SOME CONTAINMENT RELATIONS BETWEEN CLASSES OF IDEALS OF A COMMUTATIVE RING

ROBERT W. GILMER, JR.

The first section of this paper is devoted to proving the following theorem. Let D be an integral domain with identity. Let $\mathscr P$ be the set of prime powers of D, $\mathscr V$ the set of valuation ideals of D, and let k be the quotient field of D. $\mathscr V \subseteq \mathscr P$ if and only if the following conditions hold: (i) Each prime ideal P of D defines a P-adic valuation in the sense of van der Waerden, and (ii) every valuation of k finite on D is isomorphic to a P-adic valuation for some P.

The second section considers three additional sets of ideals; the set $\mathscr Q$ of primary ideals, the set $\mathscr S$ of semi-primary ideals, and the set $\mathscr A$ of ideals A such that the complement of some prime ideal is prime to A.

Commutative rings in which various containment relations exist between the sets \mathscr{V} , \mathscr{P} , \mathscr{Q} , \mathscr{A} , and \mathscr{S} are also considered. Most of the results of this section represent applications of previous results of the author.

Let D be an integral domain with identity having quotient field K. An ideal A of D is said to be a valuation ideal provided there exists a valuation ring D_v with $D \subseteq D_v \subseteq K$ such that $AD_v \cap D = A$. More specifically, if D_v is the valuation ring of the valuation v of K, we may say A is a v-ideal. We denote by $\mathscr{F}(D)$ the set of valuation ideals of the domain D and by $\mathscr{Q}(D)$ the set of primary ideals of D. Where no ambiguity exists we may speak of \mathscr{V} and \mathscr{Q} .

This paper is closely related to a paper of Gilmer and Ohm [5], and frequent reference is made to their results. In [5] the relations $\mathscr{V} \subseteq \mathscr{Q}$, $\mathscr{V} = \mathscr{Q}$, and $\mathscr{Q} \subseteq \mathscr{V}$ were investigated. That paper arose as a result of the following observation in [8, p. 341]:

If D is a Dedekind domain, then $\mathscr{V}=\mathscr{Q}$. But if D is Dedekind, the sets $\mathscr{T}(D)$ of prime powers of D and $\mathscr{Q}(D)$ coincide. Hence if D is Dedekind $\mathscr{V}=\mathscr{T}$. In §2 necessary and sufficient conditions are given on a domain D in order that $\mathscr{V}\subseteq\mathscr{T}$. In particular it is shown that $\mathscr{V}\subseteq\mathscr{T}$ implies $\mathscr{V}=\mathscr{T}$.

In §3 we consider the set $\mathscr{S}(R)$ consisting of all ideals A of the commutative ring R such that R-P is prime to A for some prime ideal P of R. It is always true that $\mathscr{Q}(R) \subseteq \mathscr{S}(R)$ and if R is an integral domain with identity, we also have $\mathscr{V}(R) \subseteq \mathscr{S}(R)$. The

Received April 14, 1964.

relations $\mathscr{A}(R) \subseteq \mathscr{Q}(R)$, $\mathscr{A}(R) \subseteq \mathscr{P}(R)$ are investigated in §3. In particular, if R is an integral domain with identity then $\mathscr{A} \subseteq \mathscr{V}$ if and only if R is a Prüfer domain¹ and $\mathscr{A} \subseteq \mathscr{P}$ if and only if R is almost Dedekind¹. The latter is a natural conjecture which is false if \mathscr{A} is replaced by \mathscr{V} .

2. Valuation ideals and prime powers. In [8; p. 341], it is observed that if D is a Dedekind domain, then $\mathscr{V} = \mathscr{Q}$. The converse is clearly false. In fact, it is proved in [5; Th. 3.1, Th. 3.8] that the domain D with identity has the property $\mathscr{V} = \mathscr{Q}$ if and only if D is a one-dimensional Prüfer domain.

Because an ideal of a Dedekind domain is primary if and only if it is a prime power, we also have $\mathscr{V}(D) = \mathscr{P}(D)$, the set of prime powers of D, if D is Dedekind. Theorem 1 gives necessary and sufficient conditions on a domain with identity in order that $\mathscr{V} \subseteq \mathscr{P}$. In particular, an example in this section shows that such a domain need not be Dedekind.

THEOREM 1. Let D be an integral domain with identity. Let $\mathscr P$ be the set of prime powers of D, $\mathscr V$ the set of valuation ideals of D, and let k be the quotient field of D. $\mathscr V \subseteq \mathscr P$ if and only if the following conditions hold:

- (i) If P is a nonzero proper prime ideal of D, $\bigcap_{n=0}^{\infty} P^n = (0)$ and the function $v_p: D \{0\} \to Z$ defined by $v_p(x) = i$ if $x \in P^i P^{i+1}$ can be extended to a valuation of k.
 - (ii) Every valuation of k finite on D is isomorphic to some v_p .

Proof. We first show that D is one-dimensional. Thus suppose P_1 , P_2 are prime ideals of D such that $(0) \subset P_1 \subset P_2 \subset D$. There exists a valuation ring D' containing prime ideals M_1 , M_2 such that $M_i \cap D = P_i$ [6; p. 37]. There is no loss of generality in assuming $M_1 = \sqrt{dD'} = \sqrt{P_1D'}$ for some element d of P_1 . This implies $M_1 = \sqrt{d^kD'}$ for any k. Now $d^2D' \cap D \subset dD' \cap D$ and $\sqrt{d^2D'} \cap D = P_1$. Because $\mathscr{W} \subseteq \mathscr{P}$, $d^2D' \cap D = P_1' \subset dD' \cap D = P_1^s$ for some r, s with s < r. Hence, $P_1^rD' \neq P_1D'$ and in particular, $P_1 \subsetneq P_1^2D'$. We choose $p \in P_1 - P_1^2D'$. Then $P_1^2 \subseteq P_1^2D' \cap D \subset pD' \cap D \subseteq P_1D' \cup D$. This implies $pD' \cap D = P_1$ and consequently $P_1D' = pD'$. Now if $r \in P_2 - P_1$ we have $rD' \supset pD'$. Hence $P_1D' = pD' \supset rpD' \supset p^2D' = P_1^2D'$. It follows that $P_1 \supset rpD' \cap D \supset p^2D' \cap D \supseteq P_1^2$. This contradicts the assumption that $\mathscr{W} \subseteq \mathscr{P}$. Hence D is one-dimensional.

¹An integral domain J with identity is said to be a *Prüfer domain* if J_P is a valuation ring for each prime ideal P of J. J is almost Dedekind if J_P is a valuation ring for each prime P of J.

Now let P be a nonzero proper prime ideal of D and let v be a valuation of k finite on D and having center P on D. If D_v is the valuation ring of v and if $P_v = \sqrt{PD_v}$, then by passage to $(D_v)_{P_v}$ we may assume v is of rank one. If p is a nonzero element of P, then $p^*D_v \cap D = P^* \subset P$ for some integer s. Thus $P^*D_v \subset PD_v$. This implies the powers of PD_v properly descend, for if $P^tD_v = P^{t+1}D_v$, then P^tD_v is an idempotent ideal of a valuation ring. Hence P^tD_v is prime, [5; Lemma 2.10], $P^tD_v = PD_v$, and $PD_v = P^sD_v - a$ contradiction.

We next show that $\mathscr{P} \subseteq \mathscr{V}$. In fact, we will show by induction that P^n is a v-ideal for all n. Thus if P^r is a v-ideal and if $t \in P^{r+1}D_v - P^{r+2}D_v$, then $P^r = P^rD_v \cap D \supset P^{r+1}D_v \cap D \supseteq tD_v \cap D \supset P^{r+2}D_v \cap D \supseteq P^{r+2}$. Hence, since $\mathscr{V} \subseteq \mathscr{P}$, $tD_v \cap D$ must equal P^{r+1} so that P^{r+1} is a v-ideal. We have shown in the process of the proof that if $x \in P^t - P^{t+1}$, $y \in P^m - P^{m+1}$, then $xD_v = P^tD_v$, $yD_v = P^mD_v$ so that $xyD_v = P^{m+t}D_v \supset P^{m+t+1}$. Whence $xy \in P^{m+t} - P^{m+t+1}$. Hence (i) holds.

We proceed to show $D_{v_p}=D_v$. Since D_v has rank one, it suffices to show $D_v \subseteq D_{v_p}$. Thus let $x/y \in D_v$ where $y \in P^t - P^{t+1}$. Then $x=(x/y)y \in yD_v = P^tD_v$. Hence $v_p(x) \ge t = v_p(y)$ so that $x/y \in D_{v_p}$. Therefore $D_{v_n}=D_v$.

Finally, we show $\{v_p\}$ is the set of nontrivial valuations of k finite on D. Thus suppose D_w is the valuation ring of a valuation w of k having center $P \subset D$ on D. As shown previously, if $P_w = \sqrt{PD_w}$, P_w is minimal in D_w and $(D_w)_{Pw} = D_{v_p}$. Consequently, $P_w = M_{v_p}$, the maximal ideal of D_{v_p} . We show that the assumption $D_w \subset D_{v_p}$ leads to a contradiction. Thus if M_w is the maximal ideal of D_w , then $M_w \supset M_{v_p}$. Hence there exists $\xi = a/b \in D_w$ such that ξ is a unit of D_{v_p} , but not of D_w . This implies there exists r > 0 such that $a, b \in P^r - P^{r+1}$ and $a^2D_w \cdot 56baD_w \subset b^2D_w \subseteq P^{2r}D_w$. To complete the proof we notice $a^2D_w \supseteq P^{2r+1}D_w$. This follows from a more general result: For any k, $P^kD_w \cap D = P^k$ since $P^kD_w \cap D \subseteq P^kD_{v_p} \cap D = P^k$. Hence $P^{2r+1} = P^{2r+1}D_w \cap D \subseteq a^2D_w \cap D \cdot 56baD_w \cap D \subset b^2D_w \cap D \subseteq P^{2r}$. This contradiction to the assumption $\mathscr{V} \subseteq \mathscr{P}$ shows $D_w = D_{v_p}$ so that w and v_p are isomorphic.

This shows (i) and (ii) are necessary in order that $\mathscr{V} \subseteq \mathscr{P}$. Obviously (i) and (ii) are sufficient.

COROLLARY 1. Using the notation of Theorem 1, if $\mathscr{V} \subseteq \mathscr{P}$, then $\mathscr{V} = \mathscr{P}$ and D is one-dimensional.

The following example shows that $\mathscr{V} \subseteq \mathscr{P}$ does not imply D is Dedekind. In fact, D need not be almost Dedekind in the sense of [3].

Let R be a rank one discrete valuation ring with maximal ideal

M. Suppose also the R=K+M where K is a proper algebraic extension field over the subfield k (we may take $R ext{ 4 } (K[X])_{(x)}$, for example). If D=k+M, then D is a one-dimensional quasi-local domain with maximal ideal M, but D is not a valuation ring [5; Prop. 5.1]. Clearly (i) holds in D. Because K is algebraic over k, R is the integral closure of D. Since R has rank one, R is the only nontrivial valuation ring containing D and contained in the quotient field of D. Hence (ii) holds. But $R=D_{v_M}\cap D$.

By a slight modification of the example just given we see that (ii) is independent of (i). For if we take K = F(Y) where F is a field and Y is an indeterminate over F, then F + M satisfies (i) but not (ii).

3. A certain set of ideals containing \mathscr{V} . The first example of §2 shows that a domain in which $\mathscr{V} \subseteq \mathscr{P}$ need not be almost Dedekind. Also, numerous examples shows that $\mathscr{Q} \subseteq \mathscr{V}$ does not imply D is Prüfer. But by considering a certain set, to be denoted by \mathscr{A} , which contains both \mathscr{V} and \mathscr{Q} , we obtain both these results by replacing \mathscr{V} by \mathscr{A} and \mathscr{Q} by \mathscr{A} , respectively. The set \mathscr{A} to which we refer consists of all ideals A such that the complement of P is prime to A for some prime ideal P^2 . We shall consistently use the fact that if A and P are ideals of the commutative ring R such that $A \subseteq P$ and P is prime, then the smallest ideal P of P such that P contains P and such that P is prime to P is P is P is P and P as we are concerned, P is prime to the ideal P if and only if P is P if P is prime to the ideal P if and only if P is P is P is prime to the ideal P if and only if P is P is P in P is P in P in

The following theorem gives the relationship between the sets ${\mathscr M}$ and ${\mathscr V}$.

THEOREM 2. Let D be an integral domain with identity. Then $\mathscr{V} \subseteq \mathscr{A}$. $\mathscr{V} = \mathscr{A}$ if and only if D is a Prüfer domain.

Proof. It is easy to see that if A is a v-ideal, the complement of the center of v on D is prime to A. Hence $\mathscr{V} \subseteq \mathscr{A}$.

Obviously $\mathscr{W}=\mathscr{M}$ if D is Prüfer. Conversely, if $\mathscr{M}\subseteq \mathscr{W}$ and if P is a proper prime ideal of D, we shall show D_P is a valuation ring and hence that D is Prüfer. Thus if x, y are nonzero elements of D, we let $A=(xy)_P$. $A\in \mathscr{M}$, so $A\in \mathscr{V}$ and therefore $x^2\in A$ or $y^2\in A$. If, say, $x^2\in A$, then $x^2m=dxy$ for some $m\in D-P$, $d\in D$. Hence $x/y=d/m\in D_P$. This proves the theorem.

²If A is an ideal of the commutative ring R and $x \in R$, we say x is prime to A if $ax \in A$, $a \in R$, implies $a \in A$ [7; p. 223]. A subset N of R is prime to A if each element of N is prime to A.

Before proceeding to consider the relation $\mathscr{A} \subseteq \mathscr{T}$ we note that this condition is meaningful in a ring with zero divisors. Also, the relation $\mathscr{A} \subseteq \mathscr{Q}$ is meaningful for arbitrary commutative rings. We consider this case. First we need some definitions.

Suppose R is a commutative ring. R is a $primary ring^3$ if R contains at most two prime ideals [1]. A primary domain is a primary ring without proper divisors of zero. R is called a u-ring if the only ideal A of R such that $\sqrt{A} = R$ is R itself. R satisfies Condition (*) if $\mathcal{S}(R)$, the set of ideals of R with prime radical, is a subset of $\mathcal{O}(R)$.

Theorem 1 of [2] states: A ring R satisfies (*) if and only if R is one of the following:

- (a) a primary domain.
- (b) a ring, every element of which is nilpotent.
- (c) a zero-dimensional u-ring.
- or (d) a one-dimensional u-ring having the property that if P and M are prime ideals of R such that $P \subset M \subset R$, then $(0)_{\scriptscriptstyle M} = P$.

From this result, it is clear that if R satisfies (*), then every ideal of R_P is primary for each prime ideal P of R. But because of the one-to-one correspondence between primary ideals of R contained in P and primary ideals of R_P , we see that $\mathscr{A} \subseteq \mathscr{Q}$ if and only if every ideal of R_P is primary for each prime P of R. Hence, if R satisfies (*), then $\mathscr{A} \subseteq \mathscr{Q}$. The converse is false, as can be seen by considering the ring of even integers. The converse is true, however, in a ring with identity or, more generally, in a u-ring as the following theorem shows:

THEOREM 3. Let R be a u-ring. If $\mathcal{A} \subseteq \mathcal{Q}$, then R satisfies (*).

Proof. Suppose P and M are prime ideals of R such that $P \subset M \subset R$. We let $p \in P$ and $m \in M - P$. The ideal $A = (mp)_M$ is a in \mathscr{A} and is therefore primary. Since $m \notin P \supseteq \sqrt{A}$, $p \in A$. Therefore py = rmp + kmp for some $y \notin M$, $r \in R$, $k \in Z$ and p(y - rm - km) = 0. Further $y - rm - km \equiv y \not\equiv 0 \pmod{M}$ and because P and M are arbitrary, R has dimension ≤ 1 . That R satisfies (*) now follows.

Similarly, if \mathscr{T} denotes the set of prime powers of the ring R, then because any ideal of R_P is the extension of its contraction in R [7; p. 223], every ideal of R_P is a prime power for each prime ideal P of R if $\mathscr{S} \subseteq \mathscr{T}$.

In view of Theorem 12 and 14 of [4], we may then state

³For the case of a ring with identity, this definition agrees with terminology of Zariski-Samuel [7; p. 204]. But unlike the case of a ring with identity, an ideal of a primary ring need not be a primary ideal.

THEOREM 4. Suppose R is a u-ring. The following are equivalent conditions:

- (a) $\mathscr{A} \subseteq \mathscr{P}$,
- (b) every ideal of R with prime radical is a prime power
- and (c) R satisfies (*) and primary ideals of S are prime powers.

COROLLARY 2. Let D be an integral domain with identity. $\mathscr{A} \subseteq \mathscr{P}$ if and only if D is almost Dedekind.

In terms of \mathcal{S} , the set of ideals of R having prime radical, Theorem 4 can be stated thusly:

THEOREM 5. Suppose R is a u-ring. The following are equivalent conditions:

- (a) $\mathscr{A} \subseteq \mathscr{P}$,
- (b) $\mathcal{S} \subseteq \mathcal{P}$,
- (c) $\mathcal{A} \subseteq \mathcal{Q} \subseteq \mathcal{P}$.

REFERENCES

- 1. Robert W. Gilmer, Commutative rings containing at most two prime ideals, Mich. Math. J. 10 (1963), 263-268.
- 2. ——, Extension of results concerning rings in which semi-primary ideals are primary, Duke Math. J. 31 (1964), 73-78.
- 3. ———, Integral domains which are almost Dedekind, Proc. Amer. Math. Soc. 15 (1964), 813-818.
- 4. Robert W. Gilmer and Joe L. Mott, Multiplication rings as rings in which ideals with prime radical are primary, to appear in Trans. Amer. Math. Soc.
- 5. Robert W. Gilmer and Jack E. Ohm, *Primary ideals and valuation ideals*, Trans. Amer. Math. Soc. **114**, (1965), 40-52.
- 6. M. Nagata, Local rings, Interscience (1962).
- 7. O. Zariski and P. Samuel, Commutative algebra, Vol. I, Van Nostrand (1958).
- 8. ——, Commutative algebra, Vol. II, Van Nostrand (1961).

FLORIDA STATE UNIVERSITY