E
is a regular subset of the finitely generated free semigroup A, there
exist appropriate X, Xo and h defining a finite automaton so that E
is the union of all Aa in A/(h9 x0) for which x e Xo, where xQ is some
element of X. These last statements are obvious consequences of the
remarks above.
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