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REDUCTION OF SETS OF MATRICES TO
A TRIANGULAR FORM

I. SlNHA

A set Ω of n X n matrices is said to have Property T if
the following two conditions are satisfied: (i) If Ω is looked
upon as a set of linear transformations of a vector space V
of dimension n then V has an ^-decomposition into primary
components; i. e. V — VΊ 0 0 Vt9 where the restrictions of
the elements of Ω to any V% are primary linear transforma-
tions; and (ii) V has an ^-composition series with 1-dimens-
ional composition-factors.

Our aim in this paper will be to characterize sets of non-
singular linear transformations having Property T.

The latter condition (ii) has been called Property P for Ω. It is
known that Property P is equivalent to simultaneous triangularisation
of the elements of Ω, and also to the existence of common character-
istic vectors for all of Ω and to the fact that the additive commutators
AB — BA of pairs A, B from Ω belong to the radical of the envelop-
ing associative algebra generated by Ω ([5], page 592-600).

It is also known that Ω has Property T if it is a commutative
set of matrices ([1], page 41). Also for a Lie algebra of linear trans-
formations of a finite dimensional vector space, is known that Proper-
ty T is equivalent to the nilpotency (in the Lie-sense) of the Lie algebra
([2], page 878-879).

Throughout we shall identify Ω with a set of nonsingular linear
transformations of a finite dimensional vectorspace V over an algebrai-
cally closed field F of characteristic zero.

2* DEFINITION. Let A be any nonsingular linear transformation.
Then it is known that A can be factorized uniquely as A — SU9 where
U is a unipotent linear transformation and S is semi-simple, and SU =
US, ([1], page 41). U is called the unipotent part of A and S is called
the semi-simple part of A. This will be referred to as the Jordan-
multiplicative decomposition of A.

S can also be characterized by the fact that the module determined
by it is completely reducible; and hence, over an algebraically closed
field, S is representable as an n x n diagonal matrix.

We shall let Ωs be the set of the semi-simple parts of the elements
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of Ω, and Ωt be the set of their unipotent parts.
We prove,

THEOREM 1. Let V have an Ω-composition-series with 1-dimension-
al composition-factors. Then a necessary and sufficient condition for
Ω to have Property T is that Ωs commutes with Ω elementwise.

Proof. For the necessity part of the theorem, we observe that
if Ω has Property T, then the matrices in Ω can be assumed to be a
direct sum of triangular blocks, each of which is in the triangular
form having a single characteristic root along the diagonal. Thus any
element A in Ω can be supposed to be of the form,

"λ

where * denotes possible nonzero entries. Then A — (X fy ζX^ A) =
AS AU, where As — λ I and Au — X~XA, so t h a t ASAU — AUAS, and As

is semi-simple while Au is unipotent. Then from the uniqueness of
the Jordan multiplicative decomposition, we conclude that A8 is in Ωs

and Au is in Ωu. Thus Ωs consists of sealer matrices only and hence
commutes with Ω elementwise.

For the sufficiency part of the theorem, let A be any element of
Ω, and A = ASAU be its Jordan-multiplicative decomposition, so that
As is in Ω8 and A% is in Ωu. Let V = VKl,A φ ® VH>A, where λ<
are the distinct characteristic roots of As and hence of A, be a de-
composition of V into primary components with respect to As. Since
As is semi-simple, so for any vector ^ in Vλjc,A, we have,

If B is an arbitrary element of Ω, then {^B){AS — XkI) =
^(As — XkI)B — 0, since Ωs is assumed to commute with Ω element-
wise. Thus each component Vλjc,A is invariant with respect to the
whole of Ω. Also the restriction of Au to any Vλfc,A is itself unipotent.
Therefore the restriction of A to each Vλ]c,A is primary.

If some C in Ω is not primary on any of the Vλk,Af we repeat the
process with C in place of A, so that we can conclude that V has an
β-decomposition V — V Ί φ φT7*, such that the restrictions of the
elements of Ω to any V< are primary.

Combined with the hypothesis on the existence of ^-composition
series with 1-dimensional composition factors, the above conclusion gives
Property T for Ω.
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The following analogue of McCoy's result in ([5], page 593) can
be easily verified.

LEMMA 1. Ω has Property P if and only if for each pair A, B
of elements in Ω, ABA^B"1 — I lies in the radical of the enveloping
associative algebra Ω generated by Ω.

Using this we conclude at once,

THEOREM 2. A set of necessary and sufficient conditions for Ω
to have property T is that,

( i ) Ωs commute with Ω elementwise, and
(ii) for every pair A, B of elements in Ω, ABA^B"1 — I lies

in the radical of the enveloping associative algebra Ω generated by Ω.

3* In this section we limit Ω to be an algebraic group ([1], page
29). The following results are well-known and the proofs are omitted
here.

LEMMA 2 (Lie-Kolchin). A connected algebraic group Ω has Pro-
perty P if and only if it is solvable: ([3], page 30).

LEMMA 3. If Ω is a connected nilpotent algebraic group, then
Ωs is contained in the centre ([1], page Theorem 11.1).

LEMMA 4. If N is an invariant commutative algebraic subgroup
of a connected algebraic group Ω, and consists of semi-simple elements
only, then N is contained in the centre of Ω ([1], page 45, Proposi-
tion 7-9).

It may be relevant to recall that connectivity is taken here in the
sense of the Zariski-Topology in β([3], page 26).

THEOREM 3. A necessary and sufficient condition for a connected
algebraic group Ω to have Property T is that Ω be nilpotent.

Proof. For the sufficiency we observe that by Lemma 3 Ωs com-
mutes with Ω elementwise. Then by Lemma 2, Ω has Property P.
Thus, Theorem 1 implies that Ω has Property T.

For the necessity, let Ω have Property T. Again we can assume
that any element A of Ω has the form,

A =

0 λ

= (λ J) (λ-ΛA) = As-Au
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If JP* denotes the multiplicative group of the nonzero elements of
the ground field F, then Ω is isomorphic to the external direct product,
JF7* x U, where U is the group of unipotent matrices (λ-^ A).

U is a group of unipotent matrices in triangular form, and such
groups are known to be nilpotent, so Ω being a product of two nilpo-
tent groups, is itself nilpotent.

Another characterization of Property T can be obtained in,

THEOREM 4. A necessary and sufficient condition for a connected
algebraic group Ω to have Property T is that Ωs be an algebraic
subgroup contained in the centre of Ω.

Proof. If Ω has Property T, then by Theorem 3, Ω is nilpotent,
so that Ωs is an algebraic subgroup of the centre, ([1], page 53,
Theorem 11 1).

Conversely, let Ωs be an algebraic subgroup of the centre of Ω.
Then it can be shown that Ω is equal to the internal direct product
Ωs x Ωu ([1], page 53, Theorem 11 1). Therefore, we at once have
that Ω/Ωu = Ωs is Abelian and hence Ωu 3 the commutator-subgroup of
Ω. From this it follows at once that Ω has Property P. (See for ex-
ample, the proof of Theorem 4 11 in [3], page 31).

Now Ωs commutes with Ω element wise, and Ω has Property P.
Therefore, by virtue of Theorem 1, Ω has Property T.

The converse part of the above theorem has an interesting gener-
alization to arbitrary subgroups of the general linear group GL(n, F).

In order to exhibit it, we shall use the notation <βs> for the group
generated by Ωs in GL(n, F). This is necessitated by the fact that
we now drop the restriction of algebraic connectivity for Ω, so that
Ωs may no longer be a part of Ω. We now state.

THEOREM 5. Let Ω be a subgroup of GL(n, F) such that Ωs com-
mutes with Ω elementwise. Then Ω has Property T and is nilpotent
of class at most (n — I).1

Proof. We divide the proof in four parts.

( i ) First observe that if the underlying vector space V is irreduci-
ble under Ω \J Ωs, then V is irreducible under Ω. For, suppose to the
contrary that Vx is a proper minimal invariant 42-subspace of V. Then

1 The author is highly indebted to the referee for conveying this theorem and
its proof to him.
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for each u in <βs>, V{iι is a minimal invariant 42-subspace, because u
commutes with every element of Ω. Now Σ^i^> where the summa-
tion is over all u in <(βs)>, is invariant under Ω \J Ωs and is therefore the
whole of V in view of the irreducibility of V with respect to Ω\J Ωs.
Therefore, V = Wx® ®Wkf where W{ = V^, ( ^ in <β s », and the
Wi are £?-in variant.

Corresponding to this decomposition, there is a basis for V such
that the matrix X in Ω has the block-decomposition,

X =

o

o"

X,

where the X{ are square-blocks of dimension n/k. The corresponding
matrix for Xs in Ωs is clearly,

(-ay.
o"

o

where, as usual, (XJ, denotes the semisimple part of X{.
However, this implies that V is reducible with respect to Ω \J Ωs,

contrary to the hypothesis.

(ii) Next, we assert that if V is irreducible with respect Ω \J Ωs,
then V has dimension 1. For, by (i) we can assume that V is Ω-
irreducible. Since Ωs commutes with Ω elementwise and F is algebrai-
cally closed, it follows by Schur's Lemma, ([6]; Theorem 27 3), that
Ωs is a set of scalars; i.e., Ωsc:F*. J, where / is the identity matrix,
and F* denotes the multiplicative group of nonzero elements of the
base field F.

Let Ω1 = {X in Ω F* | det X= 1}. As F is algebraically closed,
so ΩCLΩ^F*, and therefore Ωγ is also an irreducible group. Since
(Ω F*)S = ΩS F* = F* I, so each X in Ωλ has a unique characteristic
root of multiplicity n. For every X in β l f we have trace X — trace
Xs, so that the set {trace X\ X in βjczjλ in F * |λw = 1}, and so is
finite. But, by an argument of Burnside, an irreducible group with
only a finite set of trace-values is finite ([6], Theorem 36 1). Thus
Ωλ is a finite irreducible group. Since characteristic of F is zero, so
every element of Ω1 is semi-simple and Ωλ = (42^ c; (1β Jp*) s = F* L
So ί̂  is an irreducible group of scalars which is possible only when
the dimension n = 1.
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(iii) Now we prove that Ω has Property P. For, let V have a basis
with respect to which Ω\JΩ, has the form,

1

X,
X =

_o xn

with diagonal-blocks Xi9 and possible nonzero entries only above these
diagonal blocks. Suppose X/s cannot be reduced any further. Then
the mapping X —> X* defines a homomorphism of <£? U ̂ s> for each i,
such that the images of Ω and Ωs are, say, ΩH) and β j 0 respectively,
for a fixed i. Clearly, (X{)s = (JQ,, and so β<ί} - (β ( ί )) s. Since fl U Ωs

cannot be further reduced, Ω{i) \J Ω{

s

l) is irreducible. Also Ω{ί) is a
group and Ω{

8

i] commutes with Ω{i) elementwise. Hence by (ii), each
block Xi must be of dimension 1.

(iv) Finally, by Theorem 1, combined with (iii), we immediately
conclude that Ω has Property T. Also from the proof of Theorem 3,
it then follows that Ω is nilpotent of class at-most (n — 1), for n > 2,
since the group of all upper triangular unipotent matrices is known
to be nilpotent of class (n — 1).

We remark that Theorem 5 shows that a nilpotent connected alge-
braic group has nilpotency class <(n — 1). On the other hand, matrix
groups of degree n and arbitrary nilpotency-class k > 1 are known to
exist, ([7], page 57). Thus we observe that such groups cannot have
Property T for k > n. Thus, for a general matrix-group nilpotency
does not imply Property T.

COROLLARY 1. If Ω is a connected algebraic group, then a neces-
sary and sufficient condition for Ω to have Property T is that Ωs be
an invariant commutative algebraic subgroup of Ω.

This follows' at once from Lemma 4 and Theorem 4.

Combining the above results we deduce the following equivalence
of propostions.

COROLLARY 2. For a connected algebraic group Ω, the followings
are equivalent,

( i ) Ω is nilpotent,
(ii) Ω has Property T,
(iii) Ωs is an invariant commutative algebraic subgroup of Ω,
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(iv) Ωs is an algebraic subgroup in the centre of Ω.

Lastly we note that connectivity is an essential part in our hy-
pothesis as can be seen by taking Ω to be a non abelian finite nilpotent
group. Then Ω can have Property P or Property T if and only if it
is commutative. This follows at once from the Theorem of Maschke
about the complete reducibility of finite groups: ([4]).
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