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SOME CONTAINMENT RELATIONS BETWEEN CLASSES
OF IDEALS OF A COMMUTATIVE RING

RoBERT W. GILMER, JR.

The first section of this paper is devoted to proving the
following theorem. Let D be an integral domain with identity.
Let <& be the set of prime powers of D, &~ the set of
valuation ideals of D, and let % be the quotient field of D,
7" ¢ &7 if and only if the following conditions hold: (i) Each
prime ideal P of D defines a P-adic valuation in the sense of
van der Waerden, and (ii) every valuation of % finite on D is
isomorphic to a P-adic valuation for some P,

The second section considers three additional sets of ideals;
the set & of primary ideals, the set .5 of semi-primary
ideals, and the set &7 of ideals A such that the complement
of some prime ideal is prime to A.

Commutative rings in which various containment relations exist
between the sets &7, &#, &, &7, and & are also considered. Most
of the results of this section represent applications of previous results
of the author.

Let D be an integral domain with identity having quotient field
K. An ideal A of D is said to be a valuation tdeal provided there
exists a valuation ring D, with D & D, € K such that AD, N D = A.
More specifically, if D, is the valuation ring of the valuation v of K,
we may say A is a v-ideal. We denote by & (D) the set of valuation
ideals of the domain D and by «”(D) the set of primary ideals of D.
Where no ambiguity exists we may speak of & and &.

This paper is closely related to a paper of Gilmer and Ohm [5],
and frequent reference is made to their results. In [5] the relations
7 S, 7 = «&, and & S ¥ were investigated. That paper arose
as a result of the following observation in [8, p. 341]:

If D is a Dedekind domain, then &~ = 2. But if D is Dedekind,
the sets <&#(D) of prime powers of D and «?(D) coincide. Hence if
D is Dedekind & = <?. In §2 necessary and sufficient conditions
are given on a domain D in order that & & <?. In particular it is
shown that 7”& & implies 7" = Z.

In §3 we consider the set .o (R) consisting of all ideals A of the
commutative ring R such that R — P is prime to A for some prime
ideal P of R. It is always true that &(R) S o/ (R) and if R is an
integral domain with identity, we also have 2" (R) & & (R). The
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relations &(R) & «(R), & (R) & &?(R) are investigated in §3. In
particular, if R is an integral domain with identity then .o & ¥~ if
and only if R is a Priifer domain® and &7 & <# if and only if R is
almost Dedekind!. The latter is a natural conjecture which is false if
7 is replaced by .

2. Valuation ideals and prime powers. In [8;p. 341], it is
observed that if D is a Dedekind domain, then & = «°. The converse
is clearly false. In fact, it is proved in [5; Th. 3.1, Th. 3.8] that
the domain D with identity has the property " = «” if and only if
D is a one-dimensional Priifer domain.

Because an ideal of a Dedekind domain is primary if and only if
it is a prime power, we also have (D) = Z?(D), the set of prime
powers of D, if D is Dedekind. Theorem 1 gives necessary and
sufficient conditions on a domain with identity in order that &~ & 7.
In particular, an example in this section shows that such a domain
need not be Dedekind.

THEOREM 1. Let D be an integral domain with identity. Let
P be the set of prime powers of D, 2 the set of wvaluation ideals
of D, and let I be the quotient field of D. ¥~ S F +f and only if
the following conditions hold:

(i) If P is a monzero proper prime ideal of D, Nr=oP" = (0)
and the function v,: D — {0} — Z defined by v,(x) = i ¢f x € P* — Pi+?
can be extended to a valuation of k.

(ii) Ewvery valuation of k finite on D is tsomorphic to some v,.

Proof. We first show that D is one-dimensional. Thus suppose
P,, P, are prime ideals of D such that (0) c P, P,c D. There
exists a valuation ring D’ containing prime ideals M, M, such that
M;ND = P;[6; p. 37]. There is no loss of generality -in assuming
M, =1VdD' = VP, D’ for some element d of P,. This implies M, =
Vd*D' for any k. Now d'D'NnDcdD' ND and VdD' ND= P,
Because "=, d*D'ND = P;cdD'nN D= P; for some r, s with
s < r. Hence, P/D # P.D' and in particular, P, & P;D’. We choose
pe P, — PV, Then PP P:D'NDcCpD'ND < PD' U D. Thisimplies
pD’' N D = P, and consequently P, D' = pD’'. Now if re P, — P, we
have »D' > pD'. Hence PD = pD’ DrpD D pD' = P:D'. It follows
that P,orpD' N D> p D' N D 2 P2 This contradicts the assumption
that ¥~ & &?. Hence D is one-dimensional.
1An integral domain J with identity is said to be a Prifer domain if Jp is a

valuation ring for each prime ideal P of J. J is almost Dedekind if Jp is a valua-
tion ring for each prime P of J.
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Now let P be a nonzero proper prime ideal of D and let v be a
valuation of & finite on D and having center P on D. If D, is the
valuation ring of v and if P, =1/PD,, then by passage to (D,),, we
may assume v is of rank one. If p is a nonzero element of P, then
»’D, N D = P* C P for some integer s. Thus P*D,C PD,. This implies
the powers of PD, properly descend, for if P‘D,= P'*'D,, then P:D,
is an idempotent ideal of a valuation ring. Hence P'D, is prime, [5;
Lemma 2.10], P'D, = PD,, and PD, = P°*D,— a contradiction.

We next show that &2 & 2#°. In fact, we will show by induction
that P" is a wv-ideal for all n. Thus if P~ is a v-ideal and if t€
p+D,— P™*D, then P =P D,NDD>P*D,ND2tD,ND>D
P+D, N D=2 P, Hence, since ¥ = &, tD, N D must equal P!
so that P™ is a v-ideal. We have shown in the process of the proof
that if € Pt — P! ye P™ — P™*' then xD, = P'D,, yD, = P™D, so
that xyD, = P™*'D, D P™***!, Whence xy € P™** — P™+*+1  Hence (i)
holds.

We proceed to show D, = D,. Since D, has rank one, it suffices
to show D, & D,,. Thus let x/y € D, where y € P* — P**', Then 2 =
(xz/y)y cyD, = P'D,. Hence v,(x) =t = v,(y) so that x/ye D,,. There-
fore D, = D,.

Finally, we show {v,} is the set of nontrivial valuations of k finite
on D. Thus suppose D, is the valuation ring of a valuation w of k
having center P D on D. As shown previously, if P, = V' PD,, P,
is minimal in D, and (D,)z, = D%. Consequently, P, = M,,p, the
maximal ideal of D,. We show that the assumption D, C D,,
leads to a contradiction. Thus if M, is the maximal ideal of D,, then
M, > M,,. Hence there exists £ = a/be D, such that & is a unit of
D,, but not of D,. This implies there exists » > 0 such that a, be
Pr — P and ¢’D,56baD, C °D, & P*D,. To complete the proof we
notice a*D, 2 P*+*D,. This follows from a more general result: For
any k, P*D,N D= P* since PD,ND&S P’”D,,p N D = P*, Hence
prit=prpD nD<sa’D, N D56baD, N DcC VD, N DS P, This
contradiction to the assumption " € < shows D, = Dvp so that w
and v, are isomorphic.

This shows (i) and (ii) are necessary in order that 7" & & .
Obviously (i) and (ii) are sufficient.

COROLLARY 1. Using the motation of Theorem 1, if ¥ & F ,
then & = 2 and D 18 one-dimensional.

The following example shows that " & & does not imply D is
Dedekind. In fact, D need not be almost Dedekind in the sense of
[3].

Let R be a rank one discrete valuation ring with maximal ideal
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M. Suppose also the R= K+ M where K is a proper algebraic
extension field over the subfield & (we may take R4 (K[X])y, for
example). If D=k + M, then D is a one-dimensional quasi-local
domain with maximal ideal M, but D is not a valuation ring [5; Prop.
5.1]. Clearly (i) holds in D. Because K is algebraic over %k, R is the
integral closure of D. Since R has rank one, R is the only nontrivial
valuation ring containing D and contained in the quotient field of D.
Hence (ii) holds. But R = D,, N D.

By a slight modification of the example just given we see that
(ii) is independent of (i). For if we take K = F(Y) where F is a
field and Y is an indeterminate over F, then F + M satisfies (i) but
not (ii).

3. A certain set of ideals containing &°. The first example of §2
shows that a domain in which 2°S & need not be almost Dedekind.
Also, numerous examples shows that & & 77" does not imply D is
Priifer. But by considering a certain set, to be denoted by .&, which
contains both & and &, we obtain both these results by replacing
7 by % and & by ., respectively. The set . to which we
refer consists of all ideals A such that the complement of P is prime
to A for some prime ideal P?. We shall consistently use the fact that
if A and P are ideals of the commutative ring R such that A & P
and P is prime, then the smallest ideal B of B such that B contains
A and such that R — P is prime to B is B=A,={x|xcR, xmc A
for some m ¢ P}. More to the point as far as we are concerned, K —
P is prime to the ideal A if and only if AD. N D= A (D a domain).

The following theorem gives the relationship between the sets .o
and 7.

THEOREM 2. Let D be an integral domain with identity. Then
7 . ¥, ¥ =% if and only if D is a Priifer domain.

Proof. It is easy to see that if A is a v-ideal, the complement
of the center of v on D is prime to A. Hence &7 S &7,

Obviously &~ = &7 if D is Priifer. Conversely, if .o & & and
if P is a proper prime ideal of D, we shall show D, is a valuation
ring and hence that D is Priifer. Thus if #, ¥ are nonzero elements
of D, we let A = (xy)p. Ac ., S0 Ac ¥ and therefore 2’c¢ A or
y*e A, If, say, x’€ A, then o*m = dey for some meD — P, de D.
Hence xz/y = d/m € Dp. This proves the theorem.

2If A is an ideal of the commutative ring R and *€R, we say « is prime to A
if ax€ 4, ae€R, implies e €A [7; p. 223]. A subset N of R is prime to A if each
element of N is prime to A.
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Before proceeding to consider the relation .97 & &7 we note that
this condition is meaningful in a ring with zero divisors. Also, the
relation . S & is meaningful for arbitrary commutative rings. We
consider this case. First we need some definitions.

Suppose R is a commutative ring. R is a primary ring® if R
contains at most two prime ideals [1]. A primary domain is a
primary ring without proper divisors of zero. R is called a u-ring if
the only ideal A of R such that VA =R is R itself. R satisfies
Condition (*) if S7(R), the set of ideals of R with prime radical, is
a subset of & (R).

Theorem 1 of [2] states: A ring R satisfies (*) if and only if R
is one of the following:

(a) a primary domain.

(b) a ring, every element of which is nilpotent.

(¢) a zero-dimensional u-ring.
or (d) a one-dimensional u-ring having the property that if P and

M are prime ideals of R such that PCc M C R, then (0), =
P.

From this result, it is clear that if R satisfies (*), then every
ideal of R, is primary for each prime ideal P of R. But because of
the one-to-one correspondence between primary ideals of R contained
in P and primary ideals of R,, we see that . & « if and only if
every ideal of R, is primary for each prime P of R. Hence, if R
satisfies (*), then %7 & «*. The converse is false, as can be seen by
considering the ring of even integers. The converse is true, however,
in a ring with identity or, more generally, in a u-ring as the follow-
ing theorem shows:

THEOREM 3. Let Rbe a u-ring. If &7 S &, then R satisfies (*).

Proof. Suppose P and M are prime ideals of R such that PC
McR. Welet pe Pand me M — P. Theideal A = (mp)y is a in &7
and is therefore primary. Since m¢ P21 A, pec A. Therefore py =
rmp + kmp for some ye M, reR, ke Z and p(y — rm — km) = 0.
Further y —»m — km = y = 0 (mod M) and because P and M are
arbitrary, R has dimension < 1. That R satisfies (*) now follows.

Similarly, if &# denotes the set of prime powers of the ring R,
then because any ideal of R, is the extension of its contraction in R
[7; p. 223], every ideal of R, is a prime power for each prime ideal P
of Rif vy .

In view of Theorem 12 and 14 of [4], we may then state

3For the case of a ring with identity, this definition agrees with terminology

of Zariski-Samuel [7; p. 204]. But unlike the case of a ring with identity, an ideal
of a primary ring need not be a primary ideal.
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THEOREM 4. Suppose R is a u-ring. The following are equivalent
conditions:

(@ e,
(b) every ideal of R with prime radical is a prime power
and (¢) R satisfies (*) and primary tdeals of S are prime powers.

COROLLARY 2. Let D be an integral domain with identity.
S = P iof and only ©f D is almost Dedekind.

In terms of &, the set of ideals of R having prime radical,
Theorem 4 can be stated thusly:

THEOREM 5. Suppose R 1is a wu-ring. The following are
equivalent conditions:

(@) weco£,

b)) <2,

() Yce&e L.
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