A PROOF OF THE NAKAOKA-TODA FORMULA

K. A. HARDIE

If X_i $(1 \le j \le r)$ are objects we denote the corresponding *r*-tuple (X_1, X_2, \dots, X_r) by X and the (r-1)-tuple $(X_1, X_2, \dots, X_{i-1}, X_{i+1}, \dots, X_r)$ by X(i). When X_j $(1 \le j \le r)$ are based topological spaces ΠX will denote their topological product and $\Pi^i X$ the subspace of ΠX whose points have at least *i* coordinates at base points (always denote by *).

Let $\alpha_j \in \pi_{n_j}(X_j)$ $(n_j \ge 2, 1 \le j \le r, r \ge 3)$ be elements of homotopy groups then we have

$$\star \alpha(\text{say}) = \alpha_1 \star \alpha_2 \star \cdots \star \alpha_r \in \pi_n(\Pi X, \Pi^1 X)$$

where $n = \Sigma n_j$ and \star denotes the product of Blakers and Massey [1]. We thus also have

$$\star \alpha(i) \in \pi_{n-n_i}(\Pi X(i), \Pi^1 X(i))$$
.

There is a natural map $\Pi X(i)$, $\Pi^1 X(i) \to \Pi^1 X$, $\Pi^2 X$ and we denote also by $\star \alpha(j)$ its image induced in $\pi_{n-n_i}(\Pi^1 X, \Pi^2 X)$. Let ∂ denote the homotopy boundary homomorphism in the exact sequence of the triple $(\Pi X, \Pi^1 X, \Pi^2 X)$. We shall prove the formula:

$$\partial \star \alpha = \Sigma(1 \leq i \leq r)(-1)^{\varepsilon(i)}[\alpha_i, \star \alpha(i)] \in \pi_{n-1}(\Pi^1 X, \Pi^2 X) , \qquad (0.1)$$

where $\varepsilon(1) = 0$, $\varepsilon(i) = n_i(n_1 + n_2 + \cdots + n_{i-1})$ (i > 1) and where the brackets refer to the generalised Whitehead product of Blakers and Massey [1]. In the case of the universal example 0.1 becomes the formula of Nakaoka and Toda stated in [4] and proved there for r = 3. I. M. James¹ has raised the question of its validity for r > 3 and as the formula has applications (see [2], [3]) it would seem desirable to have a proof available in the literature. The present argument while inspired by [4] has a few novel features.

(1) DEFINITIONS AND LEMMAS. Let $x = (x_1, x_2, \dots, x_n)$ denote a point of *n*-dimensional Euclidean space and let

$$egin{aligned} &V^n=\{x;\, \varSigma x_i^2 \leq 1\}\ ,\ &S^{n-1}=\{x;\, \varSigma x_i^2=1\}\ ,\ &E_+^{n-1}=\{x\in S^n;\, x_n \geq 0\}\ ,\ &E_-^{n-1}=\{x\in S^n;\, x_n \leq 0\}\ ,\ &D_+^n=\{x\in V^n;\, x_n \geq 0\} \end{aligned}$$

Received November 12, 1963.

¹ Math. Reviews 25 # 4521.

K. A. HARDIE

$$egin{array}{ll} D^n_{-} = \{x \in V^n; \, x_n \leq 0\} \;, \ D^n_1 = \{x \in V^n; \, x_1 \geq 0\} \;, \ D^n_2 = \{x \in V^n; \, x_1 \leq 0\} \;. \end{array}$$

We recall that if $Y \subseteq X$ then X is a closed *n*-cell and Y is a face of X if there exists a homeomorphism $f: V^n \to X$ such that $f(E_+^{n-1}) = Y$. The subset $X^0 = f(S^{n-1})$ is the boundary of X. If X and Y are oriented cells we assign to $X \times Y$ the cross-product of the orientations of X and Y.

LEMMA 1.1. Let X_1 be a face of the cell X and Y_1 a face of the cell Y. Then

$$(X_1 \times Y) \cup (X \times Y_1)$$
 is a face of $X \times Y$.

A proof of 1.1 may be found in [1] to which the reader may also refer for details concerning orientations. The proofs of the following two lemmas are standard exercises in homotopy theory and will be omitted.

LEMMA 1.2. Suppose given a simplicial decomposition of a closed n-cell $F(n \ge 3)$ and a subcomplex G which is a closed n-cell oriented coherently with F. If A is a simply-connected subset of a space Y and if $f: F \to Y$ is a map such that $f\{(F - G) \cup G^\circ\} \subseteq A$ then $f: F, F^\circ \to Y, A$ and $f: G, G^\circ \to Y, A$ represent the same element of $\pi_n(Y, A)$.

LEMMA 1.3. Suppose given a simplicial decomposition of $V^{n+1}(n \ge 3)$ and subcomplexes $F_i(i = 1, 2, \dots, m)$ which are faces of V^{n+1} with disjoint interiors oriented coherently with S^n . Let A be a simply-connected subset of a simply-connected space Y, let $f: S^n \to Y$ be a map such that $f\{(S^n - \cup F_i) \cup (\cup F_i^o)\} \subseteq A$, let $f: S^n \to Y$ represent $\alpha \in \pi_n(Y)$ and let $f: F_i, F_i^o \to Y$, A represent $\alpha_i \in \pi_n(Y, A)$ ($i = 1, 2, \dots, m$). Then $j\alpha = \Sigma \alpha_i$ where $j: \pi_n(Y) \to \pi_n(Y, A)$ is the injection homomorphism.

Let A be a simply-connected subset of a space Y. Let $f: V^p, S^{p-1} \rightarrow A$, * and $g: V^q, S^{q-1}, E_+^{q-1} \rightarrow Y, A$, * be representatives of $\alpha \in \pi_p(A)$ and $\beta \in \pi_q(Y, A)$. Let

$$h: S^{p-1} \times V^q \cup V^p \times E^{q-1}_+, S^{p-1} \times E^{q-1}_- \cup V^p \times S^{q-2} \rightarrow Y, A$$

be the map such that

$$h(x, y) = egin{cases} f(x) & ext{if} \ (x, y) \in V^p imes E_+^{r-1} \ g(y) & ext{if} \ (x, y) \in S^{p-1} imes V^q \ . \end{cases}$$

1250

Then if $S^{p-1} \times V^p \cup V^q \times E^{q-1}_+$ is oriented coherently with $V^p \times V^q$ we recall 3.1 of [1]:

DEFINITION 1.4. *h* represents $[\alpha, \beta] \in \pi_{p+q-1}(Y, A)$.

(2) Proof of 0.1. Let α_i be represented by a map

$$\psi_i: V^{n_i}, S^{n_i-1} \to X_i, s$$

with the property that

(2.1)
$$\psi_i(D_+^{n_i} \cup D_2^{n_i}) = *$$
.

If we denote $V^{n_1} \times V^{n_2} \times \cdots \times V^{n_r}$ by V and $V^{n_1} \times V^{n_{i-1}} \times V^{n_{i+1}} \times \cdots \times V^{n_r}$ by V(i) then $\star \alpha$ and $\star \alpha(i)$ are represented by maps

$$\psi: V, V^{\circ} \rightarrow \Pi X, \Pi^{1} X,$$

 $\psi(i): V(i), V(i)^{\circ} \rightarrow \Pi^{1} X, \Pi^{2} X$

such that

$$\begin{aligned} \psi(x_1, \cdots, x_r) &= (\psi_1(x_1), \cdots, \psi_r(x_r)) , \\ (2.2) \quad \psi(i)(x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_r) \\ &= (\psi_1(x_1), \cdots, \psi_{i-1}(x_{i-1}), *, \psi_{i+1}(x_{i+1}), \cdots, \psi_r(x_r)) \ (x_i \in V^{*i}) . \end{aligned}$$

Let $\rho_i: V^{n_i} \times V(i) \rightarrow V$ be the map such that

$$ho_i(x_i, (x_1, \cdots, x_{i-1}, x_{i-1}, \cdots, x_r)) = (x_1, x_2, \cdots, x_r)$$
.

As an easy consequence of our orientation convention we obtain:

LEMMA 2.3. The degree of ρ_i is $(-1)^{\varepsilon(i)}$.

The proof of 0.1 depends on the construction of certain closed cells $G_i \subseteq V(i)$ $(1 \leq i \leq r)$. Consider the two infinite arrays illustrated

in the diagram. They contain between them exactly one centrally situated $r \times r$ matrix. Let $\eta(i, k, r)$ denote the symbol in the (i, k) position of this matrix. We define

$$G_i = \Pi D^{n_k}_{\eta(i,k,r)}$$
 ,

where topological product Π is taken over all values of k (in ascending order) except those for which $\eta(i, k, r) = 0$.

EXAMPLES If r = 5 then $G_2 = D_1^{n_1} \times D_1^{n_3} \times D_1^{n_4} \times D_-^{n_5}$. If r = 6 then $G_4 = D_1^{n_1} \times D_-^{n_2} \times D_1^{n_3} \times D_-^{n_5} \times D_-^{n_6}$.

Certainly $G_i \subseteq V(i)$. We shall refer later to the following property of the G_i which is obvious from the diagram.

LEMMA 2.4. If $i < j \leq r$ then there is an integer k with $i \neq k \neq j$ such that G_i has a factor $D_1^{n_k}$ and G_j a factor $D_-^{n_k}$.

The proof of the following lemma we postpone.

LEMMA 2.5. For each $i = 1, 2, \dots, r$, there exists a face τ_i of G_i and of V(i) such that if G_i has a factor $D_1^{n_k}$ then the projection of τ_i on $D_1^{n_k}$ does not intersect $D_-^{n_k}$ and such that if G_i has a factor $D_-^{n_k}$ then the projection of τ_i on $D_-^{n_k}$ does not intersect $D_-^{n_k}$ does not intersect $D_1^{n_k}$.

In view of 2.1 and 2.5 we have $\psi(i)(\tau_i) = *$. Moreover 2.1 and 2.2 imply that

$$\psi(i)\{(V(i) - G_i) \cup G_i^{\circ}\} \subseteq \Pi^2 X$$
.

Thus applying 1.2 (we may assume $\Pi^2 X$ simply-connected for this is certainly so in the case of the universal example) we obtain that

(2.6) $(\psi(i) \mid G_i) : G_i, G_i^\circ, \tau_i \to \Pi^1 X, \Pi^2 X,^*$ represents $\star \alpha(i)$.

We now define

$$F_i =
ho_i (S^{n_i - 1} imes G_i \cup V^{n_i} imes au_i)$$
 $(1 \le i \le r)$

and prove later:

LEMMA 2.7. The F_i are faces of V with disjoint interiors. The map $(\psi \rho_i | \rho_i^{-1} F_i)$ has the property that

$$(\psi
ho_i \,|\,
ho_i^{-1} F_i)(x,\,y) = egin{cases} \psi_i(x) & if \,\, (x,\,y) \in V^{\pi_i} imes au_i \ \psi(i)(y) & if \,\, (x,\,y) \in S^{\pi_i - 1} imes G_i \ . \end{cases}$$

If we orient F_i coherently with V and $\rho_i^{-1}F_i$ coherently with $V^{n_i} \times V(i)$,

1.4 implies that $(\psi \rho_i | \rho_i^{-1} F_i)$ represents $[\alpha_i, \star \alpha(i)]$.

Since ρ_i is of degree $(-1)^{\varepsilon(i)}$, $(\psi \mid F_i)$ represents $(-1)^{\varepsilon(i)}[\alpha_i, \star \alpha(i)]$ and hence applying 1.3 the formula 0.1 follows in view of the commutativity in the diagram

$$\pi_{n}(\Pi X, \Pi^{1}X) \xrightarrow{\partial} \pi_{n-1}(\Pi^{1}X, \Pi^{2}X)$$

$$\downarrow^{d} \swarrow_{j}$$

$$\pi_{n-1}(\Pi^{1}X)$$

where d denotes the boundary homomorphism in the homotopy sequence of the pair $(\Pi X, \Pi^1 X)$.

Proof of 2.5. Let D_0^n and D_{\times}^n denote the subsets

$$D_0^n=\left\{x\in V^n;\, x_1\geqqrac{1}{2} ext{ and } x_n\geqqrac{1}{2}
ight\}$$
 , $D_ imes^n=\left\{x\in V^n;\, x_1\leqqrac{1}{2} ext{ and } x_n\leqqrac{1}{2}
ight\}$.

Let $D \subseteq G_i$ have a factor $D_0^{n_k}$ for every factor $D_1^{n_k}$ of G_i and a factor $D_{\times}^{n_k}$ for every factor $D_{-}^{n_k}$ of G_i . Then certainly $\tau_i = D \cap V(i)^{\circ}$ has the desired property.

Proof of 2.7. If σ_i is the face of G_i complementary to τ_i then it may be observed that F_i is the face of $\rho_i(V^{n_i} \times G_i)$ complementary to $\rho_i(V^{n_i} \times \sigma_i)$. Thus

$$F_i^{\mathbf{o}} =
ho_i(S^{n_i-1} imes \sigma_i \cup V^{n_i} imes au_i^{\mathbf{o}})$$
 .

Suppose i < j and let

$$egin{aligned} H&=
ho_i(S^{n_i-1} imes G_i)\cap
ho_j(S^{n_j-1} imes G_j)\ ,\ H'&=
ho_i(S^{n_i-1} imes G_i)\cap
ho_j(V^{n_j} imes au_j)\ ,\ H''&=
ho_i(V^{n_i} imes au_j)\cap
ho_j(S^{n_j-1} imes G_j)\ . \end{aligned}$$

2.7 will follow when we have proved that $H \subseteq F_i^{\circ} \cap F_j^{\circ}$, $H' = \bigotimes$ and $H'' = \bigotimes$. Since the images of H under the projections into V^{π_i} and V^{π_j} are contained in S^{n_i-1} and S^{n_j-1} respectively we have

$$H \sqsubseteq
ho_i(S^{n_i-1} imes G_i^\circ) \cap
ho_i(S^{n_j-1} imes G_j^\circ)$$
 .

2.4 asserts the existence of an integer k with $i \neq k \neq j$ such that G_i has a factor $D_1^{n_k}$ and G_j a factor $D_{-k}^{n_k}$. Hence 2.5 implies that

K. A. HARDIE

$$H \cap
ho_i(S^{n_i-1} imes au_i) = H \cap
ho_j(S^{n_j-1} imes au_j) = \otimes$$

and hence that

$$H \subseteq
ho_i(S^{n_i-1} imes (G_i^\circ - au_i)) \cap
ho_j(S^{n_j-1} imes (G_j^\circ - au_j)) \subseteq F_i^\circ \cap F_j^\circ$$
 .

2.5 also implies that $H' = H'' = \otimes$ which completes the proof of 2.6.

References

1. A. L. Blakers and W. S. Massey, *Products in homotopy theory*, Ann. of Math., **58** (1953), 295-324.

2. K. A. Hardie, On a construction of E. C. Zeeman, J. London Math. Soc., 35 (1960), 452-64.

....., Higher Whitehead products, Quart. J. Math. Oxford (2), 12 (1961), 241-9.
 M. Nakaoka and H. Toda, On Jacobi identity for Whitehead products, J. Inst. Poly tech. Osaka City Univ. A 5 (1954), 1-13.

1254