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SOME CONTAINMENT RELATIONS BETWEEN CLASSES
OF IDEALS OF A COMMUTATIVE RING

ROBERT W. GILMER, JR.

The first section of this paper is devoted to proving the
following theorem. Let D be an integral domain with identity.
Let & be the set of prime powers of D, 3 ^ the set of
valuation ideals of D, and let k be the quotient field of D.
5̂ ~ g & if and only if the following conditions hold: (i) Each
prime ideal P of D defines a P-adic valuation in the sense of
van der Waerden, and (ii) every valuation of k finite on D is
isomorphic to a P-adic valuation for some P.

The second section considers three additional sets of ideals;
the set & of primary ideals, the set £f of semi-primary
ideals, and the set Szf of ideals A such that the complement
of some prime ideal is prime to A.

Commutative rings in which various containment relations exist

between the sets 3 ^ , &*f £?, j y , and £f are also considered. Most

of the results of this section represent applications of previous results

of the author.
Let D be an integral domain with identity having quotient field

K. An ideal A of D is said to be a valuation ideal provided there
exists a valuation ring Dυ with D £ DυS K such that ADΌ Π D — A
More specifically, if Dυ is the valuation ring of the valuation v of K,
we may say A is a v-ideal. We denote by J^~(D) the set of valuation
ideals of the domain D and by &(D) the set of primary ideals of D.
Where no ambiguity exists we may speak of 3^ and <̂ \

This paper is closely related to a paper of Gilmer and Ohm [5],
and frequent reference is made to their results. In [5] the relations
3^ S a?, 3^ = <^, and & S ^ were investigated. That paper arose
as a result of the following observation in [8, p. 341]:

If D is a Dedekind domain, then ψ' — &. But if D is Dedekind,
the sets ^(Ό) of prime powers of D and &(D) coincide. Hence if
D is Dedekind 3^ = ^ . In §2 necessary and sufficient conditions
are given on a domain D in order that 3^ £ &. In particular it is
shown that 3^ Q & implies 3^ = ^*.

In §3 we consider the set S^{R) consisting of all ideals A of the
commutative ring R such that R — P is prime to A for some prime
ideal P of R. It is always true that <&(R) £ J^{R) and if R is an
integral domain with identity, we also have 3^(i2) £ Jtf(R). The
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relations Sf{R) £ &(R), S*f{R) £ ^(R) are investigated in §3. In
particular, if R is an integral domain with identity then Stf g ^ if
and only if R is a Priifer domain1 and s/ £ & if and only if iϋ is
almost Dedekind1. The latter is a natural conjecture which is false if

is replaced by 5^.

2* Valuation ideals and prime powers* In [8; p. 341], it is
observed that if D is a Dedekind domain, then 5̂ * = <̂ \ The converse
is clearly false. In fact, it is proved in [5; Th. 3.1, Th. 3.8] that
the domain D with identity has the property 5̂ " = <g? if and only if
D is a one-dimensional Priifer domain.

Because an ideal of a Dedekind domain is primary if and only if
it is a prime power, we also have ^(D) — ̂ (D), the set of prime
powers of D, if D is Dedekind. Theorem 1 gives necessary and
sufficient conditions on a domain with identity in order that 5̂ * £ &>.
In particular, an example in this section shows that such a domain
need not be Dedekind.

THEOREM 1. Let D be an integral domain with identity. Let
& be the set of prime powers of D, 5^ the set of valuation ideals
of D, and let k be the quotient field of D. y £ & if and only if
the following conditions hold:

(i) If P is a nonzero proper prime ideal of D, ΠSU-P* = (0)
and the function vp: D — {0} —> Z defined by vp(x) = i if xe Pi — Pi+1

can be extended to a valuation of k.
(ii) Every valuation of k finite on D is isomorphic to some vp.

Proof. We first show that D is one-dimensional. Thus suppose
Plf P2 are prime ideals of D such that (0) c Pt c P2 c D. There
exists a valuation ring Ώf containing prime ideals Mlf M2 such that
Mi f)D = P{ [6; p. 37]. There is no loss of generality in assuming
Mi = VΈD — VPjy for some element d of Px. This implies Mλ —
VdFΠ for any k. Now d2Π n DadD' Γ\D and VdFW f] D = P,.
Because 3^ £ ^*, d2U Π D = P[adΠ Π D = Pi for some r, s with
s < r. Hence, P{Ό' Φ P1D

f and in particular, Px £ PIΠ. We choose
peP1- PID'. Then PI £ P ^ ' nDczpD'nDS- PJ)' U Iλ This implies
PJD' n ΰ ^ Λ and consequently PΎU = pi?'. Now if reP2- Pt we
have rD' 3 pD'. Hence P ^ ' = pΏ' z> rpΠ 3 p2Dr = PW. It follows
that P x3r^Z)' ΠDDV 2 D' Π JD 3 Pi. This contradicts the assumption
that 3^ £ ^ . Hence D is one-dimensional.

1An integral domain J with identity is said to be a Priifer domain if J> is a
valuation ring for each prime ideal P oi J. J is almost Dedekind if Jp is a valua-
tion ring for each prime P of J.
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Now let P be a nonzero proper prime ideal of D and let v be a
valuation of k finite on D and having center P on D. If Dυ is the
valuation ring of v and if Pυ — VPDV> then by passage to (Dυ)Fυ we
may assume v is of rank one. If p is a nonzero element of P, then
i)2De Π D = P s c P for some integer s. Thus P S A c PDυ. This implies
the powers of PDυ properly descend, for if PtDυ = P ί + 1 A , then P*Dυ

is an idempotent ideal of a valuation ring. Hence PιΌv is prime, [5;
Lemma 2.10], FJDfl = P A , and PZ^ = P D, — a contradiction.

We next show that & £ ^ " . In fact, we will show by induction
that Pn is a ^-ideal for all n. Thus if P r is a ^ -ideal and if te
Pr+1DΌ - Pr+2Dυ, then Pr = P r D , Π J5 =) P r + 1 A, n ΰ 2 ί β ΰ n ΰ D
P r + 2 D 0 n f l i P r + 2 . Hence, since Ύ^ S ^ , tDυ Π D must equal P r + 1

so that P r + 1 is a ^-ideal. We have shown in the process of the proof
that if x e Pι - P ί + 1 , yeP™ - P™+\ then xDΌ == P*Dυf yDυ = P m A so
that a?i/A = P m + ί A 3 P™+*+\ Whence ^ e Pm+t - P m + ί + 1 . Hence (i)
holds.

We proceed to show DVp = Dυ. Since DΌ has rank one, it suffices
to show Dυ S Z> v Thus let x/y e Dυ where yeP* - Pt+1. Then a? =
(α/2/)l/ e 2/A = P*DV. Hence ,̂,(0?) ^ ί = vp(y) so that a?/i/ e DVp. There-
fore Dβ p = Dv.

Finally, we show {vp} is the set of nontrivial valuations of k finite
on D. Thus suppose Dw is the valuation ring of a valuation w oί k
having center P c ΰ o n ΰ . As shown previously, if Pw = VPDW, Pw

is minimal in D w and (Dw)Pw = D % . Consequently, P w = ikf̂ , the
maximal ideal of !)„ . We show that the assumption Dw c D v

leads to a contradiction. Thus if Mw is the maximal ideal of Dw, then
ikfw Z) Mv . Hence there exists ξ = a/beDw such that ξ is a unit of
D v , but not of Dw. This implies there exists r > 0 such that a, be

Pr
p_ pr+i a n d a2Dw 5 6 6 α j5w c tfβ^ g p ^ ^ ^ ^ T ( ) c o m p i e t e the proof we

notice α2Dw B P2r+1DW. This follows from a more general result: For
any k, PkDw n JD = P f c since P*DW Π ΰ g P*!?^ n ΰ = F . Hence

contradiction to the assumption ^ ' S ^ shows D w = D v so that
and p̂ are isomorphic.

This shows (i) and (ii) are necessary in order that ψ^ S &
Obviously (i) and (ii) are sufficient.

COROLLARY 1. Using the notation of Theorem 1, if ψ" g ^
D is one-dimensional.

The following example shows that 3^ S & does not imply B is
Dedekind. In fact, D need not be almost Dedekind in the sense of

13].
Let R be a rank one discrete valuation ring with maximal ideal
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M. Suppose also the R — K + M where if is a proper algebraic
extension field over the subfield k (we may take RA (K[X]){X), for
example). If D == k + M, then D is a one-dimensional quasi-local
domain with maximal ideal M, but D is not a valuation ring [5; Prop.
5.1]. Clearly (i) holds in D. Because K is algebraic over k, R is the
integral closure of D. Since R has rank one, R is the only nontrivial
valuation ring containing D and contained in the quotient field of D.
Hence (ii) holds. But R = DVM Π D.

By a slight modification of the example just given we see that
(ii) is independent of (i). For if we take K = F(Y) where F is a
field and Y is an indeterminate over F, then F + M satisfies (i) but
not (ii).

3* A certain set of ideals containing 3^* The first example of §2
shows that a domain in which 5̂ gΞ & need not be almost Dedekind.
Also, numerous examples shows that & S Ŝ " does not imply D is
Prϋfer. But by considering a certain set, to be denoted by J ^ , which
contains both ψ~ and <S% we obtain both these results by replacing
3^ by S/ and ^ by j&, respectively. The set Sf to which we
refer consists of all ideals A such that the complement of P is prime
to A for some prime ideal P 2. We shall consistently use the fact that
if A and P are ideals of the commutative ring R such that 4 g P
and P is prime, then the smallest ideal B of R such that 5 contains
A and such that R — P is prime to J5 is J5 — ̂ LP = {x \ x e R, xm e A
for some m g P}. More to the point as far as we are concerned, R —
P is prime to the ideal A if and only if ADP Π D — A (D a domain).

The following theorem gives the relationship between the sets j y
and 3^.

THEOREM 2. Lei D be an integral domain with identity. Then
i/ cmc? <m£2/ if D is a Prilfer domain.

Proof. It is easy to see that iϊ A is a 'y-ideal, the complement
of the center of v on D is prime to A. Hence 5^ £= J ^ .

Obviously 5^ = J ^ if JD is Prϋfer. Conversely, if sf S 3^ and
if P is a proper prime ideal of D, we shall show DP is a valuation
ring and hence that D is Prϋfer. Thus if %, y are nonzero elements
of D, we let A = (#2/)P. Ae j y , so 4 e ^ Λ and therefore x2e A or
y2eA. If, say, x2eA, then #2m = CZCM/ for some meD — P, άeD.
Hence x/y — d/m e DP. This proves the theorem.

2If A is an ideal of the commutative ring R and xeR, we say x is prime to A
if axe A, aeR, implies aeA [7; p. 223]. A subset N of R is prime to A if each
element of JV is prime to A.
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Before proceeding to consider the relation sf £ & we note that
this condition is meaningful in a ring with zero divisors. Also, the
relation S%? £ & is meaningful for arbitrary commutative rings. We
consider this case. First we need some definitions.

Suppose R is a commutative ring. R is a primary ring* if R
contains at most two prime ideals [1]. A primary domain is a
primary ring without proper divisors of zero. R is called a u-ring if
the only ideal A of R such that VA. = R is R itself. R satisfies
Condition (*) if S^(R)f the set of ideals of R with prime radical, is
a subset of ^(22).

Theorem 1 of [2] states: A ring R satisfies (*) if and only if R
is one of the following:

(a) a primary domain.
(b) a ring, every element of which is nilpotent.
(c) a zero-dimensional u-ring.

or (d) a one-dimensional u-ring having the property that if P and
M are prime ideals of R such that Pa MaR, then (0)^ =
P.

From this result, it is clear that if R satisfies (*), then every
ideal of RP is primary for each prime ideal P of R. But because of
the one-to-one correspondence between primary ideals of R contained
in P and primary ideals of RP, we see that Ssf £ & if and only if
every ideal of RP is primary for each prime P of R. Hence, if R
satisfies (*), then sf £ &. The converse is false, as can be seen by
considering the ring of even integers. The converse is true, however,
in a ring with identity or, more generally, in a u-ring as the follow-
ing theorem shows:

THEOREM 3. Let Rbe a u-ring. If s^ £ &, then R satisfies (*).

Proof. Suppose P and M are prime ideals of R such that Pa
MaR. We let p e P and m e M - P. The ideal A = (mp)M is a in Jtf
and is therefore primary. Since m£ P1Ξ2 V A, pe A. Therefore py =
rmp + kmp for some y0M, reR, ke Z and p(y — rm — km) — 0.
Further y — rm — km = y ^ 0 (mod M) and because P and M are
arbitrary, R has dimension ^ 1. That R satisfies (*) now follows.

Similarly, if & denotes the set of prime powers of the ring R,
then because any ideal of RP is the extension of its contraction in R
[7; p. 223], every ideal of RP is a prime power for each prime ideal P
of R if J ^ £ & .

In view of Theorem 12 and 14 of [4], we may then state
3For the case of a ring with identity, this definition agrees with terminology

of Zariski-Samuel [7; p. 204]. But unlike the case of a ring with identity, an ideal
of a primary ring need not be a primary ideal.
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THEOREM 4. Suppose Ris a u-ring. The following are equivalent
conditions:

(a) J^S^,
(b) every ideal of R with prime radical is a prime power

and (c) R satisfies (*) and primary ideals of S are prime powers.

COROLLARY 2. Let D be an integral domain with identity.
Szf g & if and only if D is almost Dedekind.

In terms of Sf, the set of ideals of JB having prime radical,
Theorem 4 can be stated thusly:

THEOREM 5. Suppose R is a u-ring. The following are
equivalent conditions:

(a)
(b)
(c)
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