ON THE GENERALIZED F. AND M. RIESZ THEOREM

P. R. AHERN

Let X be a compact Hausdorff space, C(X) the algebra of all continuous complex valued functions on X, and let Abe a sup-norm algebra on X, that is, A is a uniformly closed algebra of continuous complex valued functions on X that contains the constants and separates the points. If ϕ is a complex homomorphism of A then let $M(\phi)$ be the set of all positive, regular, Borel measures on X that represent ϕ . If μ is a finite, (complex), regular, Borel measure on X then we write $\mu \perp A$ if $\int f d\mu = 0$ for all $f \in A$. Let ϕ be a complex homomorphism of A and $m \in M(\phi)$, then we say that m satisfies the Riesz theorem if whenever μ is a finite, (complex), regular, Borel measure on X and $\mu \perp A$ then $\mu_a \perp A$ and $\mu_s \perp A$ where $\mu = \mu_a + \mu_s$ is the Lebesgue decomposition of μ with respect to m. It is quite easy to see that if $m \in M(\phi)$ and m satisfies the Riesz theorem then for all $\rho \in M(\phi)$ we have ρ is absolutely continuous with respect to m. We will show that this condition is also sufficient. This is done by means of a theorem which says that if $F \subseteq X$ is a compact G_{δ} such that m(F) = 0 for all $m \in M(\phi)$ then there exists a sequence f_n in A such that $|f_n| \leq 1$ on X, $\phi(f_n) \rightarrow 1$, and $f_n \rightarrow 0$ uniformly on F.

The proof given is not a generalization of the modern proof of the F. and M. Riesz theorem as given in [4], for instance, but is closer in form to the original proof of F. and M. Riesz. If $X = S_1 \cup S_2$ is the decomposition of X corresponding to the decomposition $\mu =$ $\mu_a + \mu_s$, then by means of Theorem 1 we find a bounded sequence in A that converges to the characteristic function of S_1 almost everywhere with respect to the total variation of the measure μ . It is known (see Hoffman [4] and Lumer [5]) that if $M(\phi) = \{m\}$ then the Riesz theorem holds for the measure m. It is known that $M(\phi)$ is not empty [4].

It what follows, all measures are assumed to be finite, regular, Borel measure, and ϕ is a fixed complex homomorphism of A.

LEMMA 1. Let $\{\nu_n\}$ be a sequence of positive measures on X having the measure m as a weak-star accumulation point. Suppose $F \subseteq Y$

Received April 7, 1964. Supported by National Science Foundation postdoctoral fellowship.

P. R. AHERN

is compact and that $u_n(F) \ge \varepsilon_0 > 0$ for all n. Then $m(F) \ge \varepsilon_0$.

Proof. There exists a decreasing sequence of open sets $\mathcal{O}_n \supseteq F$ such that $m(\mathcal{O}_n - F) \to 0$. There exists a sequence u_n of continuous real valued functions such that $u_n = 1$ on F, $u_n = 0$ on $X - \mathcal{O}_n$ and $0 \leq u_n \leq 1$ elsewhere. From the construction, $u_n \to \chi_F$ a.e. (m), where χ_F is the characteristic function of F. So we have,

$$m(F) = \int (\chi_F - u_k) dm + \int u_k d\nu_n + \int u_k (dm - d\nu_n) .$$

Note that $\int u_k d\nu_n \ge \nu_k(F) \ge \varepsilon_0$ for all *n* and *k*. Now, $\int (\chi_F - u_k) dm$ can be made small by choosing *k* large, and once *k* is fixed $\int u_k (dm - d\nu_n)$ can be made small by proper choice of *n*. This proves the lemma.

The proof of the next lemma can be found in [1], Theorem 3.b.

LEMMA 2. Let
$$u \in C(X)$$
 be real valued and suppose
 $\sup \{Re \ \phi(g) \mid Re \ g \leq u, g \in A\}$
 $\leq \gamma \leq \inf \{Re \ \phi(g) \mid Re \ g \geq u, g \in A\}$

then there exists $\rho \in M(\phi)$ such that $\int ud\rho = \gamma$. In particular, there exists $\rho_u \in M(\phi)$ such that

$$\sup \left\{ {Re} \, \phi (g) \ | \ Re \ g \leqq u, \ g \in A
ight\} = \int u d
ho_u$$
 .

THEOREM 1. Let $F \subseteq X$ be a compact G_{δ} such that m(F) = 0for all $m \in M(\phi)$, then there exists a sequence $f_{\pi} \in A$ such that

- (1) $|f_n| \leq 1$ on X.
- (2) $\phi(f_n) \ge e^{-2/n}$.
- (3) $|f_n| \leq e^{-n}$ on F.

Proof. Since F is a compact G_{δ} , there is a sequence of open sets $\{\mathscr{O}_n\}$ such that $\overline{\mathscr{O}}_{n+1} \subseteq \mathscr{O}_n$ and $\bigcap_n \mathscr{O}_n = F$. Let $\varepsilon > 0$ be given, then there exists an integer N such that for all $n \geq N$, $\rho(\mathscr{O}_n) < \varepsilon$ for all $\rho \in M(\phi)$. For suppose this were not true, then there would exist $\varepsilon_0 > 0$ and sequences $\rho_k \in M(\phi)$ and \mathscr{O}_{n_k} such that $\rho_k(\mathscr{O}_{n_k}) \geq \varepsilon_0$ Let $U_k = \mathscr{O}_{n_k}$ then we have $\rho_k(U_k) \geq \varepsilon_0 > 0$ and $\overline{U}_{k+1} \subseteq U_k$. The sequence ρ_k has a weak-star limit point ρ , and it is well known that $\rho \in M(\phi)$ hence $\rho(F) = 0$. Fix k, then $\rho(U_k) \geq \rho(\overline{U}_{k+1})$, now $\rho_n(\overline{U}_{k+1}) \geq \rho_n(U_{k+1}) \geq \rho_n(U_{k+1}) \geq \rho_n(U_{k+1}) \geq \varepsilon_0 > 0$ for all $n \geq k + 1$. Therefore by Lemma 1 we have $\rho(U_k) \geq \varepsilon_0 > 0$ for all k. But this contradicts the fact that $\rho(F) = 0$. Hence by proper choice of subsequence we may assume that $\rho(\mathscr{O}_n) < (1/n^2)$

for all $\rho \in M(\phi)$. Now for each *n* there exists $u_n \in C(X)$ such that $u_n = -n$ on F, $u_n = 0$ on $X - \mathcal{O}_n$ and $-n \leq u_n \leq 0$ elsewhere. By Lemma 2, there exists $\rho_n \in M(\phi)$ such that

$$\sup \left\{ Re \, \phi(g) \mid Re \, g \leqq u_n, \, g \in A
ight\} = \int \!\! u_n d
ho_n$$
 ,

and hence for each n there exists $g_n \in A$ such that $Re g_n \leq u_n$ and

$$\int Re\, g_n dm \geq \int u_n d
ho_n - rac{1}{n} \geq -n
ho_n({\mathscr O}_n) - rac{1}{n} \geq -rac{2}{n} \; .$$

We may also assume that $\int Img_n dm = 0$. If we now define $f_n = e^{g_n}$ it follows that

- (1) $|f_n| = e^{\operatorname{Re} g_n} \leq e^{u_n} \leq 1$
- (2) $\int f_n dm = \exp\left[\int g_n dm\right] = \exp\left[\int Re g_n dm\right] \ge e^{-2/n}$
- (3) $|f_n| = e^{Re g_n} \leq e^{-n}$ on *F*.

The sequence $\{f_n\}$ of Theorem 1 is bounded in norm by 1, yet $\phi(f_n) \to 1$. We show that this implies that $\psi(f_n) \to 1$ for all ψ in the same part as ϕ . For definition of part see [4]. For this we use a result of Bishop [2]: if ϕ, ψ are in the same part and m_{ϕ} is a representing measure for ϕ , then there exists a representing measure m_{ψ} for ψ such that $m_{\phi} \leq Am_{\psi}$ for some constant A.

COROLLARY 1. If $\{f_n\}$ is the sequence of Theorem 1 and ψ is in the same part as ϕ , then $\psi(f_n) \rightarrow 1$.

Proof. Let *m* be a representing measure for ψ , and ρ be a representing measure for ϕ such that $m \leq A\rho$ for some constant *A*. Then we have $m = g\rho$ where *g* is bounded. Since $\psi(f_n) \to 1$ we have $\int f_n d\rho \to 1$. This, together with the fact that $|f_n| \leq 1$ implies that $f_n \to 1$ in measure, with respect to the measure ρ . Since *g* is bounded it follows that $f_ng \to g$ in measure with respect to the measure ρ . The fact that $|f_ng| \leq |g|$ now implies that $\psi(f_n) = \int f_n g d\rho \to \int g d\rho = \int dm = 1$.

COROLLARY 2. Suppose there is a measure $m \in M(\phi)$ such that $\rho \ll m$ for all $\rho \in M(\phi)$, and suppose $F \subseteq X$ is compact and m(F) = 0. Then there exists a sequence $f_n \in A$ satisfying (1), (2), (3) of Theorem 1.

Proof. There exists a sequence $\{\mathcal{O}_n\}$ of open sets such that $F \subseteq \mathcal{O}_{n+1} \subseteq \mathcal{O}_n$ and $m(\mathcal{O}_n) \to 0$. For each *n*, there exists a set F_n which is a compact G_δ such that $F \subseteq F_n \subseteq \mathcal{O}_n$. Let $F_1 = \bigcap_n F_n$, then $F \subseteq F_1$,

 F_1 is a compact G_{δ} and $m(F_1) = 0$. It follows that $\rho(F_1) = 0$ for all $\rho \in M(\phi)$. Now apply Theorem 1 to the set F_1 .

THEOREM 2. Suppose there exists $m \in M(\phi)$ such that $\rho \ll m$ for all $\rho \in M(\phi)$. Let $\mu \perp A$ and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to m. Then $\mu_a \perp A$ and $\mu_s \perp A$.

Proof. Let S be a Borel set that carries μ_s and m(S) = 0. Then there exists an increasing sequence $F_n \subseteq S$ of compact sets such that $|\mu_s|(F_n) \to |\mu_s|(S)$, where $|\mu_s|$ denotes the total variation of μ_s . For each F_n we have a sequence $f_{n,k} \in A$ such that

- (1) $|f_{n,k}| \leq 1$.
- (2) $\int f_{n,k} dm \geq e^{-2/k}$.

(3)
$$|f_{n,k}| \leq e^{-k}$$
 on F_n .

Define $h_n = f_{nn}$ then we have:

- (1') $|h_n| = |f_{n,n}| \leq 1.$
- (2') $\int h_n dm = \int f_{n,n} dm \ge e^{-2/n}$.
- (3') $|h_n| = |f_{n,n}| \le e^{-n}$ on F_n .

From 1' and 2' it follows that $h_n \to 1$ in measure with respect to m and hence we have a subsequence $h_{n_k} \to 1$ a.e. (m). From 3' we have $h_{n_k} \to 0$ a.e. $(|\mu_s|)$. Hence $g_k = h_{n_k} \to \chi_{x-s}$ a.e. $(|\mu|)$. So if $f \in A$ then for each $k, g_k f \in A$ and we have $0 = \int g_n f d\mu \to \int_{x-s} f d\mu = \int f d\mu_a$. This proves the theorem.

We point out that if the homomorphism ϕ has a representing measure m such that $\rho \in M(\phi)$ implies $\rho \ll m$ then it follows easily from the result of Bishop mentioned earlier that every ψ that lies in the same part as ϕ has a representing measure with this same property.

References

1. H. Bauer, Silovcher Rand und Dirichlelsches Problem, Ann. Inst. Fourier (Grenoble) 11 (1961).

2. E. Bishop, Representing measures for points in a uniform algebra, Bull. Amer. Math. Soc. 70, 1 (1964).

3. F. Forelli, Analytic measures, Pacific J. Math. 13, 2 (1963).

4. K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962).

5. G. Lumer, Analytic functions and Dirichlet problem, Bull. Amer. Math. Soc. 70, 1 (1964).