
MEASURABLE SETS OF MEASURES

LESTER DUBINS AND DAVID FREEDMAN

1* Introduction* Let M be the set of all countably additive,
finite, signed measures on a σ-field Σ of subsets of a set X. There
is a natural definition of measurability in M, namely, a subset of
M is measurable if it is an element of 21*, the smallest σ-field of
subsets of M such that: for each AeΣ the function μ—• μ(A) is
measurable from M to the Borel line. The purpose of this note,
motivated by questions arising from (Dubins and Freedman, 1963) is
to investigate the measurability and category of interesting subsets
of M, under the assumption that Σ is countably generated.

Here are some results. If X is compact metric, and Σ is the
<7-field of Borel subsets of X, then any subset of X with the Baire
property is measurable for a residual set of probability measures
(3.17). If also X is uncountable, there are weakly open, but not
Immeasurable, subsets of M; see (3.2). There is a Gδ in the three-
dimensional unit cube whose convex hull is not Borel (3.22). If F is
a continuous, strictly monotone, purely singular distribution function
on the unit interval, then F is differentiate only on a set of the
first category (4.8).

2Φ The abstract case* Let X be a nonempty set, J^ a countable
field of subsets of X, and Σ the smallest σ-field including

2.1. Let j y be a o-field of subsets of a set Ω, and let φ map
Ω into M. Then φ is measurable from (Ω, Ssf) to (M, 21*) if and
only if the function co —»φ(ω)(A) is measurable from (Ω, Ssf) to the
Borel line for each A e j^~.

Proof. Routine.

2.2. If φ is a measurable map from (Ω, Ssf) to {M, 21*), and f
is a bounded, measurable function from (Ω x X, J^f x Σ) to the

Borel line, then ω —• I f(ω, x)φ{ω){dx) is a measurable function from

(Ω, sf) to the Borel line.

Proof. Extend from indicators of measurable rectangles.

2.3. The σ-field Σ* is countably generated.
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Proof. Use (2.1).

2.4. For each μ e M, the set {μ} is measurable.

Proof, {μ} = ς\A^{v \veM, v(A) = μ(A)}.

2.5. If ψx and ψ2 are measurable maps from (Ω, Jzf) to (M, Σ*),
then so are φλ+φ2 and cφ±for any real number c, and {ω | ω e Ω, 9?1(ω)=
Ψ2{ω) e

Proof. Use (2.1) for the first two assertions, and (2.4) for the
third.

2.6. If μeM, and AeΣ, for any δ > 0 there is a set A{μ, δ)etβ
r

whose symmetric difference with A has μ-measure less than δ.

Proof. (Halmos 1958, Theorem D, page 56.)

Let M+ be the set of nonnegative measures on (X, Σ).

2.7. The set of nonnegative measures is measurable; so is the
set of probability measures.

Proof. M+ = ΓίΛβ^ \μeM, μ(A) ̂  0}.

If J^" is a σ-field of subsets of the set Ω and WaΩ, then
is the cr-field of subsets of W having the form TFflA,
Abbreviate M+Σ* to Σ+. Recall that μ e M is the difference of two
unique, nonnegative, mutually singular measures μ+ and μr. Let
\μ\ = μ+ + μr and || μ || - | μ \(X).

2.8. THEOREM. The maps μ —>μ+ and μ—>μ~ are measurable
from (M, Σ*) to (M+, Σ+).

Proof. By (2.5), it is enough to check the first assertion. By
(2.6), HAeΣ, then μ+(A) = sup{μ(Af]B):Be JT}. Hence μ->μ+(A)
is measurable and (2.1) applies.

2.9. The map μ—>\μ\ is measurable from (M, 21*) to (M+, Σ+)+
The function μ—>\\μ\\ is measurable from (M, Σ*) to the Borel line.

Proof. (2.5) and (2.8) imply the first assertion, and it implies
the second.

Recall that for μ and v in M there are two unique elements
S(μ, v) and A(μ, v) of M with:

( i ) μ =
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(ii) S(μ,v) and v are mutually singular;
(iii) A(μ, v) is absolutely continuous with respect to v.

2.10. THEOREM. The maps S: (μ, v)—*S(μ, v) and A: (μ, ι>y-*A(μf v)
are measurable from (MxM, Σ*xΣ*) to (M, Σ*).

Proof. If μ,ve M+ and AeΣ, then S(μ, v)(A) =
limn.+oos\iv{μ(AnB):BeJ^ v{B)< n~x), by (2.6) and (Halmos, 1958,
Theorem B, page 125). By (2.1), S restricted to M+xM+ is J + x im-
measurable; apply (2.8) and (2.5).

2.11. The set of (μ,v) in MxM with μ absolutely continuous
with respect to v is in Σ*xΣ*, as are the set of pairs (μ, v) with
μ equivalent to v, and the set with μ and v mutually singular.

Proof. Use (2.10) and (2.5).

Recall that an atom of Σ is a nonempty Immeasurable set with
no proper nonempty ^-measurable subset. Write a(Σ) for the collec-
tion of atoms of Σ. It μ e M, then {A: A e a(Σ) and μ(A) > 0} is
countable. If this set of atoms is empty, μ is continuous; if
|| μ || = Σ{\ μ(A) \ : A e a{Σ)}, then μ is atomic. Any μ e M is the sum
of a unique atomic μa € M and a unique continuous μc e M.

2.12. THEOREM. The maps μ —> μa and μ —• μc are measurable
from (M, Σ*) to (M, Σ*).

Proof. As usual, it suffices to verify that, for a fixed AeΣ,
the function μ-+μo(A) is ^"'"-measurable on M+. For this purpose,
let {Πn: n = 1, 2, •••} have the following properties:

( i ) each Πn is a partition of A into a finite number of elements
of Σ;

(ii) /7%+1 is a refinement of /7%;
(iii) AΣ is the smallest σ-field of subsets of A which includes

\JnΠn. For δ > 0, let ?Vδ(μ) -Σ{μ(B) :BeΠn, μ(B) < 8}. Clearly, φn>,
is 2r+-measurable on M+, and increases to a immeasurable function
9?δ on M+ as w increases to co. As ί decreases to 0 through a
fixed sequence, % decreases to a immeasurable function φ on ilf+.
The argument will be completed by showing that φ(μ) = j"c(A) for
μeM+. If AneΠn and AnZDAn+1 for 1 ̂  ^ < oo, then ΓlΓ=iA* is
empty or an atom of Σ, and in either case has μc-measure 0. The
famous lemma of Konig (1936, Theorem 6, page 81) then implies

oo max {μc{B): B e Πn) - 0; so <pδ(μ) ^ μe(A). For the reverse



1214 LESTER DUBINS AND DAVID FREEDMAN

inequality, if ε>0 there is a positive δ so small that Σ{μa{B): B e a(Σ),
Be A, μa(B) g 3} < ε, which implies φδ(μ) ^ μc(A) + ε.

2.13 Both the set of atomic measures and the set of continuous
measures are measurable.

Proof. (2.12) and (2.5).

2.14. The set G of probability measures with max{μ(A): A e a(Σ)} >
9/10 is measurable. Let g be any function from G to X such that,
for all μeG, the μ-measure of the Σ-atom containing g{μ) is greater
than 9/10. Then g is GΣ*-measurable.

Proof. Adapt the argument for (2.12).

3* The compact metric case* If Ω is a topological space, σ(Ω)
means the smallest tf-field of subsets of Ω which includes the topology.
In this section, X is a nonempty compact metric space, and Σ is o(X),
the σ-fleld of Borel subsets of X. According to a famous theorem of
Riesz, M can be identified with the dual of C{X), the Banach space
of all continuous real-valued functions on X with the sup norm:
11/11 = max {|/(a?) I: xeX}. Unless otherwise noted, M has the weak
* topology; and subsets of M have the relative weak * topology.

3.1. The smallest σ-field including the weak * topology of M
is Σ*; that is, £* = σ(M).

Proof. Easy.

Let P be the set of probability measures on (X, Σ). Then P is
a compact metrizable subset of M+; and M+ is a closed subset of M.
It is less widely known that M+ is metrizable; it is complete and
separable in this metric:

p*(μ, v) = Σ 2 - ' IIΛI!

where {fs: 1 ̂  j < oo} is dense in C(X). Thus Σ+ = σ(M+) is the
Borel σ-field of M+, and PΣ* = σ(P) is the Borel σ-field of P.

3.2. THEOREM. If X is uncountable, there is a weakly open
subset of M which is not Σ*-measurable.

Proof. Let N be a nonanalytic subset of X, and E—{μ:μeM,
μ{x} > 9/10 for some x e N}. Then E is weakly open. If EP were
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an analytic subset of P, then—using the notation and result of (2.14)
EPdG and N= g(EP) would be analytic, a contradiction.

Recall that the support C(μ) of μe M is the smallest closed
subset K of X with | μ \ (X — K) — 0. It is familiar that a closed

subset EoίX includes C(μ) if and only if [fdμ = 0 for each fe C(X)

vanishing on E.

3.3. If μne M, 1 ̂ n < oo and μn —» μ e M, ίftew C(μ) is α
o/ ίfte closure of \Jn=iC(μn).

Proof. Easy.

Let 2X be the space of nonempty closed subsets of X, endowed
with the usual compact metric topology (Hausdorff, 1927, Section 28).

3.4. If M8 is a metrizable subset of M and does not contain
the zero measure, the restriction of C to M8 is lower semi-continuous
in the sense of (Kuratowski, 1932, page 148).

Proof. Use (3.3).

Let Mo be the set of nonzero elements of M.

3.5. The map C is measurable from (Mo, σ(M0)) to (2X, σ(2Σ)).

Proof. Mo is the countable union of metrizable sets. Then use
(3.4) and (Kuratowski, 1932, page 152).

3.6. For each Ke2z, the set of probability measures whose
support is K is a G5 in P.

Proof. Use (3.4) and (Kuratowski, 1932, page 151).

3.7. The set of nonnegative measures whose supports have no
isolated points is an Fσ8 in M+, as is the set of nonnegative measures
whose supports have no interior.

Proof. Since the set of perfect, nonempty subsets of I is a Gδ

in 2X, as is the set of closed, nowhere dense, nonempty subsets, (3.4)
and (Kuratowski, 1932, page 152) apply.

3.8 The real-valued function (μ, K) —> μ{K) is upper semi-
continuous on M+ x 2X with the product topology.

Proof. Endow C(X) with the norm topology. There is a natural
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embedding of 2Σ into C(X): assign to Ke2x the function ί£eC(X)
whose value at x e X is

1 — [(distance from x to l£)/(diameter of X)] .

As is easily verified, K-+K is continuous (and 1-1, although this
will not be used); moreover, Km decreases pointwise to the indicator

of K as n increases to oo. Since the function (μf f) —> \fdμ is con-

Kndμ are continuous

on M+ x 2X. This sequence decreases pointwise to the function
{μ, K) —»μ(K) as n increases to co.

3.9. The function (μ, K) —• μ{K) is measurable from (M x 2X,
σ(M) x σ(2*)) to the Borel line.

Proof. Use (2.8) and (3.8).

3.10. The function (μ, v) —• μ[C(v)] is measurable from [M x M,
σ(M) x σ(M)] to the Borel line.

Proof. Use (3.5) and (3.9).

3.11. The set of (μ, K) in M+ x 2Σ with μ(K) = 0 is a Gδ.

Proof. Use (3.8).

3.12. For each dense subset G of X the set of μ in P with
μ(G) = 1 is dense in P.

Proof. Approximate μ e P by a finite linear combination of point
masses.

3.13. The set P+ of μ in P assigning positive probability to
all nonempty open subsets of X is a dense G5 in P.

Proof. For each open subset V of X, {μ: μeP, μ(V) = 0} is
closed. Let {Vn: 1 ̂  n < oo} be a basis for the topology of X Then
P- P+ is UΓ=i{μ: μeP, μ{Vn) = 0}, an F,. Plainly, P + is dense.

3.14. The set of continuous μ in P is a Gδ. It is dense in P
if and only if X has no isolated points.

Proof. For the first assertion, if d > 0, then {μ: μeP, and
μ{x} ^ d for some xeX} is closed. For the second, if X has no
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isolated points, then each open subset of X has cardinality c and
supports a continuous μs P. The converse is easy.

3.15. If G is a dense G* in X, then the set Gx of μ in P with
μ(G) = 1 is a dense G5 in P.

Proof. Let {Un: 1 S n <co} be open sets whose intersection is G.
Then G1 = Π:=iΠr=i{^: μeP, μ(Un) > 1 - i"1}, and (3.12) applies.

Any superset of a dense Gδ is residual. The complement of a
residual set is of the first category. A set not of the first category
is of the second category.

3.16. If F is of the first category in X, then F has outer
measure 0 for a residual set of μ in P.

Proof. (3.15).

Recall that B e l has the property of Baire if there is an open
subset of X whose symmetric difference with B is of the first
category. For a discussion, see (Kuratowski, 1958, Section 11). If
X is uncountable and μ e P, there are //-measurable sets without the
property of Baire; if μ is continuous, there are sets with the property
of Baire whose inner //-measure is 0, and whose outer //-measure is 1.
According to (Kuratowski, 1958, pages 421-423), there is a subset of
X which is //-measurable for no continuous μ e P. There is, however,
a connection between measurability and the property of Baire:

3.17. THEOREM. If B is of the second category in X and has
the property of Baire, then B is μ-measurable and of positive μ-
measure for a residual set of μ in P.

Proof. B differs from a nonempty open set by a set of the first
category. Apply (3.16) and (3.13).

3.18. If μeP and either X has no isolated points or μ is
continuous, then there is a dense G8 in X of μ-measure 0.

Proof. As in (Halmos, 1958, (4) on page 66).

3.19. The set P± of pairs (μ, v) with μ and v mutually singular
is a Gδ in P x P. It is dense if and only if X has no isolated
points.

Proof. Let {fn: 1 ̂  n < oo} be dense in the unit ball of C{X),
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I f f
and let Fn(μ, v) = max^^ H \fjdμ — \fjdv . Then Fn is continuous on
P x P for each n, and the sequence {Fn} increases pointwise to
F- (Pt v) —> IIJ" — y II. So ί 1 is lower semi-continuous, and P x = ίτ~1{2}
is a Gδ. For the second assertion, use (3.12) in one direction, and
(3.13) in the other.

3.20. THEOREM. For each μ in P, the set μ± of v in P
singular with respect to μ is a G8. If X has no isolated points or
μ is continuous, then μ± is dense in P.

Proof. μL is a Gδ by (3.19), and dense by (3.12), (3.18).

There are reasonable sets of probability measures which are not
Borel. A first example.

3.21. If X is uncountable, the set of probability measures with
uncountable support is analytic but not Borel) the set of probability
measures with countably infinite support is analytic but not Borel.

Proof. As reported in (Kuratowski and Szpilrajn, 1932, pages
166-169), the set of uncountable closed subsets of X is analytic but
not Borel in 2 X . To obtain the first assertion in (3.21), apply
(Kuratowski and Szpilrajn, 1932, Proposition IV, page 163). The
second follows from the first, because the set of probability measures
whose support has k points or fewer is closed, for every natural
number k.

A second example: it is natural to guess that the convex hull
of a Borel set is Borel, especially since this happens to be true in
two-dimensional Euclidean space. However,

3.22. THEOREM. There is a Gδ of the unit cube in three-
dimensional Euclidean space whose convex hull is not Borel.

Proof. Let A be a Gδ of the unit square whose projection A*
on the x-axis is not Borel. Let An = {(x, y): 0 ^ x ^ 1, — oo < /̂ < oo,
(x, y — n)e A}, and A» = U~=-°° Άm Let / be a homeomorphism of
(0,1) onto (-co, oo), and let B = {(x9 y): 0 S % ̂  1, 0 < y < 1,
(#» f(v))e A»}. For any ε in (0,1), the projection of B Π {(x, y):
0 ^ x ^ 1, 0 g | / ^ 6 } or of fin {(a?, y): 0 ^ x ^ 1, 1 - e g y ^ 1}
onto the #-axis is A*.

Let φ map the unit square into the unit cube by φ(x, y) —
{x9 y, 1/2 — [1/4 — (x — 1/2)]*}. Thus φ maps the unit square homeo-
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morphically onto a half-cylinder C, and φ(B) is a Gδ. If its convex
hull H were Borel, then φ~\C Π H) would be Borel. Also the sec-
tion of φ~\C Π H) by the line y = 1/2, 0 ̂  & ̂  1, namely A* trans-
lated upward by 1/2, would be Borel, a contradiction.

4* The unit interval* In this section, X is the closed unit
interval.

4.1. The set of μ in P with well-ordered support is comple-
mentary analytic but not Borel in P.

Proof. The set of closed, nonempty, well-ordered subsets of X
is complementary analytic but not Borel in 2X (Kuratowski and
Szpilrajn, 1932, page 166).

We conjecture that the set of probabilities whose support has a
given order-type is Borel, but have verified this only for well-
ordered order-types. More generally, for any compact metric space
X, the collection of elements of 2X homeomorphic to a fixed Ke2x

may be Borel. These conjectures have been confirmed in: Dana Scott,
Invariant Borel sets, Fund. Math. 41 (1964) C. Ryll-Nardjewski, On
Borel measurability of orbits, to appear , On Freed-
man's problem, to appear.

Other questions arise from differentiation. For each x in [0, 1)
and real-valued function / on [0,1), the upper and lower right
derivatives of / at x are

f*(x) = lim suprtft* + V) - /(«)]
0+

V-+0+

and
Λ(a;) - lim inf y-'ifix + y) - f(x)} .

y-*o+

The next main result is (4.5). For the preliminaries (4.2)-(4.4), let
A6Σ* and for μeA suppose the real-valued function fμ on [0,1) is
continuous, and for each x e [0,1) the function μ —* fμ(x) is measur-
able from (A, σ(A)) to the Borel line.

4.2. The function (x, μ) —>f*(x) is measurable from {[0, 1) x A,
σ[0,1) x o(A)} to the extended Borel line.

Proof. By a familiar argument, the function (x, μ)—*fμ,(x) is
measurable; and

fί(x) = lim sup \fώχ + r> -Λ(s) . o < r < n~\ r rational} .
I r )

4.3. // 0 ̂  a < b < 1, then the functions Sίa>b) : μ —• sup {f*(x):
a g x <b} and Iίatb): μ —> inf {f£{x)\ a ^ x < &} are measurable from
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(A, o(A)) to the extended Borel line.

Proof. By a theorem of Dini (Saks, 1937, page 204),

SfM = sup ίMv)-Mχ): a^x<y<b\,
I y — x )

where x and y can be restricted to rational values. An identical
argument shows that 7Cα,&) is measurable.

4.4. The set Ax of μeA with fμ continuously differentiάble on
(0,1) is measurable.

Proof. By the same result of Dini, fμ is continuously differentiate
on [0,1) if and only if / ί is continuous there. Hence A1 = ΠΓ-A»
where Bj is the set oί μeA with — oo< Iί0>1_2-3)(μ) ^ Sί0,i-.2~ό)(μ) < <*>

and

lim max {<St<*-u/a»,*/a»)(̂ ) "~ Iwc-Dw.kwiμ)} = 0 .

If μe M, its distribution function F^ is defined as JFV(a?) =
μ[0, x] for a? e X.

4.5. THEOREM. 27&e set Ckof μeM whose distribution function
Fμ. has a fcth continuous derivative F^k) on [0,1) 'is measurable; and
the function (x, F^k)) —• Fjιk)(x) is measurable from {[0,1) x Ch9

σ[0,1) X σ(Gk)} to the Borel line.

Proof. For k = 0, use (2.12). Then apply (4.4) and (4.2)
inductively.

If a real-valued function / on [0,1) is infinitely differentiate
there, let Sn(f, x0, x) = Σi=o/( i)(^o)/ϋ (x - ^o)^ Then / is analytic
on [0,1) if each x0 e [0,1) has a neighborhood N(xQ) in [0,1) on
which Sn(f, x0, •) converges uniformly to /.

4.6. THEOREM. The set of μ in M with Fμ analytic on [0,1)
is measurable.

Proof. The set CL = Π?=i Ck is measurable, and for each xQ e X,
the function (μ, x) —• Sn(Fμ, x0, x) is measurable from {C«> x [0,1),
o{Coo) x σ[0,1)} to the Borel line. If J is an interval, then
•B«,j,.o: i" -^ supβ6J,OSS <I I Fμ.(x) - iSΛ(Fμ, α0, a?) I is measurable on ( C ,

co)), since a? can be restricted to rational values. Therefore, the
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set A(x0, J) of μ e C«, with l i m ^ Rn,J}XQ(μ) = 0 is in σ(CJ). The set
of μ with JPμ analytic on [0,1) is

ή ή 2k~ n""1 A< #2*, [(j -1)/2^, (i +1)/2*]).
fc=l fc = Λ i = 0

Let Pr be the set of μ in P which are continuous, singular
with respect to Lebesgue measure, and assign positive measure to all
nonempty open sets.

4.7. The set Pr is a dense GB in P.

Proof. (3.14), (3.20), (3.13).

According to (Saks, 1937, Chapter IV), if μ e Pr, then Fμ is
differentiable with derivative 0 on a set of Lebesgue measure 1, and
differentiable with derivative co on a set of ^-measure 1. Topologically
speaking, however, Fμ is differentiable essentially nowhere:

4.8 THEOREM. The set of pairs (x, μ) with Fϊ(x) = co and
Fμ*{x) — 0 is a Gδ in [0,1) x Pr. Each of its section is dense.

Proof. Let W be the set of pairs (x, μ) in [0,1) x Pr with
Fμt(x) — 0, and TΓ* the set with F^{x) — <*>. It is enough to prove
that W and TΓ* are (?δ's with dense sections.

The complement of W in [0,1) x Pr is UΓ=i Cn, where Cn is the
intersection over all rational s in [0,1) of {(x, μ): 0 ̂  x < 1, μe Pr,
and either x ί> s or Fμ(έ) — Fμ,(x) ^ % ~\s — α?)}. Since each Cn is
closed, TΓ is a Gδ. Being disjoint from the dense set on which F^
has zero derivative, the section of Cn by μ in Pr has no interior.
The section of Cn by x in [0,1) has no interior because, for μ in Pr,
arbitrarily small translates modulo 1 of μ have distribution functions
with 0 derivative at x. Then the sections of W are dense according
to Baire's category argument.

The similar proof for W* is omitted.

There is, of course, an analogous theorem for derivatives from
the left.
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