MONOTONE APPROXIMATION

O. Shisha

Abstract

How close can one approximate a monotone function by a monotone polynomial of degree $\leqq n$, or a convex function by a convex polynomial of degree $\leqq n$? This leads to the following general question. Let k and n be given, and suppose a real fuction f satisfies $f^{(k)}(x) \geqq 0$ throughout a closed, finite interval $[a, b]$. How close can one approximate f on $[a, b]$ by a polynomial of degree $\leqq n$ whose k th derivative, too, is $\geqq 0$ there? We give an answer to the question.

2. Theorem 1. Let k and p be integers, $1 \leqq k \leqq p$, and let a real function f satisfy throughout $[a, b]$

$$
\begin{aligned}
f^{(k)}(x) & \geqq 0, \\
\left|f^{(p)}\left(x_{2}\right)-f^{(p)}\left(x_{1}\right)\right| & \leqq \lambda\left|x_{2}-x_{1}\right|,
\end{aligned}
$$

λ being a constant. Then for every integer $n(\geqq p)$ there exists a real polynomial $Q_{n}(x)$ of degree ${ }^{1} \leqq n$ such that
(a) $Q_{n}^{(k)}(x) \geqq 0$ throughout $[a, b]$,
(b) $\operatorname{Max}_{a \leqq x \leqq b}\left|f(x)-Q_{n}(x)\right| \leqq 2 \lambda\left(\frac{\pi}{4}\right)^{p-k+1}(b-a)^{p+1}\left[k!\prod_{\nu=k}^{p}(n+1-\nu)\right]^{-1}$.
3. To prove Theorem 1, we begin by quoting the following result of J. Favard [2] and N. Ahiezer and M. Krein [1] which strengthens a previous result of D. Jackson.

Theorem 2. (Favard, Ahiezer-Krein) Let f (with period 2π) map the reals into the reals, and satisfy for every real x_{1}, x_{2}

$$
\begin{equation*}
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leqq \lambda\left|x_{2}-x_{1}\right| \tag{1}
\end{equation*}
$$

λ being a constant. Then for $n=0,1,2, \cdots$, there exists a trigonometric polynomial $T_{n}(x) \equiv \sum_{\nu=0}^{n} a_{\nu}^{(n)} \cos \nu x+b_{\nu}^{(n)} \sin \nu x$ such that $\max _{0 \leqq x \leqq 2 \pi}\left|f(x)-T_{n}(x)\right| \leq \lambda(\pi / 2)[1 /(n+1)]$.

From Theorem 2 one obtains by the method of [3], pp. 13-14 the following

Theorem 3. Let f be a real function satisfying (1) throughout $[a, b], \lambda$ being a constant. Then for $n=0,1,2, \cdots$, there exists a

[^0]polynomial $P_{n}(x)$ of degree $\leqq n$ such that
$$
\max _{a \leqq x \leq b}\left|f(x)-P_{n}(x)\right| \leqq \lambda \frac{\pi}{4} \frac{b-a}{n+1}
$$

For future use, we make the following simple observation. (Compare [3], p. 16).

Lemma. Let f be a real function, continuous in $[a, b]$ and differentiable in (a, b). Let n be an integer $(\geqq 0), q_{n-1}(x)$ a real polynomial of degree $\leqq n-1$, and let ε be such that $\left|f^{\prime}(x)-q_{n-1}(x)\right|$ $\leqq \varepsilon$ throughout (a, b). Then there exists a polynomial $P_{n}(x)$ of degree $\leqq n$ such that

$$
\begin{equation*}
\max _{a \leq x \leq b}\left|f(x)-P_{n}(x)\right| \leqq \varepsilon \frac{\pi}{4} \frac{b-a}{n+1} \tag{2}
\end{equation*}
$$

To prove the lemma, set $r(x) \equiv f(x)-\int_{a}^{x} q_{n-1}(t) d t$. Throughout $(a, b),\left|r^{\prime}(x)\right| \leqq \varepsilon$, and therefore, throughout $[a, b],\left|r\left(x_{2}\right)-r\left(x_{1}\right)\right| \leqq$ $\varepsilon\left|x_{2}-x_{1}\right|$. By Theorem 3, there exists a polynomial $\pi_{n}(x)$ of degree $\leqq n$ such that $\max _{a \leqq x \leqq b}\left|r(x)-\pi_{n}(x)\right| \leqq \varepsilon(\pi / 4)(b-a) /(n+1)$. Setting $P_{n}(x) \equiv$ $\pi_{n}(x)+\int_{a}^{x} q_{n-1}(t) d t$, we obtain (2).

From Theorem 3 and the Lemma one gets readily (cf. [3], pp. 16-17) the following

Theorem 4. Let f be a real function satisfying throughout $[a, b]$, for some constant integer $p(\geqq 0)$ and some constant λ,

$$
\left|f^{(p)}\left(x_{2}\right)-f^{(p)}\left(x_{1}\right)\right| \leqq \lambda\left|x_{2}-x_{1}\right| .
$$

Then for every integer $n(\geqq p)$ there exists a polynomial $P_{n}(x)$ of degree $\leqq n$ such that

$$
\max _{a \leqq x \leq b}\left|f(x)-P_{n}(x)\right| \leqq \lambda\left[\frac{\pi}{4}(b-\alpha)\right]^{p+1}\left[\prod_{\nu=0}^{p}(n+1-\nu)\right]^{-1} .
$$

3. Proof of Theorem 1. Let n be an integer $\geqq p$. Set $f_{n}(x) \equiv$ $f^{(k)}(x)+\lambda[(\pi / 4)(b-a)]^{p-k+1}\left[\prod_{\nu=k}^{p}(n+1-\nu)\right]^{-1}$. Then throughout $[a, b]$, $\left|f_{n}^{(p-k)}\left(x_{2}\right)-f_{n}^{(p-k)}\left(x_{1}\right)\right| \leqq \lambda\left|x_{2}-x_{1}\right|$. By Theorem 4, there exists a real polynomial $P_{n-k}(x)$ of degree $\leqq n-k$ such that

$$
\max _{a \leqq x \leqq b}\left|f_{n}(x)-P_{n-k}(x)\right| \leqq \lambda\left[\frac{\pi}{4}(b-a)\right]^{p-k+1}\left[\prod_{\nu=k}^{p}(n+1-\nu)\right]^{-1}
$$

So, throughout $[a, b], P_{n-k}(x) \geqq f^{(k)}(x) \geqq 0$. Let

$$
Q_{n}(x) \equiv\left[\sum_{\nu=0}^{k-1} \frac{f^{(\nu)}(a)}{\nu!}(x-a)^{\nu}\right]+\int_{a}^{t_{k+1}} \int_{a}^{t_{k}} \cdots \int_{a}^{t_{2}} P_{n-k}\left(t_{1}\right) d t_{1} d t_{2} \cdots d t_{k}
$$

(t_{k+1} being here and below, x). Then $Q_{n}(x)$ is a real polynomial of degree $\leqq n$, and $Q_{n}^{(k)}(x)=P_{n-k}(x) \geqq 0$ throughout [$\left.a, b\right]$. Furthermore, throughout that interval, we have

$$
f(x)=\left[\sum_{\nu=0}^{k-1} \frac{f^{(\nu)}(a)}{\nu!}(x-a)^{\nu}\right]+\int_{a}^{t_{k+1}} \int_{a}^{t_{k}} \cdots \int_{a}^{t_{2}} f^{(k)}\left(t_{1}\right) d t_{1} \cdots d t_{k}
$$

and therefore

$$
\begin{aligned}
\left|f(x)-Q_{n}(x)\right| & \leqq \int_{a}^{t_{k+1}} \int_{a}^{t_{k}} \cdots \int_{a}^{t_{2}}\left|f^{(k)}\left(t_{1}\right)-P_{n-k}\left(t_{1}\right)\right| d t_{1} \cdots d t_{k} \\
& \leqq 2 \lambda\left[\frac{\pi}{4}(b-a)\right]^{p-k+1}\left[\prod_{\nu=k}^{p}(n+1-\nu)\right]^{-1} \frac{(x-a)^{k}}{k!} \\
& \leqq 2 \lambda\left(\frac{\pi}{4}\right)^{p-k+1}(b-a)^{p+1}\left[k!\prod_{\nu=k}^{p}(n+1-\nu)\right]^{-1}
\end{aligned}
$$

4. The following Theorem 5 deals with a somewhat more general situation than that of Theorem 1.

Theorem 5. Let k and p be integers, $1 \leqq k \leqq p$, and let a real function f satisfy throughout $[a, b]$

$$
\begin{aligned}
f^{(k)}(x) & \geqq 0 \\
\left|f^{(p)}(x)\right| & \leqq M,
\end{aligned}
$$

M being a constant. Let $\omega(x)$ be the modulus of continuity of $f^{(p)}$ in $[a, b]$. Then for every integer $n(\geqq p)$ there exists a real polynomial $Q_{n}(x)$ of degree $\leqq n$ such that
(a)

$$
Q_{n}^{(k)}(x) \geqq 0 \quad \text { throughout }[a, b],
$$

$$
\max _{a \leq x \leq b}\left|f(x)-Q_{n}(x)\right|
$$

(b) $\quad \leqq 2\left(1+\frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)^{p-k}(b-a)^{p}\left[k!\prod_{\nu=k}^{p-1}(n+1-\nu)\right]^{-1} \omega\left(\frac{b-a}{n-p+1}\right)$
(an "empty" product means always 1).
Theorem 5 is proved by means of the following Theorem 6, in the same way that Theorem 1 was proved by means of Theorem 4.

Theorem 6. Let f be a real function having a bounded p th ($p \geqq 0$) derivative throughout $[a, b]$. Let $\omega(x)$ be as in Theorem 5 . Then for every integer $n\left(\geqq p\right.$) there exists a polynomial $P_{n}(x)$ of degree $\leqq n$ such that throughout $[a, b]$

$$
\left|f(x)-P_{n}(x)\right| \leqq\left(1+\frac{\pi}{4}\right)\left[\frac{\pi}{4}(b-\alpha)\right]^{p}\left[\prod_{\nu=0}^{p-1}(n+1-\nu)\right]^{-1} \omega\left(\frac{b-a}{n-p+1}\right) .
$$

5. Theorem 6 follows from Theorem 3 by Jackson's method ([3], pp. 15-18). For the reader's convenience we hereby prove Theorem 6 in full. We do it by induction on p. Suppose first $p=0$. Let n be an integer $(\geqq 0)$. Let $\phi(x)$ be the function whose graph is obtained by joining successively the points $\left(\xi_{\nu}, f\left(\xi_{\nu}\right)(\nu=0,1, \cdots, n+1)\right.$ of the x, y plane, where $\xi_{\nu}=a+[(b-a) /(n+1)] \nu$. For $\nu=1,2, \cdots, n+1$ we have $\left|\phi\left(\xi_{\nu}\right)-\phi\left(\xi_{\nu-1}\right)\right| \leqq \omega[(b-a) /(n+1)]$. Hence, if $a \leqq x_{1}<x_{2} \leqq b$, then

$$
\frac{\left|\phi\left(x_{2}\right)-\phi\left(x_{1}\right)\right|}{x_{2}-x_{1}} \leqq \frac{n+1}{b-a} \omega\left(\frac{b-a}{n+1}\right) .
$$

By Theorem 3, there exists a polynomial $P_{n}(x)$ of degree $\leqq n$ such that throughout $[a, b]$

$$
\left|\phi(x)-P_{n}(x)\right| \leqq \frac{n+1}{b-a} \omega\left(\frac{b-a}{n+1}\right) \frac{\pi}{4} \frac{b-a}{n+1}=\frac{\pi}{4} \omega\left(\frac{b-a}{n+1}\right)
$$

Clearly, for every $x \in[a, b],|f(x)-\phi(x)| \leqq \omega[(b-a) /(n+1)]$. Therefore, throughout $[a, b],\left|f(x)-P_{n}(x)\right| \leqq[1+(\pi / 4)] \omega[(b-a) /(n+1)]$. This proves Theorem 6 when $p=0$. Suppose the theorem was proved for some $p-1(\geqq 0)$. We shall prove it for p. Let n be an integer $\left(\geqq p\right.$). By our hypothesis there exists a polynomial $P_{n-1}(x)$ of degree $\leqq n-1$ such that throughout $[a, b]$

$$
\begin{aligned}
\mid f^{\prime}(x)- & P_{n-1}(x) \mid \\
& \leqq\left(1+\frac{\pi}{4}\right)\left[\frac{\pi}{4}(b-a)\right]^{p-1}\left[\prod_{\nu=1}^{p-1}(n+1-\nu)\right]^{-1} \omega\left(\frac{b-\alpha}{n-p+1}\right) .
\end{aligned}
$$

By the lemma, there exists a polynomial $P_{n}(x)$ of degree $\leqq n$, such that

$$
\begin{aligned}
& \max _{a \leqq x \leqq b}\left|f(x)-P_{n}(x)\right| \\
& \leqq\left(1+\frac{\pi}{4}\right)\left[\frac{\pi}{4}(\mathrm{~b}-a)\right]^{p}\left[\prod_{\nu=0}^{p-1}(n+1-\nu)\right]^{-1} w\left(\frac{b-a}{n-p+1}\right) .
\end{aligned}
$$

This completes the proof.

References

1. N. Ahiezer and M. Krein, On the best approximation of differentiable periodic functions by trigonometric sums (Russian), Doklady Akad. Nauk SSSR, XV (1937), 107-112.
2. J. Favard, Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynomes trigonométriques, Bull. des Sciences Math. LXI (1937), 209-224, 243-256, in particular pp. 219, 220, and 223.
3. D. Jackson, The theory of approximation, Amer. Math. Soc. Colloq. Publ. Vol. XI, New York, 1930.

Aerospace Research Laboratories, Wright-Patterson AFB, Ohio AND
National Bureau of Standards, Washington, D. C.

[^0]: Received March 17, 1964.
 ${ }^{1}$ By degree of a polynomial we mean its exact degree. (The degree of the polynomial 0 is -1).

