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ON THE PHASE-SHIFT FORMULA FOR
THE SCATTERING OPERATOR

TERUO IKEBE

Let us denote by S\k\ the scattering operator attached to
a fixed value | k |2 of the kinetic energy. We shall show by
a method different from that of Buslaev [2] that S\k\ is the
identity plus a Hilbert-Schmidt integral operator under a
weaker assumption on q(x), and give a way of unique deter-
mination of the phase shifts in terms of which S[k\ can be
represented as the orthogonal direct sum of multiplication
operators by a number with absolute value equal to unity.

The scattering operator as well as the wave operators concerned
with the Schrodinger equation in 3-space has been an object of various
investigations among which M. Sh. Birman and M. G. Krein have
established in [1] that the scattering operator corresponding to any
fixed value of the incident kinetic energy is equal to the identity plus
a trace-class operator if the difference of the resolvents is in the trace
class or if it is completely continuous and the difference of some in-
tegral power of the resolvents is in the trace class. They have also
introduced what they call the spectral shift function that is very
similar to the phase shift we shall define later. Their method is quite
abstract so that it may be applicable in principle to a wide range of
problems. The concrete case of the Schrodinger operator, however,
may be of interest, too and admit of more concrete approaches. In
this connection V. S. Buslaev [2] has studied the Schrodinger operator
— A + q(x), where the potential q(x) has been assumed to be real-valued
and infinitely differentiable and to decrease near infinity faster than
any power of \x\~λ, and presented an explicit way of obtaining the
scattering operator in the form of the identity plus an integral operator
when the kinetic energy is fixed. In the special case of a spherically
symmetric potential T. A. Green and 0. E. Lanford, III [3] derived
with mathematical rigor the phase-shift formula for the scattering
operator.

Under our assumption on q(x) stated below, that Sm equals 1+ (Hilbert-
Schmidt operator) is included in the more general theorem mentioned
above of Birman and Krein [1], though the approaches are different.
Since we shall base our argument principally on the eigenfunction ex-
pansion and an identity involving the wave and scattering operators,
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we want to collect here some results on the eigenfunction expansion
from [4] together with our assumption on q{%).

We assume:
(A) q(x) is a real-valued function of x e E — Rz which is locally Holder

continuous except at a finite number of singularities and is in
L2{E). Moreover, there exist positive constants h, Co and Ro such
t h a t I q ( x ) \^C0\x \-3~h f o r \ x \ ^ R , . 1

Then the operator A = — A + q(x) with D(A) — C~(Ef determines in
L2(E) a unique self-adjoint extension H that is lower semibounded,
while we denote by Ho the correspnding operator for the case q(x) = 0.
It is known that H = Ho + V and D(H) = D(H0) c D(V), where V is
the operator in L2(E) of multiplication by q{x).

There exist the (improper) eigenfunctions φ(x, k), ke itf,3 associated
with the (improper) eigenvalues | k |2 > 0 of the Schrodinger equation
— Δφ + q(x)φ = \k\2φ, that have the asymptotic expansion:

(φ(x, k) = β'*- - -^-e^ i 'Ffl k I, -ωk, -ωx)

\F(\ k I, ω, a/) = Λ^\ φ(x, \ k |, -

and that have the property:

'φ(x, k) is bounded and uniformly continuous in x e E and

(1.2) keD, D being any compact domain of M not containing

,the origin.

The eigenfunctions of Ho are eίk'z and the eigenfunction expansion in
this case involves the ordinary Fourier transforms

(1.3) Uk) = (2ττ)-3'2 lim ( e~ik' f(x)dx (f(x) e L2(E)f

and the whole L2(E) maps onto L2(M) in a one-to-one way. However
1 This assumption is stronger than (A) of [4], where we assumed that

q(x) = o(\x\ ~ z ~ h ) . \x\=( Σ (a V ) * , x = (x1, x 2 , x s ) e E .
\i=i /

2 D(A) = domain of A.
3 M = Rs, but it will be convenient to distinguish the "momentum" or "Fourier"

space M = set of all wave vectors k from the "configuration" space E.
4 ωx = x/\ x I, ωjc = kl\ k \. All ω's are unit vectors. φ(x, \ k \, ω) = φ(x, k) if k = (| /c |, ω).

/c x is the scalar product of fc and x.
The first equation of (1.1) follows immediately from Lemma 3.2 (p. 11) of [4]

and the integral equation (see [4], p. 17)
1 f βi\k\ \x-y\

φ(x, k) = e™'* - — η——-rq(y)φ(y, k)dy .
4ττ j \ x y \

5 lim I — limit in the mean of for JV -> °o.
JE )\x\^N
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φ(x, k) can map only a part of L2(E) onto L2(M). Nemely let H —

Γ XdEλ and let f(k) = (2τr)-3/2 lim ( φ(x, k)f(x)dx for f(x) e L2(E). Then

f(k) is in L2(M) and does not depend on the projection of f(x) on
E0L2(M), so that the mapping f(x)->f(k) transforms (I - EQ)L2(E)
in a one-to-one manner onto L2(M). Of course the Parseval relation
and the inverse transform formula hold:

/II2 = Il/Hi2uf) , (/, 9) = (/, Q)L2(M) ,

f(x) = (2ττ)-3/2 lim ( φ(χ, k)f{k)dk ,6

where f(x) e (I — E0)L2(E). Moreover, we have the diagonal represen-
tation of H that reads as follows:

(1.4) (Hf)(x) = (2ττ)-3'2 lim \k\Wx, Jc)f(k)dk
JM

x (f(x)e(I-E0)L2(E)ι

Next let us take a look at the wave and scattering operators.
Under our assumption (A) the wave operators

(1.5) W± = strong limit e

itπe-itH°
t->±oo

are known to exist and be isometries with domain L2(E) and range
(I — E0)L2(E), which enables us to define the scattering operator

(1.6) S = W*W_

which is unitary. Some fundamental properties of these operators are:

( ( I - E0)W± = W± , HW± = W±H0 ,
( 1 ' 7 ) [W*±H=HQWt, SH0(zH0S,

and the following representation for WΛ will also be used later:

(1.8) (W+f)(x) = (2ττ)-3'2 lim ί φ(x, -k)fo(k)dk .

2. Representation of the scattering operator in the Fourier space.

LEMMA 1. For any ueD(H) = D(H0) and veL2(E)

(2.1) (Su, v) = (u, v)-i\~ {eitH*W%Ve-itΞ»u, v)dt .
J—oo

6 II II and ( , ) are the usual norm and inner product in Lz(E). The subscript
Lι(M) shows that the norm and inner product are taken in Lz(M). lim =
limt in the mean of , for N -> «>.
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Proof. We have

jL(eitHe-itH°u, v) = i(eiiBVe-itM*u,, v) .
cut

Integrating the above relation from — <χ> to + co we obtain in view
of (1.5)

([W+ - WJ\u, v) = i (" (eitBVe-itB«u, v)dt .

If we replace v by W+v, we have on the one hand, according to the
definition (1.6) of S,

([TΓ+ - WJ\uf W+v) - (uy v) - (Suf v)

and on the other

i Γ (eitHVe-itH°u, W+v)dt = i Γ (WteitHVe"itBou9 v)dt
J — CO J—CO

= i Γ (eίtH»TΓί Ve-itB»u, v)dt ,
J—oo

where we have used (1.7). Combining these two we arrive at (2.1),
which was to be proved.

THEOREM 1. The scattering operator S is given the following
representation in the Fourier space:

(2.2) (Su)ϊ(k) = U0(k) - i ( \k\F(\k\,ω, ω')uQ{\k|, ω')dωn

a.e., where F(\ k\, a), ωf) is given by (1.1), o) = cok — k/\ k \ and Ω is
the totality of all unit vectors a)'.

Proof. We see from Lemma 1 that for u e D(H) and v e L2(E)

(2.3) (Su, v) - (u, v) = ~i Γ (Ve~i%B*y,, W+e~itH°v)dt .
J—oo

Using (1.8) and the diagonal representation of Ho (which is obtained

7 For the definition of ύo(k) see (1.3).
In (2.2) F(\h\,ωfω') can be replaced by F(\ k\, — ω', — ω), which results in the

integration with respect to the incident directions according to (1.1). Indeed we
have in general

φ(χ, I Λ I, ω)q(x)\jp(x, \ k |, ωf) + — ) \χ__y

and the right hand side is symmetric in ω and ω'.
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from (1.4) with φ(x, k) replaced by eik'*)9 we have

(2.4) (W+e-itH<>v)(x) = (2π)-*'2 lim ( φ(χ, -k^
JM

(2.5) (Ve-itH°u)(x) = (2π)~3l2q(x) lim f eik*'*e
JM

On the other hand

(2.6) J == (Su, v) - (u, v) = ( l{Su)7{k)$Jk) - ύo(k)¥Jk)]dk ,
JM

as is seen from the Parseval relation for the ordinary Fourier trans-
forms. Now let us suppose that uQ and v0 are in C~(M),8 which in
view of the condition that q(x) e Lx allows us to freely interchange
the integration order except for the integration with respect to t.
Putting together (2.3), (2.4), (2.5) and (2.6) we have

(2.7) J - -i(2π)~ 3 Γ dt [ q(x)dx \ β«2 β -
J-oo )E JM

x uo(k2)dk2 \ φ{x, - k ^ ^

= - ΐ ( 2 π r 3 l i m Γ dt[ \ d M W 1 1 * 1 1 '

x ^0(^2)^0(^1) \ eίkrXq(x)φ(x, —k^dx

x ) \ eik*'xq(x)φ(x, -kjdx ,

where in the last expression the ^-integration has been interchanged
with the ^-integrations, which is possible because of the ^-integration
being taken over a finite interval. We can now proceed formally as
follows: making use of a symbolic relation l i m ^ (l/ττ)(sin tλ/λ) =
<5(λ), δ(λ) being Dirac's delta function,

(2.8) J = - - ^ ( \ δ(\ h |2 - I k2 \2)uQ(k2)Wύ

Γl eik*'*q(x)φ(x, -k^x

8 By C7(M) is meant the totality of infinitely differentiable functions of k € M
whose support is compact and does not contain the origin.
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X

= -ί \ Γ( \k\F(\k\, ω, ω')fio(l * I, ω')dω'

(by (1.1)).

A justification of the above procedure is the following. Viewing the
expression

, -kjdx]

| s a function of \k2\ we can show that this is Holder continuous in
I fc21 For locally Holder continuous functions it is known that Fourier's
single integral formula holds.9 (For more details see the Appendix.)

Since vo(k) is arbitrary in C0°°(M), (2.2) follows from (2.6), (2.7) and
(2.8) for uQ(k) e C?(M). However, the integral operator on the right
side of (2.2) always makes sense for ϋo(k) e L2{M), since F(\ k\, ω, ω')
is a continuous function of o) and α>' on Ω for any fixed | k | > 0, as
is easily seen from (1.1) and (1.2),10 and hence defines a completely
continuous operator of the Hilbert-Schmidt type on L2(Ω), and since
any uo(k) 6 L2(M) can be regarded as an element of L2(Ω) for almost
every fixed value of | k . Thus (2.2) holds for any u e L2(E)(u0 € L2(M)).

Now let us consider operators Sr(r > 0) on L2(Ω) defined by

(Sru)(ω) = u(ω) - i [ τF{τ, ω, ω')u(ω')dω'(u(ω) e L2{Ω)) .

As has been pointed out in the above proof of Theorem 1, Sr is equal
to the identity plus a completely continuous operator of the Hilbert-
Schmidt type and hence is invertible if it has no nontrivial null vector.
Moreover, we can assert that Sr is unitary. Indeed fix any r > 0, and
let dr>2(s) be a real-valued smooth function of s > 0 with its support
contained in the interval (r — ε, r + ε) and with the property

[°δr,2(syds = 1 (0 < ε < r) .
Jo

u(ω) δr>ζ(\ k\) lies in L2(M) for any u e L2(ί2) and the unitary character
of S implies

( dω = \\ S(u-dr,2) ||2 = || u-3r,ζ ||2

9 See Zygmund [5], Chapter II, § 6 and Chapter XVI, § 1. A complete justifica-
tion of this fact will be given in the Appendix.

1 0 The absolute convergence of the integral defining F(\ k\, ω, ωf) is seen from
the fact that q(x)eLi(E) (note that we have assumed q(x) = o(| x\-z-h)).
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= I s2δr s(sfds \ I u(ω) \2dω .
JO JΩ

Thus if we let ε —> 0, we obtain from the left and right sides

\ I Sru(ω) \2dω = \ \ u(ω) \2dω .
JΩ Jfl

This shows that Sr is an isometry and hence unitary, because this
also shows the nonexistence of nontrivial null-vectors. Thus we have
the following

THEOREM 2. The scattering operator S is a continuous sum of
Slk{ with the weight function \k\2:

\\Su\\2 =

where each Slkl is a unitary operator on L2{Ω) of the form Sιkι =
I — i\k\ Flk], Flkl being a completely continuous integral operator on
L2(Ω) of the Hilbert-Schmidt type.

3* Phase shifts* Phase-shift formula* Let us consider our whole
problem now starting from the potential qe(x) = εq(x) with a real para-
meter ε instead of q(x) and agree to add a subscript ε to everything
concerned; e.g. φe(x, k), Hs, S2, Ss>]k] etc. We have considered in [4]
a Banach space B of all continuous functions u(x) tending uniformly
to 0 as I x I —> oo, with the norm \\u\\B = m&xxeE \ u(x) |, and operators
Tκ(Imfc > 0) on B:

(Tκf)(x) = - - ί - ( e™lX~yl q{y)f{y)dy .M
4π J E I x — y I

Clearly TKtB — εTκ has the same properties as Tκ.

LEMMA 2. In addition to the properties (1.2) φe(x, k) has the
property that it depends continuously on ε(0 gΞ ε S 1) uniformly for
x e E and k varying over a compact domain of M not including 0.

Proof. φe(x, k) is expressible in the following way:11

φs(x, y) = eίk-k + ve(x, k) ,

P f 0Ϊ\k\ \x-y\

p,(x, k) - ep(x, k) = - -f- -f vq{y)eik'ydy .
Aπ JE I x — y\

11 See [4], pp. 17-18.
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It is, therefore, enough to prove the assertion for vs(x, ft). We have

I vSi(x, ft) - vsp, k) I
^ l i d - r l f c l l β lrχ(.,fc) - ( j - τ, fc l,s2rχ( , fc)iu

+ II ( i - τmy2y\\B ii j>β i(., fc) - p B f ( . , A?) ιu .

As is easily seen, || pβi( , ft) | |Λ is bounded and \\p8l( , k) - pβ2( , ft) |U ̂
const. | ε, — ε21 in the domain of the variables specified in the lemma.
On the other hand, one can see from the continuity in ε of T]kuz and
from the existence of (/— T^^)"1 that (/— T{hu^Γx is continuous in ε
in the operator norm and necessarily bounded in the same domain.12

The above inequality together with these remarks shows the asserted
continuity.

LEMMA 3. Fs(\k\, a), a)') is uniformly continuous in the totality
of e, I ft I, ω and ωf for O ^ ε ^ l , 0 < a ^L\k\ ^ β < oo and ω, ω' e Ω.

Proof. The continuity in | k |, ω and ωf follows from Lemma A in
the Appendix, where we should note that the modulus of continuity is
a bounded function of ε(0 ̂  ε ^ 1), which is seen from the boundedness
in ε of φe(x, ft) which has been incidentally shown in the statement of
Lemma 2. What remains is to prove the continuity in ε. But this is
a direct consequence of Lemma 2 and the absolute integrability of the
defining integral for Fs(\ k |, α>, ω'), which completes the proof of the
lemma.

Now we proceed to define the phase shifts appropriately. S9tm,
which is defined on L2(Ω) and corresponds to the potential qe(x), can
be expressed as S2,m — I — i\k\ Fs>ιkh where Fs>ιk] is the integral
operator with the kernel Fξ(\ ft |, α>, α/). We shall show that Sg,|Λ1 is
continuous in ε and | ft | in the sense of the operator norm f or 0 ̂  ε ̂  1
and I ft I > 0. Indeed we have for u(ω) e L2(Ω)

h,lhι - SH,lk2l)u \\l2iΩ) = || (I ft, I F2χΛkύ - I ft21 FHΛ

S 2(| ft, I - I ft21)21| FSvlkllu \\l2iΩ) + 2 I ft21
21| (Fh,ιhl - F

^ 2(| ft, I - I ft21)21| u \\l2iΩ) j f l j f l I F9ι(\ h I, ω, a/) \>dωdω'

+ 2 I ft21
21| u \\l2iΩ) \ \ I Ftι(\ K I, ω, ω') - Fζ2{\ ft21, ω, ω') fdωdω' .

With the aid of Lemma 3 the right-hand side can be made arbitrarily
small by choosing | ε, — ε21 and | | ft, | — | ft21 | small enough.

Let dSt]kUn, w = 1, 2, . . . (I δε>m>11 ^ I dζ>lkU21 ^ . . . ^ 0) be the eigen-

12 See the first few lines of p. 16 of [4].
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values of Fζtlk], enumerated according to their (finite) multiplicity. In
view of the continuity of £ ε , m , and accordingly of F2,m, the δe,]k]tn

are seen to be continuous functions of ε and \k\. We have δet]kUn—*0
(n-+oo) because of the complete continuity of FsM. Also we can
choose the associated eigenvectors Φ2>\k\,n(co) e L2{Ω) so that they be con-
tinuous in ε and \k\. From the fact that S ε > m is unitary (Theorem 2)
it follows that 1 — i \ k \ δe,]kUn are the eigenvalues of S2flkl with absolute
value equal to 1, and hence 1 — i \k\ δZΛkUn = β2<**.ι*ι»», where ty,\k\tn

 a**e
real. In the case ε = 0 all the eigenvalues of S0,m are 1. We can,
therefore, determine 7)2t\k\,n uniquely in view of the continuity in ε and
|fc|, by the condition \im^oηζy]kUn = 0. These considerations enable us
to give the following

THEOREM 3. The following phase-shift formula for the scatter-
ing operator holds:

(Su)o(k) - Slkιu(\ £

where Φm,n = Φ1}\kUn(e = 1) and where ηιkUn = r]lΛkUn{e — 1) are quanti-
ties called the phase-shifts which are uniquely determinable by the
condition lims^Q7jeΛkUn = 0 and are continuous in \k\.

In the spherically symmetric potential case we can first expand
the wave function into the sum of spherical harmonics components,
and discuss each component radial function separately. As a result
we see13 that in each component space the scattering operator is a
multiplication by a function of the form eUv^ (k is real positive) if
we pass to the (one-dimensional) Fourier transform of the radial func-
tion. In this case we can take as ΦιkUn(ω) the spherical harmonics.
Thus Φ[kUn(ω) will play a role similar to that of the spherical har-
monics, though the latter are independent of \k\.

We can also deduce a formula for the scattering cross-section
Q(| k I) corresponding to the situation where plane waves of the kinetic
energy | k |2 are incident upon the scatterer with potential q(x). Q(\ k |)
is defined as a quantity proportional to the integral over all directions
(Ox of the square of the coefficient of the | x I"1 term in the asymptotic
expansion

φ(x, k) = eίk'x - I x l-^πe^^FQ k \, -ωkf -

It is not difficult to show by means of the phase-shift formula (Theorem 3)
that Q(\k\) is equal to (1/| k |2) Σ~=i s i n 2 ^ , ^ up to a constant. This is

13 Cf. Green-Lanford, III [3].
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well known when the potential is spherically symmetric.

APPENDIX. Rigorous derivation of (2.8).
We shall give a justification of the use of the delta function in

the proof of Theorem 1.

LEMMA A. F(rl9ωur2yω2) = \ eiri<ύrXq(x)φ(x,r2, — ωΛdx is uniformly
JE

Holder continuous in r1 for any fixed r2 and in r2 for any fixed ru

where 0 < a g τlf r2 ^ β < oo and a)19 a)2 e Ω.

Proof. We first show that v(x, r, ω) = φ{x, r, ω) — eirω'x is uni-
formly Holder continuous in r{a ^r^β,ωeΩ,xeE). (For the notation
see the beginning part of the proof of Lemma 2. Note that we con-
sider now the case ε = 1.) We have

(A.I) v(., rlf ω) ~ *(., r2, ω) = [ ( I - Try - ( I - Try\p(., rlf ω)

+ ( I - Γ ^ ί ^ i , o)) - p(., r2, ω)] .

We can see as in the proof of Lemma 2 that

Try - (I - T r 2 r \\B <* Cλ I rλ - r21 ,

where Cλ is a constant independent of rλ and r2. On the other hand
| |p( , r l f ω) \\B ̂  Ca, C2 being independent of rx and ω. Thus we have
I [(I - Try -{I- TryWxt rl9 ω)\^C,\r1~r2\ with C3 independent
of any variable. As to the second term of (A.I) we have

1

I p(χ, ru ω) - p(x, r»ω)\£-±
1 girι\x-y\

f ίr. ,
\

βir2\x—y\ 1

Q(V) 1 #

1 Q(V) 1
x — y4π

r.-rA \q(y)\dy
JE

C i \ r 1 - r i \ \ ] y l \ q ( y ) \ d y .
J xx — y

The last integral can be seen to be bounded by a constant independent
of xeE (see [4], Lemma 3.1, p. 11). | | ( / — T^ΓΊU i s bounded inde-
pendently of r2 (see the proof of Lemma 2). Thus we have

I v(%, ru ω) - v(x, r2, ω) \ ^ C61 rλ - r2 \ ,

where C6 does not depend on x and ω, which shows the asserted uniform
Holder continuity (with exponent equal to 1).

Now let us return to the function F(ru ωly r2, ω2) which can be-
written as the sum G(r2) + H{r2), where



ON THE PHASE-SHIFT FORMULA FOR THE SCATTERING OPERATOR 521

G(r2) = \ eiriωvx+ίr2ωrxq(x)dx ,
JE

H(r2) = 1 eiri<ol'xq(x)v(x9 r2, ω2)dx .
JE

First we estimate | G{r[) — G(r") \. We have

ί G(n') - G « ) I ̂  ( I ίr^'x - eir*ω* χ \ \ q(x) \ dx
JE

^ 2 1 " * I r^ - r? \Θ [ \x\Θ\ q{x) \ dx ,
JE

where we have made use of the inequality | eίa — eίb \ g 21"0 \a — b
and where 0 < θ < h (see the assumption (A)) so that the integral

I x \θ I qr(a ) I da?

is finite, which in turn gives us the estimate

with C7 independent of the other variables. For H(r2) we can easily
obtain from the uniform Holder continuity in r or v(x, r, ω) shown
before, the estimate

I JEL\ι 2/ - " V 2 / I == ^ 6 ^2 ' 2 1 1 1 VV1^/ I ^"^
Js

These two estimates together prove the lemma (the Holder continuity
in rλ can be treated similarly).

The following lemma is concerned with Fourier's single integral
formula, which is stated in the new eddition of A. Zygmund's book
[5], but not in the old one. For completeness' sake we shall give a
proof of it.

LEMMA B. Let f{x) be integrable over (—^, ©o) and uniformly
Holder continuous over [a, β]. Then

f(x) = lim ±\ ĤLM^ V± fiy)dy
λ_>oo 7r J-oo x — y

uniformly for x e [ar, β'\, a < a! < βf < β.

Proof. If we note the well known formula

y

π J-oo x — y π J-°° u

what we have to show turns out to be the following:
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(A.2) i- Γ s i n X ( x y)[f(x) - f(y)]dy-> 0 , asλ-oo
π J-oo x — yπ J-oo x — y

uniformly for x e [a', /3'].
We split the integral into three parts:

(A.3) i. Γ Binχ(χ-y)w _ / ω ] % = r s

 + r * + r ;
7Γ J-«> # — 2/ J-°° Jα -δ jίc+δ

where we have chosen δ > 0 such that x ± § lie in [α, /S](a? e [α', /3']).
For any given ε > 0 we have with θ as the exponent of Holder con-
tinuity

^ const. I \x — y \θdy = c o n s t . — < ε
a-δ Ja -δ X — y\ θ— y

by choosing δ sufficiently small. The last term of (A.3) is the sum
of two integrals:

Ja + δ π δ X — y 7Γ /

The first integral tends uniformly to 0 as λ —* oo 9 since it equals

1 f°° sir
π Jλδ %U

As to the second integral, since

Jδ

is continuous in xe[af, β'], the Riemann-Lebesgue lemma holds uni-
formly with respect to x. A similar argument is applicable to the
first integral on the right side of (A.3). Thus we have obtained the
result (A.2).

Now let us derive the first line of (2.8). In (2.7) we have the
function F(\ k21, ω2, \ kx |, ω^uQ{\ k21, cy2)v0(|A;i|, ^i). We first integrate
with respect to o)1 and a)2. Then this will turn out to be a function
of the form /(|fci|,|&2 |) which is uniformly Holder continuous, for
instance, in \kχ\ for |fci| f |fc2 | in some finite interval exclusive of 0,
as is seen from Lemma A and from ύQf v0 being assumed to be in
C?(M). Finally the application of Lemma B and the theorem on uni-
form convergence yields the required result.



ON THE PHASE-SHIFT FORMULA FOR THE SCATTERING OPERATOR 523

REFERENCES

1. M. Sh. Birman, and M. G. Krein, On the theory of wave and scattering operators,
Dokl. Akad. Nauk SSSR, 144 (1962), 475-478.
2. V. S. Buslaev, Trace formulas for the Schroedinger operators in 3-space, Dokl.
Akad. Nauk SSSR, 143 (1962), 1067-1070.
3. T. A. Green, and 0. E. Lanford, III, Rigorous derivation of the phase shift formula
for the Hilbert space scattering operator of a single particle, J. Mathematical Phys.
1 (1960), 139-148.
4. T. Ikebe, Eigenfunction expansions associated with the Schroedinger operators and
their applications to scattering theory, Arch. Rat. Mech. Anal. 5 (1960), 1-34.
5. A. Zygmund, Trigonometric series, I, II, Cambridge, 1959.






