A PROOF OF THE NAKAOKA-TODA FORMULA

K. A. Hardie

If $X_{j}(1 \leqq j \leqq r)$ are objects we denote the corresponding r-tuple $\left(X_{1}, X_{2}, \cdots, X_{r}\right)$ by X and the $(r-1)$-tuple ($\left.X_{1}, X_{2}, \cdots, X_{i-1}, X_{i+1}, \cdots, X_{r}\right)$ by $X(i)$. When $X_{j}(1 \leqq j \leqq r)$ are based topological spaces ΠX will denote their topological product and $\Pi^{i} X$ the subspace of ΠX whose points have at least i coordinates at base points (always denote by $*$).

Let $\alpha_{j} \in \pi_{n_{j}}\left(X_{j}\right) \quad\left(n_{j} \geqq 2,1 \leqq j \leqq r, r \geqq 3\right)$ be elements of homotopy groups then we have

$$
\star \alpha(\text { say })=\alpha_{1} \star \alpha_{2} \star \cdots \star \alpha_{r} \in \pi_{n}\left(\Pi X, \Pi^{1} X\right)
$$

where $n=\Sigma n_{j}$ and \star denotes the product of Blakers and Massey [1]. We thus also have

$$
\star \alpha(i) \in \pi_{n-n_{i}}\left(\Pi X(i), \Pi^{1} X(i)\right)
$$

There is a natural map $\Pi X(i), \Pi^{1} X(i) \rightarrow \Pi^{1} X, \Pi^{2} X$ and we denote also by $\star \alpha(j)$ its image induced in $\pi_{n-n_{i}}\left(\Pi^{1} X, \Pi^{2} X\right)$. Let ∂ denote the homotopy boundary homomorphism in the exact sequence of the triple ($\Pi X, \Pi^{1} X, \Pi^{2} X$). We shall prove the formula:

$$
\begin{equation*}
\partial \star \alpha=\Sigma(1 \leqq i \leqq r)(-1)^{\varepsilon(i)}\left[\alpha_{i}, \star \alpha(i)\right] \in \pi_{n-1}\left(\Pi^{1} X, \Pi^{2} X\right) \tag{0.1}
\end{equation*}
$$

where $\varepsilon(1)=0, \varepsilon(i)=n_{i}\left(n_{1}+n_{2}+\cdots+n_{i-1}\right)(i>1)$ and where the brackets refer to the generalised Whitehead product of Blakers and Massey [1]. In the case of the universal example 0.1 becomes the formula of Nakaoka and Toda stated in [4] and proved there for $r=3$. I. M. James ${ }^{1}$ has raised the question of its validity for $r>3$ and as the formula has applications (see [2], [3]) it would seem desirable to have a proof available in the literature. The present argument while inspired by [4] has a few novel features.
(1) Definitions and Lemmas. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ denote a point of n-dimensional Euclidean space and let

$$
\begin{aligned}
V^{n} & =\left\{x ; \Sigma x_{i}^{2} \leqq 1\right\}, \\
S^{n-1} & =\left\{x ; \Sigma x_{i}^{2}=1\right\}, \\
E_{+}^{n-1} & =\left\{x \in S^{n} ; x_{n} \geqq 0\right\}, \\
E_{-}^{n-1} & =\left\{x \in S^{n} ; x_{n} \leqq 0\right\} \\
D_{+}^{n} & =\left\{x \in V^{n} ; x_{n} \leqq 0\right\},
\end{aligned}
$$

Received November 12, 1963.
${ }^{1}$ Math. Reviews 25 \# 4521.

$$
\begin{aligned}
& D_{-}^{n}=\left\{x \in V^{n} ; x_{n} \leqq 0\right\}, \\
& D_{1}^{n}=\left\{x \in V^{n} ; x_{1} \geqq 0\right\}, \\
& D_{2}^{n}=\left\{x \in V^{n} ; x_{1} \leqq 0\right\} .
\end{aligned}
$$

We recall that if $Y \subseteq X$ then X is a closed n-cell and Y is a face of X if there exists a homeomorphism $f: V^{n} \rightarrow X$ such that $f\left(E_{+}^{n-1}\right)=Y$. The subset $X^{0}=f\left(S^{n-1}\right)$ is the boundary of X. If X and Y are oriented cells we assign to $X \times Y$ the cross-product of the orientations of X and Y.

Lemma 1.1. Let X_{1} be a face of the cell X and Y_{1} a face of the cell Y. Then

$$
\left(X_{1} \times Y\right) \cup\left(X \times Y_{1}\right) \text { is a face of } X \times Y
$$

A proof of 1.1 may be found in [1] to which the reader may also refer for details concerning orientations. The proofs of the following two lemmas are standard exercises in homotopy theory and will be omitted.

Lemma 1.2. Suppose given a simplicial decomposition of a closed n-cell $F(n \geqq 3)$ and a subcomplex G which is a closed n-cell oriented coherently with F. If A is a simply-connected subset of a space Y and if $f: F \rightarrow Y$ is a map such that $f\left\{(F-G) \cup G^{\circ}\right\} \subseteq A$ then $f: F, F^{\circ} \rightarrow Y, A$ and $f: G, G^{\circ} \rightarrow Y, A$ represent the same element of $\pi_{n}(Y, A)$.

Lemma 1.3. Suppose given a simplicial decomposition of $V^{n+1}(n \geqq 3)$ and subcomplexes $F_{i}(i=1,2, \cdots, m)$ which are faces of V^{n+1} with disjoint interiors oriented coherently with S^{n}. Let A be a simply-connected subset of a simply-connected space Y, let $f: S^{n} \rightarrow Y$ be a map such that $f\left\{\left(S^{n}-\cup F_{i}\right) \cup\left(\cup F_{i}^{\circ}\right)\right\} \cong A$, let $f: S^{n} \rightarrow Y$ represent $\alpha \in \pi_{n}(Y)$ and let $f: F_{i}, F_{i}^{\circ} \rightarrow Y, A$ represent $\alpha_{i} \in \pi_{n}(Y, A) \quad(i=$ $1,2, \cdots, m)$. Then $j \alpha=\Sigma \alpha_{i}$ where $j: \pi_{n}(Y) \rightarrow \pi_{n}(Y, A)$ is the injection homomorphism.

Let A be a simply-connected subset of a space Y. Let $f: V^{p}, S^{p-1} \rightarrow$ A, * and $g: V^{q}, S^{q-1}, E_{+}^{q-1} \rightarrow Y, A, *$ be representatives of $\alpha \in \pi_{p}(A)$ and $\beta \in \pi_{q}(Y, A)$. Let

$$
h: S^{p-1} \times V^{q} \cup V^{p} \times E_{+}^{q-1}, S^{p-1} \times E_{-}^{q-1} \cup V^{p} \times S^{q-2} \rightarrow Y, A
$$

be the map such that

$$
h(x, y)= \begin{cases}f(x) & \text { if }(x, y) \in V^{p} \times E_{+}^{-1} \\ g(y) & \text { if }(x, y) \in S^{p-1} \times V^{q}\end{cases}
$$

Then if $S^{p-1} \times V^{p} \cup V^{q} \times E_{+}^{q-1}$ is oriented coherently with $V^{p} \times V^{q}$ we recall 3.1 of [1]:

Definition 1.4. h represents $[\alpha, \beta] \in \pi_{p+q-1}(Y, A)$.
(2) Proof of 0.1. Let α_{i} be represented by a map

$$
\psi_{i}: V^{n_{i}}, S^{n_{i}-1} \rightarrow X_{i}, *
$$

with the property that

$$
\begin{equation*}
\psi_{i}\left(D_{+}^{n_{i}} \cup D_{2}^{n_{i}}\right)=* \tag{2.1}
\end{equation*}
$$

If we denote $V^{n_{1}} \times V^{n_{2}} \times \cdots \times V^{n_{r}}$ by V and $V^{n_{1}} \times V^{n_{i-1}} \times V^{n_{i+1}} \times \cdots \times V^{n_{r}}$ by $V(i)$ then $\star \alpha$ and $\star \alpha(i)$ are represented by maps

$$
\begin{gathered}
\psi: V, V^{\circ} \rightarrow \Pi X, \Pi^{1} X \\
\psi(i): V(i), V(i)^{\circ} \rightarrow \Pi^{1} X, \Pi^{2} X
\end{gathered}
$$

such that

$$
\begin{aligned}
& \quad \psi\left(x_{1}, \cdots, x_{r}\right)=\left(\psi_{1}\left(x_{1}\right), \cdots, \psi_{r}\left(x_{r}\right)\right) \\
& \text { (2.2) } \psi(i)\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{r}\right) \\
& \quad=\left(\psi_{1}\left(x_{1}\right), \cdots, \psi_{i-1}\left(x_{i-1}\right), *, \psi_{i+1}\left(x_{i+1}\right), \cdots, \psi_{r}\left(x_{r}\right)\right)\left(x_{i} \in V^{n_{i}}\right) .
\end{aligned}
$$

Let $\rho_{i}: V^{n_{i}} \times V(i) \rightarrow V$ be the map such that

$$
\rho_{i}\left(x_{i},\left(x_{1}, \cdots, x_{i-1}, x_{i-1}, \cdots, x_{r}\right)\right)=\left(x_{1}, x_{2}, \cdots, x_{r}\right)
$$

As an easy consequence of our orientation convention we obtain:
Lemma 2.3. The degree of ρ_{i} is $(-1)^{e^{(i)}}$.

r even

r odd

The proof of 0.1 depends on the construction of certain closed cells $G_{i} \sqsubseteq V(i)(1 \leqq i \leqq r)$. Consider the two infinite arrays illustrated
in the diagram. They contain between them exactly one centrally situated $r \times r$ matrix. Let $\eta(i, k, r)$ denote the symbol in the (i, k) position of this matrix. We define

$$
G_{i}=\Pi D_{\eta(i, k, r)}^{n_{k}},
$$

where topological product Π is taken over all values of k (in ascending order) except those for which $\eta(i, k, r)=0$.

Examples If $r=5$ then $G_{2}=D_{1}^{n_{1}} \times D_{1}^{n_{3}} \times D_{1}^{n_{4}} \times D_{-}^{n_{5}}$.

$$
\text { If } r=6 \text { then } G_{4}=D_{1}^{n_{1}} \times D_{-}^{n_{2}} \times D_{1}^{n_{3}} \times D_{-}^{n_{5}} \times D_{-}^{n_{6}} .
$$

Certainly $G_{i} \subseteq V(i)$. We shall refer later to the following property of the G_{i} which is obvious from the diagram.

Lemma 2.4. If $i<j \leqq r$ then there is an integer k with $i \neq k \neq j$ such that G_{i} has a factor $D_{1}^{n_{k}}$ and G_{j} a factor $D_{-}^{n_{k}}$.

The proof of the following lemma we postpone.
Lemma 2.5. For each $i=1,2, \cdots, r$, there exists a face τ_{i} of G_{i} and of $V(i)$ such that if G_{i} has a factor $D_{1}^{n_{k}}$ then the projection of τ_{i} on $D_{1}^{n_{k}}$ does not intersect $D_{-}^{n_{k}}$ and such that if G_{i} has a factor $D_{-}^{n_{k}}$ then the projection of τ_{i} on $D_{-}^{n_{k}}$ does not intersect $D_{1}^{n_{k}}$.

In view of 2.1 and 2.5 we have $\psi(i)\left(\tau_{i}\right)=*$. Moreover 2.1 and 2.2 imply that

$$
\psi(i)\left\{\left(V(i)-G_{i}\right) \cup G_{i}^{\circ}\right\} \subseteq \Pi^{2} X
$$

Thus applying 1.2 (we may assume $\Pi^{2} X$ simply-connected for this is certainly so in the case of the universal example) we obtain that

$$
\begin{gather*}
\left(\psi(i) \mid G_{i}\right): G_{i}, G_{i}^{\circ}, \tau_{i} \rightarrow \Pi^{1} X, \Pi^{2} X,{ }^{*} \tag{2.6}\\
\text { represents } \star \alpha(i)
\end{gather*}
$$

We now define

$$
F_{i}=\rho_{i}\left(S^{n_{i}-1} \times G_{i} \cup V^{n_{i}} \times \tau_{i}\right)
$$

$$
(1 \leqq i \leqq r)
$$

and prove later:
Lemma 2.7. The F_{i} are faces of V with disjoint interiors. The $\operatorname{map}\left(\psi \rho_{i} \mid \rho_{i}^{-1} F_{i}\right)$ has the property that

$$
\left(\psi \rho_{i} \mid \rho_{i}^{-1} F_{i}\right)(x, y)= \begin{cases}\psi_{i}(x) & \text { if }(x, y) \in V^{n_{i}} \times \tau_{i} \\ \psi(i)(y) & \text { if }(x, y) \in S^{n_{i}-1} \times G_{i}\end{cases}
$$

If we orient F_{i} coherently with V and $\rho_{i}^{-1} F_{i}$ coherently with $V^{n_{i}} \times V(i)$,
1.4 implies that $\left(\psi \rho_{i} \mid \rho_{i}^{-1} F_{i}\right)$ represents $\left[\alpha_{i}, \star \alpha(i)\right]$.

Since ρ_{i} is of degree $(-1)^{\varepsilon(i)},\left(\psi \mid F_{i}\right)$ represents $(-1)^{\varepsilon(i)}\left[\alpha_{i}, \star \alpha(i)\right]$ and hence applying 1.3 the formula 0.1 follows in view of the commutativity in the diagram

where d denotes the boundary homomorphism in the homotopy sequence of the pair ($\Pi X, \Pi^{1} X$).

Proof of 2.5. Let D_{0}^{n} and D_{\times}^{n} denote the subsets

$$
\begin{aligned}
& D_{0}^{n}=\left\{x \in V^{n} ; x_{1} \geqq \frac{1}{2} \text { and } x_{n} \geqq \frac{1}{2}\right\}, \\
& D_{\times}^{n}=\left\{x \in V^{n} ; x_{1} \leqq \frac{1}{2} \text { and } x_{n} \leqq \frac{1}{2}\right\} .
\end{aligned}
$$

Let $D \subseteq G_{i}$ have a factor $D_{0}^{n_{k}}$ for every factor $D_{1}^{n_{k}}$ of G_{i} and a factor $D_{\times}^{n_{k}}$ for every factor $D_{-}^{n_{k}}$ of G_{i}. Then certainly $\tau_{i}=D \cap V(i)^{\circ}$ has the desired property.

Proof of 2.7. If σ_{i} is the face of G_{i} complementary to τ_{i} then it may be observed that F_{i} is the face of $\rho_{i}\left(V^{n_{i}} \times G_{i}\right)$ complementary to $\rho_{i}\left(V^{n_{i}} \times \sigma_{i}\right)$. Thus

$$
F_{i}^{\circ}=\rho_{i}\left(S^{n_{i}-1} \times \sigma_{i} \cup V^{n_{i}} \times \tau_{i}^{\circ}\right)
$$

Suppose $i<j$ and let

$$
\begin{aligned}
H & =\rho_{i}\left(S^{n_{i}-1} \times G_{i}\right) \cap \rho_{j}\left(S^{n_{j}-1} \times G_{j}\right), \\
H^{\prime} & =\rho_{i}\left(S^{n_{i}-1} \times G_{i}\right) \cap \rho_{j}\left(V^{n_{j}} \times \tau_{j}\right), \\
H^{\prime \prime} & =\rho_{i}\left(V^{n_{i}} \times \tau_{j}\right) \cap \rho_{j}\left(S^{n_{j}-1} \times G_{j}\right)
\end{aligned}
$$

2.7 will follow when we have proved that $H \subseteq F_{i}^{\circ} \cap F_{j}^{\circ}, H^{\prime}=Q$ and $H^{\prime \prime}=Q$. Since the images of H under the projections into $V^{n_{i}}$ and $V^{n_{j}}$ are contained in $S^{n_{i}-1}$ and $S^{n_{j}-1}$ respectively we have

$$
H \cong \rho_{i}\left(S^{n_{i}-1} \times G_{i}^{\circ}\right) \cap \rho_{i}\left(S^{n_{j}-1} \times G_{j}^{\circ}\right)
$$

2.4 asserts the existence of an integer k with $i \neq k \neq j$ such that G_{i} has a factor $D_{1}^{n_{k}}$ and G_{j} a factor $D_{-}^{n_{k}}$. Hence 2.5 implies that

$$
H \cap \rho_{i}\left(S^{n_{i}-1} \times \tau_{i}\right)=H \cap \rho_{j}\left(S^{n_{j}-1} \times \tau_{j}\right)=Q
$$

and hence that

$$
H \cong \rho_{i}\left(S^{n_{i}-1} \times\left(G_{i}^{\circ}-\tau_{i}\right)\right) \cap \rho_{j}\left(S^{n_{j}-1} \times\left(G_{j}^{\circ}-\tau_{j}\right)\right) \subseteq F_{i}^{\circ} \cap F_{j}^{\circ}
$$

2.5 also implies that $H^{\prime}=H^{\prime \prime}=Q$ which completes the proof of 2.6.

References

1. A. L. Blakers and W. S. Massey, Products in homotopy theory, Ann. of Math., 58 (1953), 295-324.
2. K. A. Hardie, On a construction of E. C. Zeeman, J. London Math. Soc., 35 (1960), 452-64.
3. - Higher Whitehead products, Quart. J. Math. Oxford (2), 12 (1961), 241-9. 4. M. Nakaoka and H. Toda, On Jacobi identity for Whitehead products, J. Inst. Poly tech. Osaka City Univ. A 5 (1954), 1-13.
