DECOMPOSITION THEOREMS FOR FREDHOLM OPERATORS

T. W. GAMELIN

This paper is devoted to proving and discussing several consequences of the following decomposition theorem:

Let A and B be closed densely-defined linear operators from the Banach space X to the Banach space Y such that $D(B) \supseteq D(A), D(B^*) \supseteq D(A^*)$, the range R(A) of A is closed, and the dimension of the null-space N(A) of A is finite. Then X and Y can be decomposed into direct sums $X = X_0 \oplus X_1$, $Y = Y_0 \oplus Y_1$, where X_1 and Y_1 are finite dimensional, $X_1 \subseteq D(A)$, $X_0 \cap D(A)$ is dense in X, and (X_0, Y_0) and (X_1, Y_1) are invariant pairs of subspaces for both A and B. Let A_i and B_i be the restrictions of A and B respectively to X_i . For all integers k, $(B_0A_0^{-1})^k(0) \subseteq R(A_0)$, and

 $\dim (B_0 A_0^{-1})^k(0) = k \dim (B_0 A_0^{-1})(0) = k \dim N(A_0).$

Also, the action of A_1 and B_1 from X_1 to Y_1 can be given a certain canonical description.

The object of this paper is to study the operator equation $Ax - \lambda Bx = y$, where A and B are (unbounded) linear operators from a Banach space X to a Banach space Y. In §1, an integer $\mu(A:B)$ is defined, which expresses a certain interrelationship between the null space of A and the null space of B. In §1 and 2, decomposition theorems are proved which refine theorem 4 of [2]. The theorems allow us to split off certain finite dimensional invariant pairs of subspaces of X and Y so that A and B are well-behaved with respect to $\mu(A:B)$ on the remainder.

In §4, the stability of these decompositions under perturbation of A by λB is investigated. In §5, relations between the dimensions of certain subspaces of X and Y are given, and a formula for the Fredholm index of $A - \lambda B$ is obtained. These extend results of Kaniel and Schechter [1], who consider the case X = Y and B the indentity operator.

It should be noted that the results of Kaniel and Schechter referred to here follow from theorems 3 and 4 of [2]. The results of this paper properly refine Kato's results only when the null space of B is not $\{0\}$.

1. We will be considering linear operators T defined on a dense linear subset D(A) of a Banach space X, and with values in a Banach space Y. N(T) and R(T) will denote the null space and range of Trespectively, while $\alpha(T)$ is the dimension of N(T), and $\beta(T)$ is the

Received February 10, 1964.

codimension of $\overline{R(T)}$ in Y. T is a Fredholm operator if T is closed, R(T) is closed, and both $\alpha(T)$ and $\beta(T)$ are finite. The index of a Fredholm operator is the integer.

$$\kappa(T) = \alpha(T) - \beta(T)$$
.

Let P be a subspace of X, Q a subspace of Y. (P, Q) is an *invariant pair of subspaces* for T if $T(P \cap D(T)) \subseteq Q$.

Standing assumptions: In the remainder of the paper, A and B are closed linear operators from X to Y, D(A) is dense in X, $D(B) \supseteq D(A)$, and $D(B^*) \supseteq D(A^*)$; A is semi-Fredholm, in the sense that R(A) is closed and $\alpha(A) < \infty$.

The assumption $D(B^*) \supseteq D(A^*)$ seems necessary for the proof of the decomposition theorems. It is often met when A and B are differential operators on some domain in Euclidean space, and the order of B is less than the order of A. It is always met when B is bounded.

The linear manifolds $N_k = N_k(A:B)$ and $M_k = M_k(A:B)$ are defined by induction as follows:

$$egin{aligned} N_1 &= N(A) \ N_k &= A^{-1}(BN_{k-1}) ext{ ,} \qquad k>1 \ M_k &= BN_k ext{ .} \end{aligned}$$

 N_k and M_k are increasing sequences of linear manifolds in X and Y respectively.

The smallest integer n such that N_n is not a subset of $B^{-1}R(A)$ will be denoted by $\nu(A:B)$. If N_n is a subset of $B^{-1}R(A)$ for all n, then we define $\nu(A:B) = \infty$. (cf. [2])

The dimension of N_k will be denoted by $\pi_k = \pi_k(A:B)$, and the dimension of M_k by $\rho_k = \rho_k(A:B)$. Then $\pi_1 = \alpha(A)$, and, in general, $\pi_k \leq k\alpha(A)$. $\mu(A:B)$ will denote the first integer *n* such that $\pi_n < n\alpha(A)$. It $\pi_n = n\alpha(A)$ for all integers *n*, then we define $\mu(A:B) = \infty$.

In general, $\mu(A:B) \geq \nu(A:B) + 1$. This inequality is trivial if $\nu_{A}^{*} = \infty$. If $\nu < \infty$, then $M_{\nu-1} \subseteq R(A)$, while $M_{\nu} \not\subseteq R(A)$. Consequently, $\pi_{\nu+1} < \pi_{\nu} + \alpha(A) \leq (\nu+1)\alpha(A)$, and so $\mu(A:B) \leq \nu + 1$.

We define $\sigma_k(A:B) = \pi_k - \pi_{k-1}$. Then σ_k is the dimension of the quotient space N_k/N_{k-1} . $\{\sigma_k\}$ is a decreasing sequence of nonnegative integers, and so the limit

$$\sigma(A:B) = \lim_{k o \infty} \sigma_k(A:B) \qquad ext{exists.}$$

If $\mu(A:B) = \infty$, then $\sigma(A:B) = \alpha(A)$.

2. THEOREM 1. Assume, in addition to the standing assumptions on A and B, that $\nu(A:B) = \infty$. Then X and Y can be decomposed into direct sums

$$egin{array}{ll} X = X_{\scriptscriptstyle 0} igoplus X_{\scriptscriptstyle 1} \ Y = Y_{\scriptscriptstyle 0} igoplus Y_{\scriptscriptstyle 1} \; , \end{array}$$

where X_1 and Y_1 are finite dimensional, $X_1 \subseteq D(A)$, $X_0 \cap D(A)$ is dense in X_0 , and (X_0, Y_0) and (X_1, Y_1) are invariant pairs for both A and B. If A_i and B_i are the restrictions of A and B respectively to X_i , then $\mu(A_0, B_0) = \infty$, while A_1 and B_1 map X_1 onto Y_1 .

Furthermore, X_1 and Y_1 can be decomposed as direct sums

$$egin{aligned} X_{1} &= P_{1} \bigoplus \cdots \bigoplus P_{p} \ Y_{1} &= Q_{1} \bigoplus \cdots \bigoplus Q_{p} \ , \end{aligned}$$

where A_1 and B_1 map P_j onto Q_j . Bases $\{x_j^i: 1 < i \leq \eta(j)\}$ and $\{y_j^i: 1 \leq i \leq \eta(j) - 1\}$ can be chosen for P_j and Q_j respectively so that

$$egin{aligned} &Ax_{j}^{i+1} = Bx_{j}^{i} = y_{j}^{i} \ , & 1 \leq i \leq \eta(j) - 1 \ &Ax_{i}^{1} = 0 = Bx_{i}^{\eta(j)} \ . \end{aligned}$$

Although the decomposition is not, in general, unique, the integers p and $\eta(j)$, $1 \leq j \leq m$, are uniquely determined by A and B. In fact,

$$p = \alpha(A) - \sigma(A:B)$$
.

Proof. Let $n = \alpha(A)$, and suppose that $\{z_1^i, \dots, z_n^i\}$ is a basis for N(A). Since $\nu(A:B) = \infty$, z_j^i can be chosen by induction so that $Az_j^i = Bz_j^{i-1}$. $\{z_j^i: 1 \leq j \leq n, 1 \leq i \leq m\}$ is a spanning set for N_m , while $\{Bz_j^i: 1 \leq j \leq n, 1 \leq i \leq m\}$ is a spanning set for M_m . Also, $\{z_i^m: 1 \leq i \leq n\}$ span N_m modulo N_{m-1} .

Recall that $\sigma_m = \sigma(m) = \dim(N_m/N_{m-1})$. By induction, the order of the z_j^i can be chosen so that $\{z_{n-\sigma(m)+1}^m, \cdots, z_n^m\}$ span N_m modulo N_{m-1} . Then

$$G_m = \{z_j^i: n - \sigma(i) + 1 \leq j \leq n, \ 1 \leq i \leq m\}$$

is a basis for N_m .

Let $\eta(j)$ be the greatest integer k such that $z_j^k \in G_k$. If $z_j^k \in G_k$ for all k, let $\eta(j) = \infty$. Then $1 \leq \eta(1) \leq \eta(2) \leq \cdots \leq \eta(n)$. Let p be the greatest integer k such that $\eta(k) < \infty$. By definition of σ , it is clear that

$$p = \alpha(A) - \sigma$$
.

Suppose $1 \leq j \leq p$. $z_j^{\eta(j)+1}$ is linearly dependent on the set $G_{\eta(j)+1}$, and so we can write

$$z_{j}^{\eta(j)+1}=\sumlpha_{ik}z_{k}^{i}$$
 ,

where the sum is taken over all pairs of integers (i, k), with the understanding that $z_k^i = 0$ if $i \leq 0$ and $\alpha_{ik} = 0$ if $z_k^i \notin G_{\eta(j)+1}$. For $-1 \leq q \leq \eta(j)$ define

$$x_j^{\eta(j)-q}=z_j^{\eta(j)-q}-\sumlpha_{ik}z_k^{i-q-1}.$$

For $0 \leq q \leq \eta(j)$,

$$egin{aligned} Bx_{j}^{\eta(j)-q} &= Bz_{j}^{\eta(j)-q} - \sum lpha_{ik}Bz_{k}^{i-q-1} \ &= Az_{j}^{\eta(j)-q+1} - \sum lpha_{ik}Az_{k}^{i-q} \ &= Ax_{k}^{\eta(j)-q+1} \end{aligned}$$

In particular, $Bx_{j}^{\eta(j)} = 0$.

Since the sum for $x_j^{\eta(j)-q}$ involves $z_j^{\eta(j)-q}$ only in the first term, the $z_{j(j)-q}^{\eta}$ may be replaced by the $x_j^{\eta(j)-q}$, $0 \leq q \leq \eta(j)$, to obtain another basis for $N_{\eta(j)+1}$. Repeating this process for $1 \leq j \leq p$, and making other appropriate replacements, we arrive at vectors x_j^i such that.

(1) x_1^1, \dots, x_n^n are a basis for N(A)

(2)
$$Bx_j^i = Ax_j^{i+1}, \quad 1 \leq i \leq \eta(j)$$

(3)
$$Bx_j^{\eta(j)}=0$$
 , $1\leq j\leq p$.

For convenience, it is assumed that

(4)
$$x_j^i = 0$$
 if $i > \eta(j)$.

If $1 \leq j \leq p$, let P_j be the subspace of X with basis $\{x_j^1, \dots, x_j^{\eta(j)}\}$. Let Q_j be the subspace of Y with basis $\{y_j^1, \dots, y_j^{\eta(j)-1}\}$, where $y_j^i = Bx_j^i = Ax_j^{i+1}$. Let $X_1 = P_1 \bigoplus \dots \bigoplus P_p$ and $Y_1 = Q_1 \bigoplus \dots \bigoplus Q_p$. Then X_1 and Y_1 satisfy all the conclusions of the theorem. To conclude the proof, it suffices to produce complementary subspaces to X_1 and Y_1 which also form an invariant pair.

We will construct functionals

$$\{g_j^i\colon 1\leq i\leq \eta(j)\ , \qquad 1\leq j\leq p\}$$
 on X and $\{f_j^i\colon 1\leq i\leq \eta(j)-1\ , \ 1\leq j\leq p\}$ on Y such that

the f_j^i are in the domain of A^* and

(5) $g_{j}^{i+1} = A^* f_{j}^i, \quad 1 \leq i \leq \eta(j) - 1$

(6)
$$g_j^i = B^* f_j^i$$
, $1 \leq i \leq \eta(j) - 1$

(7)
$$f_{j}^{i}(y_{k}^{q}) = \delta_{iq}\delta_{jk}, \qquad 1 \leq j, \ k \leq n$$
$$1 \leq q \leq i$$

100

(8)

$$g^{\,i}_{\,j}\!(x^q_k) = \delta_{{}_iq}\delta_{jk} \;, \qquad 1 \leq j, \; k \leq n \ 1 \leq q \leq i \;.$$

Let $g_j^{\eta(j)}$ be any functional on X which satisfies (8). The other g_j^i will be chosen by induction.

Suppose that f_k^q and g_k^q are chosen, for $q > i \ge 1$, to satisfy (5) through (8). By (8), g_k^{i+1} is orthogonal to N(A), and so g_k^{i+1} is in the closure of $R(A^*)$. Since R(A) is closed, $R(A^*)$ is closed, and there is an $f_k^i \in D(A^*)$ for which $A^*f_k^i = g_k^{i+1}$. Let $g_k^i = B^*f_k^i$. Then (5) and (6) hold by definition.

To verify (7), we have for $q \leq i$,

$$egin{aligned} &f^i_j(y^q_k) = f^i_j(Ax^{q+1}_k) \ &= (A^*f^i_j)(x^{q+1}_k) \ &= g^{i+1}_j(x^{q+1}_k) = \delta_{iq}\delta_{jk} \;. \end{aligned}$$

(8) is an immediate consequence of (7).

$$egin{array}{lll} ext{Let} \ X_{\scriptscriptstyle 0} = \ \cap \ \{N(g^i_j) : 1 \leq i \leq \eta(j) \ , & 1 \leq j \leq p\} \ Y_{\scriptscriptstyle 0} = \ \cap \ \{N(f^i_j) : 1 \leq i \leq \eta(j) - 1 \ , & 1 \leq j \leq p\} \ . \end{array}$$

From (7) and (8), it is clear that $X_0 \cap X_1 = \{0\}$ and $Y_0 \cap Y_1 = \{0\}$. Since the codimension of X_0 in X is no greater than the number of functionals g_j^i defining it, and since this number is the dimension of X_1 , we must have $X = X_0 \bigoplus X_1$. Similarly, $Y = Y_0 \bigoplus Y_1$.

Suppose $x \in D(A) \cap X_0$. Then $f_j^i(Ax) = (A^*f_j^i)(x) = g_j^{i+1}(x) = 0$, and so $Ax \in Y_0$. Similarly, $Bx \in Y_0$, and (X_0, Y_0) is an invariant pair for both A and B.

Since (X_0, Y_0) and (X_1, Y_1) are invariant pairs, $N_k(A:B) \cap X_0 = N_k(A_0:B_0)$. For k sufficiently large, $X_1 \subseteq N_k(A:B)$, and so

$$\dim \left\{ \! N_{k+1}(A_0:B_0) \! / \! N_k(A_0:B_0) \!
ight\} = \dim \left\{ \! N_{k+1}(A:B) \! / \! N_k(A:B) \!
ight\} = \sigma \ = lpha(A) - p \ = lpha(A_0) \; .$$

This can occur only if $\dim N_k(A_0:B_0)=klpha(A_0)$ for all integers k.Hence $\mu(A_0:B_0)=\infty$.

3. Let (P, Q) be an invariant pair of finite dimensional subspaces for A and B. (P, Q) is an *irreducible invariant pair of type* ν if there are bases $\{x_i\}_{i=1}^n$ for P and $\{y_i\}_{i=1}^n$ for Q such that $Bx_i = y_i$, $Ax_1 = 0$, and $Ax_i = y_{i-1}$, $2 \leq i \leq n$.

(P, Q) is an *irreducible invariant pair of type* μ if there are bases $\{x_i\}_{i=1}^n$ for P and $\{y_i\}_{i=1}^{n-1}$ for Q such that

$$egin{array}{lll} Ax_{i}=0=Bx_{n}\ Ax_{i+1}=y_{i}=Bx_{i}\ , & 1\leq i\leq n-1\ . \end{array}$$

(P, Q) is an *irreducible invariant pair of type* μ^* if there are bases $\{x_i\}_{i=1}^{n-1}$ for P and $\{y_i\}_{i=1}^n$ for Q such that

$$egin{array}{ll} Bx_i = y_i \ , & 1 \leqq i \leqq n-1 \ Ax_i = y_{i+1} \ , & 1 \leqq i \leqq n-1 \ . \end{array}$$

(P, Q) is an invariant pair of type ν if $P = P_1 \bigoplus \cdots \bigoplus P_k$ and $Q = Q_1 \bigoplus \cdots \bigoplus Q_k$, where (P_j, Q_j) is an irreducible invariant pair of type ν , $1 \leq j \leq k$. Invariant pairs of type μ or type μ^* are defined similarly.

It is straightforward to verify that if (P, Q) is an (irreducible) invariant pair of type $\mu(A:B)$ (resp. $\mu^*(A:B)$), then (P, Q) is an (irreducible) invariant pair of type $\mu(A - \lambda B:B)$ (resp. $\mu^*(A - \lambda B:B)$), for all complex numbers λ . If (P, Q) is an invariant pair of type μ , then $\nu(A | P, B | P) = \infty$ and $\mu((A | P)^*, (B | P)^*) = \infty$. If (P, Q) is of type μ^* , then $\nu(A | P, B | P) = \infty$ and $\mu(A | P, B | P) = \infty$.

THEOREM 2. Suppose A and B satisfy the standing hypothesis. Then there exist decompositions

$$X = X_{\scriptscriptstyle 0} \oplus X_{\scriptscriptstyle 1} \oplus X_{\scriptscriptstyle 2}
onumber \ Y = Y_{\scriptscriptstyle 0} \oplus Y_{\scriptscriptstyle 1} \oplus Y_{\scriptscriptstyle 2}$$

Where (X_0, Y_0) is an invariant pair, (X_1, Y_1) is an invariant pair of type μ , and (X_2, Y_2) is an invariant pair of type ν . If A_0 and B_0 are the restrictions of A and B respectively to X_0 , then $\nu(A_0, B_0) = \infty$ and $\mu(A_0, B_0) = \infty$.

Proof. Theorem 2 follows from Theorem 1 and Kato's Theorem 4 [1], after it is noted that the latter theorem, although stated only for bounded operators B, is valid under the less restrictive assumption that $D(B^*) \supseteq D(A^*)$.

THEOREM 3. In addition to the standing hypotheses, suppose that A is a Fredholm operator. Then there exist decompositions

$$egin{aligned} X &= X_0 \oplus X_1 \oplus X_2 \oplus X_3 \ Y &= Y_0 \oplus Y_1 \oplus Y_2 \oplus Y_3 \ , \end{aligned}$$

where each (X_i, Y_i) is an invariant pair, (X_1, Y_1) is of type μ , (X_2, Y_2) is of type ν , and (X_3, Y_3) is of type μ^* . If A_0 and B_0 are the restrictions of A and B to X_0 , then $\nu(A_0:B_0) = \infty$, $\mu(A_0:B_0) = \infty$, $\mu(A_0^*:B_0^*) = \infty$, and $\nu(A_0^*:B_0^*) = \infty$.

102

If $X^* = X_0^* \bigoplus X_1^* \bigoplus X_2^* \bigoplus X_3^*$ and $Y^* = Y_0^* \bigoplus Y_1^* \bigoplus Y_2^* \bigoplus Y_3^*$ are the corresponding decompositions of the adjoint spaces, then (Y_1^*, X_1^*) is an invariant pair of type $\mu_*(A^*:B^*)$, (Y_2^*, X_2^*) is an invariant pair of type $\nu(A^*:B^*)$, and (Y_3^*, X_3^*) is an invariant pair of type $\mu(A^*:B^*)$.

Proof. In view of Theorem 2, we may assume that $\mu(A:B) = \infty$ and $\nu(A:B) = \infty$. Then $\nu(A^*:B^*) = \infty$, and we can proceed to decompose X^* and Y^* , as in the proof of Theorem 1. The only difficulty encountered is to produce vectors x_j^i to span X_3 which actually lie in D(A). An induction argument similar to that used in Theorem 1 to produce the f_j^i and g_j^i can also be employed in this case.

4. Let $\mathcal{P}^+(A:B)$ be the set of complex numbers λ such that $A - \lambda B$ is a closed operator from D(A) to Y, and such that $R(A - \lambda B)$ is closed and $\alpha(A - \lambda B) < \infty$. $\mathcal{P}^+(A:B)$ is an open subset of the complex plane which, by assumption, contains the point $\lambda = 0$.

For all $\lambda \in \Phi^+(A:B)$, Theorems 1 and 2 are applicable to the operators $A - \lambda B$ and B. Also, for $\lambda \in \Phi^+(A:B)$ we define

$$egin{aligned} &\sigma_k(\lambda) = \sigma_k(A-\lambda B:B)\ &\pi_k(\lambda) = \pi_k(A-\lambda B:B)\ &
ho_k(\lambda) =
ho_k(A-\lambda B:B)\ &\sigma(\lambda) = \sigma(A-\lambda B:B) \ . \end{aligned}$$

THEOREM 4. Let A and B satisfy the standing hypotheses. There exists a decomposition

$$egin{array}{ll} X = X_{\scriptscriptstyle 0} igodot X_{\scriptscriptstyle 1} \ Y = Y_{\scriptscriptstyle 0} igodot Y_{\scriptscriptstyle 1} \end{array}$$

such that (X_0, Y_0) is an invariant pair, and (X_1, Y_1) is an invariant pair of type $\mu(A - \lambda B : B)$ for all complex numbers λ . If A_0 and B_0 are the restrictions of A and B to X_0 , then $\mu(A_0 - \lambda B_0 : B_0) = \infty$ for all $\lambda \in \Phi^+(A : B)$ satisfying $\nu(A - \lambda B : B) = \infty$.

Proof. The points $\lambda \in \Phi^+(A:B)$ for which $\nu(A - \lambda B:B) < \infty$ form a discrete subset of $\Phi^+(A:B)$, and so there is a $\lambda' \in \Phi^+$ such that $\nu(A - \lambda'B:B) = \infty$. Let $X = X_0 \bigoplus X_1$ be the decomposition of Theorem 1 with respect to $A - \lambda'B$ and B. Then (X_1, Y_1) is an invariant pair of type $\mu(A - \lambda B:B)$ for all complex numbers λ , as remarked earlier.

If $\lambda \in \Phi^+(A:B)$ and $\nu(A - \lambda B:B) = \infty$, then X_0 and Y_0 cannot be decomposed further as in Theorem 1, for such a decomposition would violate the fact that $\mu(A_0 - \lambda' B_0:B) = \infty$. Hence $\nu(A - \lambda B:B) =$ ∞ implies $\mu(A_0 - \lambda B_0 : B_0) = \infty$.

Let D be the subset of $\Phi^+(A:B)$ of complex numbers λ for which $\nu(A - \lambda B:B) < \infty$. D is a discrete subset of $\Phi^+(A:B)$ with no limit points in $\Phi^+(A:B)$ (cf [1]).

THEOREM 5. $\mu(A - \lambda B : B)$ is a constant, either finite or infinite, for $\lambda \in \Phi^+(A : B) - D$.

Proof. In view of Theorem 4, it suffices to prove the theorem when A and B are operators in an invariant pair of type μ . For this, it suffices to look at an irreducible invariant pair of type μ . This case is easy to verify.

THEOREM 6. $\sigma(\lambda)$ is constant on each component of $\Phi^+(A:B)$.

Proof. It suffices to show that $\sigma(\lambda)$ is constant in a neighborhood of an arbitrary point $\lambda' \in \Phi^+(A:B)$. Let $X = X_0 \bigoplus X_1 \bigoplus X_2$ and $Y = Y_0 \bigoplus Y_1 \bigoplus Y_2$ be the decomposition of Theorem 2 with respect to $A - \lambda'B$ and B. Then $\nu(A_0 - \lambda B_0: B_0) = \infty$ for λ near λ' , and so $\sigma(\lambda) = \alpha(A_0 - \lambda B_0)$ for λ near λ' . By Theorem 3, [2], $\alpha(A_0 - \lambda B_0) = \alpha(A_0 - \lambda'B_0)$ for λ near λ' .

5. Let $X = X_0 \bigoplus X_1 \bigoplus X_2$ and $Y = Y_0 \bigoplus Y_1 \bigoplus Y_2$ be the decompositions of Theorem 2 with respect to A and B. Let $\pi_k = \pi_k^0 + \pi_k^1 + \pi_k^2$ and $\rho_k = \rho_k^0 + \rho_k^1 + \rho_k^2$ be the corresponding decompositions of π_k and ρ_k . Assume that r is chosen small that $0 < |\lambda| < r$ implies $\lambda \in \Phi^+(A:B)$ and $\nu(A - \lambda B:B) = \infty$. Then $\pi_k^0(\lambda) = k\sigma(\lambda)$ for $|\lambda| < r$. If k is sufficiently large,

$$egin{aligned} \pi_k^{\scriptscriptstyle 1}(\lambda) &= \dim X_1 ext{ ,} & \mid \lambda \mid < r \ \pi_k^{\scriptscriptstyle 2}(\lambda) &= egin{cases} \dim X_2 ext{ ,} & \lambda = 0 \ 0 ext{ ,} & 0 < \mid \lambda \mid < r \end{aligned}$$

Also, $ho_k^0(\lambda) = k\sigma(\lambda)$ for $|\lambda| < r$. For k sufficiently large,

$$egin{aligned} &
ho_k^{\scriptscriptstyle 1}(\lambda) = \dim Y_1 \ &
ho_k^{\scriptscriptstyle 2}(\lambda) = egin{cases} \dim Y_2 \ , & \lambda = 0 \ 0 \ , & 0 < |\,\lambda\,| < r \ . \end{aligned}$$

We define, for any $\lambda \in \Phi^+(A:B)$,

(1)
$$\pi(\lambda) = \lim_{k \to \infty} \left[\pi_k(\lambda) - k\sigma(\lambda) \right]$$

(2)
$$\rho(\lambda) = \lim_{k \to \infty} \left[\rho_k(\lambda) - k\sigma(\lambda) \right]$$

 $\pi(\lambda)$ and $\rho(\lambda)$ correspond to $\tau(\lambda)$ defined in [1]. From the preced-

104

ing, we deduce that

(3)
$$\pi(\lambda) = \begin{cases} \dim X_1, & 0 < |\lambda| < r \\ \dim (X_1 \bigoplus X_2), & \lambda = 0 \end{cases}$$

(4)
$$\rho(\lambda) = \begin{cases} \dim Y_1, & 0 < |\lambda| < \\ \dim (Y_1 \bigoplus Y_2), & \lambda = 0 \end{cases}$$

From these formulae, it follows that

(5)
$$\alpha(A - \lambda B) = \sigma(\lambda) + \pi(\lambda) - \rho(\lambda)$$
, $0 < |\lambda| < r$,

for both sides of this expression are equal to

$$lpha(A_0-\lambda B_0)+\dim X_1-\dim Y_1$$
 .

We will assume in the remainder of the discussion that A is a Fredholm operator. The set of complex numbers λ such that $A - \lambda B$ is a Fredholm operator will be denoted by $\mathcal{P}(A:B)$. $\mathcal{P}(A:B)$ is an open subset of the complex plane, and consists of the union of those components of $\mathcal{P}^+(A:B)$ for which $R(A - \lambda B)$ is of finite codimension in Y, i.e., for which $\alpha(A^* - \lambda B^*) < \infty$.

The quantities $\pi_k^*(\lambda) = \pi_k(A^* - \lambda B^* : B^*)$, $\rho_k^*(\lambda)$, $\sigma^*(\lambda)$, $\pi^*(\lambda)$ and $\rho^*(\lambda)$ are then well-defined for $\lambda \in \mathcal{O}(A:B)$. The formula for the adjoint operators corresponding to (5) is

(6)
$$lpha(A^*-\lambda B^*)=\sigma^*(\lambda)+\pi^*(\lambda)-
ho^*(\lambda)$$
, $0<|\lambda|< r$.

Since $\alpha(A^* - \lambda B^*) = \beta(A - \lambda B)$, we have

(7)
$$\kappa(A - \lambda B) = (\sigma(\lambda) - \sigma^*(\lambda)) + (\pi(\lambda) - \pi^*(\lambda)) - (\rho(\lambda) - \rho^*(\lambda)) \quad 0 < |\lambda| < r.$$

In view of the decomposition of Theorem 3, the jump discontinuity of π^* at $\lambda = 0$ is equal to that of π at $\lambda = 0$, i.e., they are both equal to dim $X_2 = \dim Y_2$. Hence (7) holds also for $\lambda = 0$, and we arrive at the following theorem.

THEOREM 7. For all $\lambda \in \mathcal{O}(A : B)$, $\kappa(A - \lambda B) = (\sigma(\lambda) - \sigma^*(\lambda)) + (\pi(\lambda) - \pi^*(\lambda)) - (\rho(\lambda) - \rho^*(\lambda)).$

Analogous formulae can be written down if it is assumed, further, that B is a Fredholm operator. If $M(B) = \{0\}$ and R(B) is dense in Y_1 then $\rho(\lambda) = \rho^*(\lambda) = \pi(\lambda) = \pi^*(\lambda) = 0$, and Theorem 7 reduces to

(8)
$$\kappa(A - \lambda B) = \sigma(\lambda) - \sigma^*(\lambda), \quad \lambda \in \mathcal{Q}(A:B).$$

This latter formula is due to Kaniel and Schechter [1], when X = Y and B is the identity operator.

r

T. W. GAMELIN

BIBLIOGRAPHY

1. Kaniel and Schechter, Spectral theory for Fredholm operators, Comm. on Pure and Applied Math., vol. 16, no. 4 (1963), 423-448.

2. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. d'Analyse Math. VI (1958), 261-322.