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UNIMODULAR SOLUTIONS OF INFINITE
SYSTEMS OF LINEAR EQUATIONS

DONALD C. BENSON

It is well known that if a series of real numbers ΣΓ=i an

converges, but not absolutely, then for any b, there exists a
sequence {Xi}, Xi = ± 1 , such that 2?=i&A = b. In § 1, a
criterion is given on a system of denumerably many equa-
tions of this type, with real coefficients, so that solutions
Xi = ± 1 exist for arbitrary right hand sides. A sequence
{Xi} such that Xi = ± 1 will be called unimodular. In § 2, there
results are extended to finite systems, and it is shown that
an infinite system has unimodular solutions for arbitrary right
hand sides if and only if every finite subsystem has this
property. § 3 shows that if a system satisfies the criterion
of § 1, then, in a certain sense, "almost any" sequence {#;},
Xi = ± 1 , "satisfies" the system for any choice of right hand
sides. In § 4, conditions are given whereby infinite systems
can be constructed which satisfy the criterion of §2. It fol-
lows, for example, that the system

Σ (-l)C i / 2 i ]i"%- = hi , i = 1, 2, 0 < a g 1
3=1

has solutions (Xi — ±1) for any hi (ΐ = 1, 2, •). The hi are
allowed to be real numbers or ±oo.

1* The main theorem* THEOREM 1. Let ai5 (i, j = 1, 2, 3, •)
be real numbers such that there exist xjkι (j = 1, 2, •••;& = 0 , 1 , 2,

I — 1, 2, •) which satisfy the following conditions:

1. Each xm is equal to + 1 or — 1.

2. Σaijχ3ki converges for all i such that i Φk and i ^ I.
3=1

3. Yiai3x3\i diverges to +co.
3=1

Then, for any sequence {6J, the infinite system of equations

(1) Σ<%αy = δi
3=1

can be solved such that for each i, xi— ± 1 . Here, bi is allowed to

be either a real number or ± o o .

Proof. If k Φ i g I, for any ε > 0 there exists N(ε; i, k, I) such
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that

(2)
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Σ an*,:•kl < ε and I ain | < ε/2 ,

provided m,n> N(e; i, k, I).
We define the solution {x{} inductively along with positive integers

Mnm which will be defined whenever n is a positive integer and m is
a nonnegative integer such that m ^ n. The ordered pairs (n, m)
are ordered lexicographically, i.e., (n, m) < (nl9 mj if and only if
either n < nu or w = n± and m < m1# The induction will be with
respect to this order.

The following definitions will be used with m g n and i tSz n:

bi if bi is finite

Binm = •! ±n if bi — ± co and i ^ m ,

K ± (w — 1) if 6* = ± co and i > m

b{ if 6; is finite

± (% — 1) if i — m and ^ ^ = ± 0 0

(2(m - i) + l)/n2 if i < m

JL̂/ p Li litj ϊv LL V ^~ lib

( 3 )

( 4 )

( 5 )

Let us suppose that positive integers Mnm have been defined for
(n, m) ^ (s, ί), and ^ for i ^ JkΓβί such that the following conditions
are satisfied:

(A) Mnm < Mpq if and only if (n, m) < (p, q).

(B) Mn0 ^ ΛΓ(1M2; ΐ, fc, w) for all if k ^ n (i ^ k).

( C )

( D ) If i ^ w - 1 and M% m ^

where m Φ 0.

^ , ^ ! if m 0

then

(Dl) Ainm - din

and

(D2) Binm -
inm

ίn-lιn-! if m = 0,

We wish to determine Muυ where (u, v) is the immediate successor
of (s, t), and a?if i = Mst + 1, , Muυ, such that the conditions (A)-(D)
are valid for all {n9 m) ^ (u, v). There are two cases to consider.
Either we have s — t, or s > t.
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Case I. s — t. In this case the immediate successor of (s, t) is
(s + 1, 0). Putting M8+1,o equal to the largest of the numbers Mss + 1
and N(l/(s + I)2; i, k, s + 1) for all ί, k ^ s + 1 (i Φ k), we see that
(A) and (B) will be satisfied.

We now put xό = xj0SJ (j = Mss + 1, , M8+1.o). Condition (C)
remains satisfied because the newly defined quantities do not occur
in (C). Condition (B) holds with n = s by the inductive assumption.
Therefore, | Σ;=*+i anχjo8 I < 1/s2, provided k, I > Mss and i ^ s. We
have diss = (2(s — ί) + l)/s2, 3,Ls+lι0 = 2(s + 1 — ί)/s2, and hence δ ί i β + l i 0

— 5ίβ8 = 1/s2. From the equality Aίss = 5 ί s s = A i fβ+ l l0 = Bi>s+lι0 for i < s,
we see that (D) holds with i < s. It must be shown that (D) holds
with i — s. We have also S s s s — BS)S+1>0 — A8f8+lt0. Recall that

I

V a Ύ <^ 1 /Q2

Since 3β,β+1,0 = 2/s2 and (C) holds with ΐ = s, the result follows, namely
that (D) holds with i = s. This disposes of Case I.

Case II. s > t. The immediate successor of (s, t) is (s, t + 1).

We use the fact that ΣΓ=i αί+i,i^i,ίfi,s = +co.

Subcase IIA. For some I > Mst we have

z
< 1/s2 .

In this case, we put I = M s, ί + 1 and xy = x ios, i = Mβί + 1, , MS ) ί + 1.

Subcase ΠB. If the above never happens, then

I

must keep the same sign for all I > Λfβt, because, for j > Λfβt, we
have | α ί 4 1 > i | < l/2s2, from inductive assumption (B).

Let σ— ± 1 , depending upon whether the sign stays + or —.
Because the series ΣΓ=i at+i,3 %d,t+i,8 diverges to + oo, there exists iΓ > M s ί

such that

(6) Σ ^+i,i»io. + ._Σ+ i^+i,^i, ί +i, s > o

for all I > K. Let iΓ0 be the smallest number K with this property.
We put xd = xjos, Mst < j < Ko, and xά = - ^ , t + 1 , s , i = Ko, , Ms>t+U

where the integer M8,t+1 will now be defined. Because ΣF=i at+i,jχj,t+i,s
= + co, and I at+ltj \ < l/2s2 for j > ikΓsί, there exist integers M > Mst
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such that (C) is satisfied for n — s, m = t + 1 and Λfβlt+1 — M. Let
M s > i + 1 be the smallest integer with the above property.

It will be shown that conditions (A)-(D) hold for both subcases.
Conditions (A) and (B) are evident. Condition (C) follows immediately
from the construction above. Condition (D) is somewhat more difficult.

It will be shown first that (D) holds with i=t+l9n = s9m —
ί + 1. We may suppose i ^ n — 1, i.e., t + 1 ^ s — 1. We have

( 7 ) δ ί + 1 > s > ί + 1 - δ ί + 1,S ) ί = 2/s2 ,

and

From inductive assumption (D), we have

( 8 ) Σ^ί+1 - 2/s2 .

Thus, in Subcase ΠA with Mst < j ) | Ms,t+1, and in Subcase IIB, with
Mst< p< Ko< M.,t+U we have

P

Σ - 1/s2 .

This disposes of Subcase IIA, because the above inequality is stronger
than (D). It must be shown now that (D) holds for Ko g p g Matt+U.
with ί~t + l, n = s,τn, = t + l.

From the inequalities,

V

Σ ^ί+l,i%,i + l,s = " >

(where an empty sum is taken to equal zero), it follows that we have

(P S M.,t+1)

(10) = Σ + i α^iXi.. - g a i+1,yxy, i+liS

3>

_ V v 4- 9 I π

P

- Σ α ,χ. + l/s2

using (B) and the definition of xjf Mst < j S Ms>t+1. Now, from (6), we :

have
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P P

(11) — Σ at+i % t s < — & Σ a •%- .
j = Mst+l ' ' ' j = Mst+l

Combining (1), (11) and (B), we have

(12) σ _ Σ at+i,3%j < ~ σ . _ Σ at+u3%3os + 1/s2 < 2/s2 .

From (8), we have

Mat

(13) σ Σ at+i,i»j < 0At+lt8,t+1 + δ ί + 1 , s , ί + 1 - 1/s2 .

3=1

Putting (12) and (13) together, we have

V

(14) σ Σ α ί + i,Λ < 0At+lt8,t+1 + δ ί + l f β f t + 1 .
J = l

From the definition of σ and the fact that if At+UStt+1 Φ Bt+lt8,t+1, then
I At+lt8tt+1 - Bt+1>S)t+11 = 1, it follows that σ(At+ltStt+1 - Bί+1,s,ί+1) ^ 0.
Thus (Dl) or (D2) must be demonstrated, depending on whether σ —
- 1 or + 1 .

If σ — — 1, we have from (14)

which is half of (Dl). From the definition of M8tt+U we have

V α x <C B + 1/s2 <C B | j A

provided Mst < p ^ Λfβ,t+1, which gives the remaining half of (Dl).
Similar considerations show that if σ — 1, then (D2) holds. This con-
cludes the demonstration that (D) holds with i — t + 1, n — sf m —
t + 1.

It remains to show that (D) holds for ίΦt + 1, n = s,m = t + l,
0 ^ o JL.

We have dit8,t+1 — δί>sU = 2/s2, so that it is sufficient to show

(15)
P

Σ <
j-=M8t + l

< 2/s2

for Mst < p ^ ikfβ,t+1.
In Subcase ΠA, we have, using (B),

(16) Σ CL:ό9C on < 1/s2 .

In Subcase ΠB with p < Ko, (15) is valid once again because (16)
holds.
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In Subcase ΠB with p ^ KQ, we have

(17) Σ ^ij^j(LuXi Σ π .v .

j = Mst+l

because of (B). This concludes the demonstration of Case II.
The definition by induction is completed by setting M01 = N(l; 1, 0,1)

and observing that thereby (A)-(D) are satisfied with n= l,m = 0,ί = 1..
It remains to show the sequence {#J constructed in this way sa-

tisfies the infinite system of equations (1). However, this follows from
the fact that {xj satisfies condition (D).

2* Systems with finitely many equations* The extension of
Theorem 1 to systems with finitely many equations is accomplished
by producing an infinite system which can be treated by Theorem 1
and which is equivalent to the given finite system.

THEOREM 2. Let aiά (i = 1, , R; j — 1, 2, •) be real numbers
such that there exist xjk (j — 1, 2, k — 0, 1, , R) which satisfy
the following conditions:

1. Each xjk is equal to + 1 or — 1.

2. Σ aijχjk converges for all i such that i Φ k.
oo

3. 2 aijχji diverges to + ° ° .

Then, for any numbers blf , bRi each of which is a real number or
±co, the equations

(18)

c a n be solved such t h a t for e a c h if x i — ± 1 .

Proof. We construct an auxiliary infinite system of equations

3=1

(19) Σ
3=1

We define βi+nB — b{ for any nonnegative integer n, and

(20) ai+nB>ι

where T(n) — n(n + l)/2 is the wth triangular number. The fact to

'aik if there exists k > 0 such that

I = T(k + n - 1 ) + n - 1 and

k0 otherwise,
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be used about T(n) is that each positive integer has one and only one
representation in the form T(k + n — 1) + n — 1 = S(k, ri), where k
and n are positive integers.

Let us define ξjkι = ξjk as follows:

xki if there exists k > 0 such that I = S(k9 ri), and

ίCjfco if I = S(fc, m), n Φ m > 0 .

Then we have
1. Each ξjk is equal to + 1 or — 1 .

CO

2. 2 αΰ?i/c converges for all i such that i Φ k.2
3=1

oσ

3. ΣaCijξji diverges to +co.
5 = 1

The hypotheses of Theorem 1 are satisfied, and therefore the system
(19) has a solution {?,-}. Then x5 — ξT{j)y j — 1, 2, , is a solution of
(18).

COROLLARY. The system (1), with arbitrary right hand sides, has
a unimodular solution if and only if every finite subsystem of (1),
with arbitrary right hand sides has a unimodular solution.

A system of nondenumerably many equations of the type described
in Theorem 1 will never have unimodular solutions for all possible right
hand sides, because the number of ways in which the right hand sides
could be prescribed would have cardinality greater than C, whereas
the cardinality of all unimodular sequences, x{ — ± 1 , i — 1, 2, •••, is
equal to C. (Here C denotes the cardinality of the continuum.)

3* The metric space Λ£. The set of sequences {xj, x{ = ± 1
form a complete metric space under the metric

diiXi), {x-}) = lβ ,

where I — min {i : x{ Φ #•}.
Let a o satisfy the hypotheses of Theorem 1. Let Ui9 i = 1, 2, ,

be nonempty open sets of extended real numbers. (£7, may contain
-{-co or — co.) Let ^Vu be the set of sequences {ccj such that for all
N ^ M, Σί=i ^jχj $ ui fo r s o m e i (0 < i ^ M).

Λ^u is closed. For suppose {xΊ} e ^M and lim^^ d({x*}, {x{}) = 0.
Also, suppose there exists N ̂  M such that Σf=i aijχj e ^ ί ° r each
i (0 < i ^ M). For sufficiently large n, we have xό — x*, j ~ 1, , N,
and hence we get Σf=i α ΰ x i G ^ (0 < ̂  = -^)> contrary to the assump-
tion {x"}e ^KM.

is nowhere dense. For suppose {ccj e ^ i Let b{ be an
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arbitrary element of Z7i# For any P > 0, there exists, because of
Theorem 1, a sequence {x{} such that

1. x'i = xi9 i — 1, 2, , P, and

2. J>,X = K
Clearly, {&<} ί ^ i and d({x{}, {&{}) < 1/P.

Thus the set Uϊ=i ^x = - ^ ί s o f t h e first category, and since
^/f is a complete metric space, ^ — < ^ is of the second category.
We have proved the following:

LEMMA 1. For any sequence {xn} in ^/f — <yV" there exists an
infinite monotone increasing sequence {Nk} of positive integers such
that for each k, Xfi3 ai5x5 e U{ for i g k.

For any sequence {&<} of extended real numbers we may take U"
as follows:

{x: I x - bi \ < IIn) if bi is finite

{x: ±(x - bi) > n} if bi = ±&> .

By applying the lemma for each n to {U*} 0 < i < ©o ? we find that
there exists a monotone increasing sequence of positive integers {Sk}
such that

(23) Σ dijXj eU* f o r i ^ k .
3=1

From (22), it now follows that we have

Sk

lim 2 ^i^i = δ̂  for every i > 0 .

In summary, this proves the following:

THEOREM 3. Let aiό satisfy the hypotheses of Theorem 1. Then
there exists a sequence {χ.}9χ.= ± 1 , with the following property.
{Indeed, any sequence {x^ in the complete metric space ^Jt, apart
from a certain set of first category, has this property.) For any
sequence {ί>J of extended real numbers, there exists a sequence of
positive integers {Sk} such that for each i,

Sk

lim Σ dijXj = b{ .

4* Sufficient conditions* In this section we shall find sufficient
conditions on the coefficients a{i so that the hypotheses of Theorem 1
are satisfied.
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THEOREM 4. Let {αj be a sequence of real numbers such that

( i ) α< > 0
oo

(ii) Σ α i = °°

(iii) .For every fc Ξ> 1, α{ — α i+/c is monotone decreasing in i.

(iv) α{ ίe^ds monotonically to zero as i —> oo.

Lei α o = ( — l)Cj'ma,,-. Then au satisfies the hypotheses of Theorem 1.

Proof. We must find sequences {xjkι), l ^ i < ^o, 0 ίg & < co, 1 fg
I < °°, such that conditions (1), (2) and (3) of Theorem 1 are fulfilled.

k — 0. First we show that by putting xjoι — 1, the conditions are
satisfied for k — 0. Condition (3) is fulfilled vacuously and condition
(1) is trivial.

It will be shown that condition (2) holds, i.e., that Σ ^ i ί
converges for each i. Let

(24) (-l)kh

Then we have

( + )

(25) δft = Σ «i > 0 .
j = k 2ι

From (iv), bk is monotone decreasing, and hence ^( — l)kbk converges.
The condition (2) follows because

(26) Σ ( - l ) * δ ί = Σ (-l) κ / i i ] αj .
i=i i=o

& ̂  0. Let xjkι = (- lp 7 2 f c ] . Since it is assumed that ΣΓ=i ^ = °°,
we have ^?=iaijxju — °°> a n ( i thus condition (3) holds.

We will show (2) holds and thereby complete the proof by showing
that

(27)
i=i

converges if i > k. We have

(28) [i/2*] + [i/2fe] = [(i + 20/2*] + [U + 20/2*] - 1 - 2*"*

and

(29) (

Putting

( ϊ i + l ) 2 1

(30) (-l)"c,= Σ ( -
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we have

(31) c . =

Evidently c% is positive. Also, cn is monotone because, from (iii)r

ai — ai+2k is monotone decreasing in i. Thus Σn=i( — VΓC* converges.
Since we have

(32) Σ ( ) ^ I
3=1 3=0

it follows that (27) converges if i > k. This concludes the proof of
Theorem 4.

The sequence ai — l/ia, for positive a ^ 1, is an example satisfy-
ing (i)~(iv) of Theorem 4.

This result can be extended with the help of Abel's test for con-
vergence.

THEOREM 5. Let {αj satisfy the hypotheses of Theorem 4. Let
{viό}, i, j — 1, 2, satisfy the following:

1. v{j > 0.
2. For each i, {vi3) is monotone (increasing or decreasing) with

respect to j .

3. Σ aάviά = °o far each i.
3=1

Then ( — l)ul2i]ajVi:} satisfies the hypotheses of Theorem 1.

Proof. We take the same definition for xjk as in Theorem 4.
Then ΣΓ=i aijχjk converges for i Φ k by AbeΓs test. Further, we
have

Σ Wai = Σ aPii = + °°

We obtain a result which allows us to transform any array of
coefficients aiS which satisfies the hypotheses of Theorem 1 into a
different array satisfying the same conditions. First we need a lemma
which is related to AbeΓs test for convergence.

LEMMA 2. Let {vj be a monotone decreasing sequence of real
numbers which is bounded away from zero; i.e., there exists b such
that 0 < b ^ vt for all i. Suppose ΣΓ=i ^ = + °° Then ΣΓ=i ^ A =
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Proof. Let sn = Σ?=iα*> a n ( * l e t K = inΐk^nsk. We have, iim^p,

(33) 2 α ^ = s»ί(v1 — v2) + + Sp-^^j,-! — f p) + spvp

The result follows because hm —> ©o as m —> co.

THEOREM 6. Lei αΐy satisfy the hypotheses of Theorem 1. Lei
wo satisfy the following:

1. There exist ci such that 0 < c{ ^ vi3- for all positive integers
i and j .

2. For each i, {vi3) is monotone decreasing with respect to j .

Then ai3vi3- satisfy the hypotheses of Theorem 1.

Proof. The conditions are satisfied by using the xm which are
assumed to exist in Theorem 1. We have that ΣΓ=i aijvijχjki converges
if i Φ k by Abel's test and diverges to + co for i — k by Lemma 2.
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