
A PROOF OF THE NAKAOKA-TODA FORMULA

K. A. HARDIE

If Xs (1 ̂  j ^ r) are objects we denote the corresponding r-tuple
(Xlf X%, , Xr) by X and the (r - l)-tuple (X,, X2, , X,-,, Xi+U ,Xr)
by X(i). When Xy (1 ̂  i ^ r) are based topological spaces ΠX will
denote their topological product and ΠιX the subspace of ΠX whose
points have at least i coordinates at base points (always denote by *).

Let a5 e πnj(Xj) {nά ̂  2, 1 S 3 ̂  r, r ^ 3) be elements of homotopy
groups then we have

•<x(say) = oLikotik *ar e πn(ΠX, ΠXX) ,

where n = Σns and • denotes the product of Blakers and Massey [1].
We thus also have

There is a natural map ΠX(i), Π^ii) —> nxXf Π2X and we denote also
by *a(j) its image induced in πn-ni(ΠλX, /72X). Let d denote the
homotopy boundary homomorphism in the exact sequence of the triple
(ΠX, ZPX, 772X). We shall prove the formula:

θ*a = Σ(l£i£ r)(-l)9{i)[ai9 *a{ϊ)\ e π^IPX, Π2X) , (0.1)

where ε(l) = 0, ε(i) = %(% + n2 + + n^) (ί > 1) and where the
brackets refer to the generalised Whitehead product of Blakers and
Massey [1], In the case of the universal example 0.1 becomes the
formula of Nakaoka and Toda stated in [4] and proved there for
r = 3. I. M. James1 has raised the question of its validity for r > 3
and as the formula has applications (see [2], [3]) it would seem desir-
able to have a proof available in the literature. The present argument
while inspired by [4] has a few novel features.

(1) DEFINITIONS AND LEMMAS. Let x = (xlf x2, , xn) denote a
point of ^-dimensional Euclidean space and let

Vn = {x; Σx\ ^ 1},

S"-1 = {x; Σx\ = 1} ,

Er1 = {xeSn;xn^0}9

El-1 = {x e Sn; xn ^ 0} ,

Όl = {x e Vn; xn ^ 0} ,
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D2

n = {xe Vn; xλ ^ 0 } .

We recall that if Y £ X then X is a closed n-cell and Y is a face of
X if there exists a homeomorphism / : Vn —> Z such that /(JE^" 1) = F.
The subset X° = /(S*-1) is the boundary of X If X and F are oriented
cells we assign to 1 x 7 the cross-product of the orientations of X
and Y.

LEMMA 1.1. Let Xx be a face of the cell X and Fx a face of the
cell Y. Then

{Xx x Γ ) U ( I x Fx) is a face ofXxY.

A proof of 1.1 may be found in [1] to which the reader may also refer
for details concerning orientations. The proofs of the following two
lemmas are standard exercises in homotopy theory and will be omitted.

LEMMA 1.2. Suppose given a simplicial decomposition of a closed
n-cell F(n ^ 3) and a subcomplex G which is a closed n-cell oriented
coherently with F. If A is a simply-connected subset of a space Y
and if f:F-+Y is a map such that f{(F- (?) U G°} S A then
f: F, F° —> Y, A and f: G, G° —> Y, A represent the same element of
π«(Y,A).

LEMMA 1.3. Suppose given a simplicial decomposition of
Vn+1(n ^ 3) and subcomplexes Ft(i = 1, 2, , m) which are faces of
Vn+1 with disjoint interiors oriented coherently with Sn. Let A be
a simply-connected subset of a simply-connected space Y, let f: Sn—*Y
be a map such that f{(Sn - U ί*) U (U Ff°)} S A, let f:Sn->Y repre-
sent ae πn(Y) and let f: Fi9 Ft —>Y, A represent at e πn{Y, A) (i =
1, 2, , m). Then ja = Σa{ where j : πn(Y) —> πn(Y, A) is the injec-
tion homomorphism.

Let A be a simply-connected subset of a space Y. Let / : Vp, S*"1 —•
A, * and g : Vg, S9"1, Eχ~x —> Y, A, * be representatives of a e πp(A) and
βeπq(Y,A). Let

h : S*-1 xV9ΌVpx EΓ\ S^1 x EL'1 U Vp x Sq~2 ->Y,A

be the map such that

(f(x) if («,»)6 7 ' x V i
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Then if S*'1 x Vp I) Vq x EΓ1 is oriented coherently with Vp x Vq

we recall 3.1 of [1]:

DEFINITION 1.4. h represents [a, β] e πp+q^(Y9 A).

(2) Proof of 0.1. Let α, be represented by a map

with the property that

(2.1) U

If we denote F n i x 7 B 2 χ . . . χ Vnr by V and Vni x Vni~x x VH+1 χ
by F(ΐ) then *α: and *α(i) are represented by maps

xf

ψ:V,V°-> ΠX, ΠXX,

such that

ψ(Xl9 , 0Jr)

(2.2) ^(i)(a?!, , α?,-!, a?<+1, , xr)

Let Pi: F % ' x F(i) -> F be the map such that

As an easy consequence of our orientation convention we obtain:

LEMMA 2.3. The degree of ρ{ is ( - l ) ε ( ί ) .
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The proof of 0.1 depends on the construction of certain closed
cells Gi S V(ϊ) ( l g i g r). Consider the two infinite arrays illustrated
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in the diagram. They contain between them exactly one centrally
situated r x r matrix. Let rj(i, k, r) denote the symbol in the (i, k)
position of this matrix. We define

Gi = ΠDv{i,k,r) ,

where topological product Π is taken over all values of k (in ascend-
ing order) except those for which η(i, k, r) = 0.

EXAMPLES If r = 5 then G2 = A*1 x A"8 x A"4 x D--
If r = 6 then G4 = A*1 x Dl2 x A*8 x #- 5 x #- 6.

Certainly Gi S V(i). We shall refer later to the following property
of the Gi which is obvious from the diagram.

LEMMA 2.4. // i < j ^ r then there is an integer k with
i φ k Φ j such that Gi has a factor Όlu and Gj a factor Dlk.

The proof of the following lemma we postpone.

LEMMA 2.5. For each i = 1,2, •••, r, there exists a face τ< of
Gi and of V(i) such that if Gi has a factor Dΐk then the projection
of Ti on Dιk does not intersect Dlk and such that if Gi has a factor
Dlk then the projection of τ4 on Dlk does not intersect Dΐk.

In view of 2.1 and 2.5 we have ψ(i)(Ti) = *. Moreover 2.1 and
2.2 imply that

Thus applying 1.2 (we may assume Π2X simply-connected for this is
certainly so in the case of the universal example) we obtain that

(2 6) m ) ' Gi): °i9 G?9 Ti ~* Π1X' Π*X*
represents *α(i) .

We now define

Fi = PiiS""1 xGiϋ Vnί XTi) (1 g i ^ r)

and prove later:

LEMMA 2.7. The Fi are faces of V with disjoint interiors. The
map (ψPi I pixFi) has the property that

If we orient Fi coherently with V and pϊ1Fi coherently with Vni x V(i)9
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1.4 implies that (ψPi \ PTXF^) represents [aif *α(i)].

Since ft is of degree (-l) ε U ), (ψ\Fi) represents (-iyU)[ai9 •α(i)]
and hence applying 1.3 the formula 0.1 follows in view of the com-
mutativity in the diagram

πn(ΠX, ΠXX) — π^Π'X, Π2X)

I' /

where d denotes the boundary homomorphism in the homotopy sequence
of the pair (ΠX, Π'X).

Proof of 2.5. Let Do

w and D% denote the subsets

D = |a?e V ; &i ̂ Ξ y and xn ^ i-} ,

D% = Ix e Vn; xλ ^ — and ίcTO ^ —} .

Let D QGi have a factor D?k for every factor D*k of Gi and a factor
Dlk for every factor Z>!fc of G> Then certainly r< = D Π F(i)° has
the desired property.

Proof of 2.7. If σ{ is the face of Gi complementary to zt then
it may be observed that Fi is the face of pi(Vnί x Gi) complementary
to Pi(Vni x Oi). Thus

F? = piiS711"1 x σ< U F% i XT?).

Suppose i < j" and let

.if = Pi\t> ι x Gi) Π Pj(S 3 x Gy) ,

2.7 will follow when we have proved that H^F? f)F?, H' = Q
and H" — Θ. Since the images of H under the projections into V%i

and F w y are contained in S^"1 and S^"1 respectively we have

i ϊ S PiiS^'1 x G?) Π ptiS^"1 x G?) .

2.4 asserts the existence of an integer k with i Φ k Φ j such
that Gi has a factor #Γ* and Gό a factor Iλ!\ Hence 2.5 implies
that
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HΠ pάS"*-1 x r ^ i ί n ftίS"'-1 x τs) = S

and hence that

HSpAS^-1 x (G? - r«)) Π ftίS^-1 x (G? - τy)) S JF,° n Fy0 .

2.5 also implies that JET = JEf" — 0 which completes the proof of 2.6.
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