MAXIMAL CONVEX FILTERS IN A LOCALLY CONVEX SPACE

F. J. WAGNER

Let $E [\mathscr{T}]$ be a locally convex space, \mathfrak{B} a saturated covering of E by bounded sets, and E' the topological dual of $E[\mathscr{T}]$. Let $\mathscr{T}_{\mathfrak{B}}$ be the topology on E' of uniform convergence on sets of \mathfrak{B} and E'' the topological dual of $E'[\mathscr{T}_{\mathfrak{B}}]$. We assume E'' has the natural topology \mathscr{T}_n —that of uniform convergence on the equicontinuous sets of E'.

This article includes the following: (1) an intrinsic characterization for a bounded convex set B of E of the closure \overline{B} of B in E''; (2) an intrinsic characterization of the closure \overline{E} of E in E''; and (3) necessary and sufficient conditions that \overline{E} be E''.

The spaces β . Let \mathfrak{M} be the class of all closed convex neighborhoods¹ of 0 in $E[\mathscr{T}]$, and $B \in \mathfrak{B}$. A filter \mathfrak{F} on B is called a convex filter if, for every $F \in \mathfrak{F}$, there exist $M, N \in \mathfrak{M}$ and $\chi \in E$ such that $\mathring{M} \supset N$, $F \supset (M + \chi) \cap B$, and $(N + \chi) \cap B \in \mathfrak{F}$. Clearly if \mathfrak{F} and \mathfrak{G} are two convex filters on B, such that every set of \mathfrak{F} meets every set of \mathfrak{G} , then the least upper bound filter of \mathfrak{F} and \mathfrak{G} on B is also convex. Furthermore:

LEMMA 1. For $M, N \in \mathfrak{M}$, if $\mathring{M} \supset N$, then there exists $K \in \mathfrak{M}$ such that $\mathring{M} \supset K \supset \mathring{K} \supset N$.

Proof. If p and q are the distance functions of M and N, then 1/2(p+q) is the distance function of such a K.

THEOREM 1. A convex filter \mathfrak{F} on B is a maximal convex filter on B if and only if, for every two closed convex bodies K and L of E such that $\mathring{K} \supset L$, either $K \cap B \in \mathfrak{F}$ or $B \setminus L \in \mathfrak{F}$.

Proof. Assume \mathfrak{F} is maximal and let K and L be as above, and let $B \setminus L \notin \mathfrak{F}$. Let $x \in \mathring{L}$ and define a sequence $\{M_n\}$ in \mathfrak{M} so that

 $\mathring{K}-x\supset M_{\scriptscriptstyle 1}\supset \mathring{M}_{\scriptscriptstyle 1}\supset L-x \;\; ext{ and }\;\; \mathring{M}_{n}\supset M_{n+1}\supset \mathring{M}_{n+1}\supset L-x \;\;\; (n\geqq 1).$

Then the filter \mathfrak{G} on B with base $\{(M_n + x) \cap B \mid n = 1, 2, 3, \cdots\}$ is

Received July 8, 1964 and in revised form January 11, 1965. Supported by National Science Foundation grant NSF G-24865.

^{&#}x27; The notation and definitions are principally those of Gottfried Köthe, Topologiache Lineare Räume I, Springer-Verlag, Berlin, 1960.

convex and $K \cap B \in \mathfrak{G} \subset \mathfrak{F}$.

Conversely let \mathfrak{F} and \mathfrak{G} be two convex filters on B such that \mathfrak{F} is strictly weaker than \mathfrak{G} . Let $G \in \mathfrak{G}$, $M, N \in \mathfrak{M}$, and $x \in E$ such that $G \notin \mathfrak{F}$, $\mathring{M} \supset N, G \supset (M+x) \cap B$, and $(N+x) \cap B \in \mathfrak{G}$. Then neither $(M+x) \cap B$ nor $B \setminus (L+x) \in \mathfrak{F}$.

REMARKS 1. For every $x \in B$, $\mathfrak{V}_B(x) = \{V \cap B \subset B \mid V \text{ a neighborhood} of x in E\}$ is a maximal convex filter on B.

2. For a maximal convex filter \mathfrak{F} on B, there is $x \in B$ such that $\mathfrak{F} = \mathfrak{V}_B(x)$ if and only if \mathfrak{F} has nonempty intersection.

LEMMA 2. Every maximal convex filter on B is a weak Cauchy filter.

Proof. Let \mathfrak{F} be a maximal convex filter on B,

 $u \in E', \ M = \{x \in E \mid | \ ux \mid \leq 1/2\} \ \text{ and } \ N = \{x \in E \mid | \ ux \mid \leq 1/4\}.$

Then $M, N \in \mathfrak{M}$ and $\mathring{M} \supset N$. Since B is weakly precompact, there exist $x_1, x_2, \dots, x_n \in E$ such that $\bigcup_{i=1}^n (N+x_i) \supset B$, and so $(M+x_i) \cap B \in \mathfrak{F}$ for some $1 \leq i \leq n$. For $x, y \in (M+x_i) \cap B$, we have $|ux - uy| \leq 1$.

For a maximal convex filter \mathfrak{F} on B and $u \in E'$, let $\mathfrak{F}(u)$ denote the limit of the restriction of u to B according to the filter \mathfrak{F} .

LEMMA 3. For every maximal convex filter \mathfrak{F} on B, the mapping $u \to \mathfrak{F}(u)$ on E' is linear and $\mathscr{T}_{\mathfrak{B}}$ continuous.

Proof. Linearity is easily proved. Also let V be the polar set of the absolutely convex hull of 2B, $u \in V$, and $F \in \mathfrak{F}$ such that $|ux - \mathfrak{F}(u)| \leq 1/2$ for every $x \in F$. Then, for such an x, we have $|\mathfrak{F}(u)| \leq |\mathfrak{F}(u) - ux| + |ux| \leq 1$.

We shall denote by $\beta = \beta_B$ the set of all maximal convex filters on B. By Lemma 3 there is a mapping π_B from β_B into E'' such that $\pi_B(\mathfrak{F})(u) = \mathfrak{F}(u)$ for every $\mathfrak{F} \in \beta_B$ and $u \in E'$.

THEOREM 2. If either \mathcal{T} is the weak topology or B is convex, then π_B is a one-to-one mapping of β_B onto the \mathcal{T}_n -closure \overline{B} of Bin E''.

Proof. For $\mathfrak{F} \in \beta_B$, $\pi_B(\mathfrak{F})$ is in the weak closure of B in E''. For

1088

given $u_1, \dots, u_n \in E'$ and $\varepsilon > 0$, let $F_1, \dots, F_n \in \mathfrak{F}$ such that $|u_i x - \mathfrak{F}(u_i)| \leq \varepsilon \ (1 \leq i \leq n)$ and $x \in \bigcap_{i=1}^n F_i$. Then $|\mathfrak{F}(u_i) - u_i x| \leq \varepsilon$, $(1 \leq i \leq n)$.

Also, if B is convex, $\pi_B(\mathfrak{F})$ is in the \mathscr{T}_n -closure \overline{B} of B in E''. Suppose the contrary. Then there is a continuous real linear functional w on E'' and a real number r such that $w(\pi_B(\mathfrak{F})) < r$ and wz > r for every $z \in \overline{B}$.

Assume first that E is a real vector space. Let u be the restriction of w to E', so $u \in E$. Let $F \in \mathfrak{F}$ such that $|ux - \mathfrak{F}(u)| < r - w \ (\pi_{\mathfrak{B}}(\mathfrak{F}))$ for every $x \in F$. Then, for such an x, we have $wx = ux - \mathfrak{F}(u) + \mathfrak{F}(u) < r$. But $x \in B$.

Now let E be a complex vector space. Then there is a complex linear functional v on E'' such that $w = \Re v$. Let u be the restriction of v to E and $F \in \mathfrak{F}$ such that $|ux - \mathfrak{F}(u)| \leq r - w(\pi_{\mathcal{B}}(\mathfrak{F}))$ for every $x \in F$. Then for such an x we have $wx = \Re(vx) = \Re(ux - \mathfrak{F}(u)) + \Re(\mathfrak{F}(u)) < r$. Again, we have a contradiction.

Thus $\pi_B(\beta_B) \subset \overline{B}$ if \mathscr{T} is the weak topology or B is convex. On the other hand, if $z \in \overline{B}$, then:

 $\mathfrak{V}_{B}(z) = \{V \cap B \subset B \mid V \text{ a neighborhood of } z \text{ in } E''[\mathscr{T}_{n}]\} \in \beta_{B}$

and $\pi_B(\mathfrak{V}_B(z)) = z$. Let V be a neighborhood of z in $E''[\mathscr{T}_n]$, and let U and W be closed convex neighborhoods of 0 in $E''[\mathscr{T}_n]$ such that $\mathring{U} \supset W$ and $U + U \subset V - z$. Let $\chi \in (U + z) \cap (-\mathring{W} + z) \cap B$, $M = U \cap E$, and $N = V \cap E$. Then $M, N \in \mathfrak{M}$ and $\mathring{M} \supset N, V \supset (M + \chi) \cap B$, and $(N + \chi) \cap B = (W + \chi) \cap B \in \mathfrak{V}_B(z)$. Thus $\mathfrak{V}_B(z)$ is convex.

Let K and L be closed convex bodies of E such that $\mathring{K} \supset L$. Let $x \in \mathring{L}$, M = K - x, and N = L - x. Either $z \in \text{interior } M^{\circ \circ} + x$ ——in which case $K \cap B = (M + x) \cap B = (M^{\circ \circ} + x) \cap B \in \mathfrak{B}_{\mathcal{B}}(z)$ ——or $z \notin N^{\circ \circ} + x$ ——in which case $E'' \setminus (N^{\circ \circ} + x)$ is a neighborhood of z in E'' and so $B \setminus L = [E'' \setminus (N^{\circ \circ} + x)] \cap B \in \mathfrak{B}_{\mathcal{B}}(z)$. Thus $\mathfrak{B}_{\mathcal{B}}(z) \in \beta_{\mathcal{B}}$.

Finally, let $u \in E'$, $\varepsilon > 0$, and $F \in \mathfrak{B}_{B}(z)$ such that $|ux - \mathfrak{V}_{B}(z)(u)| \leq \varepsilon/2$ for every $x \in F$. Let $V = \{w \in E'' \mid |wu - zu| \leq \varepsilon/2\}$. Then, for $x \in F \cap V$, we have $|\mathfrak{V}_{B}(z)(u) - zu| \leq |\mathfrak{V}_{B}(z)(u) - ux| + |ux - zu| \leq \varepsilon$. Therefore, $\pi_{B}(\mathfrak{V}_{B}(z))(u) = zu$ for $u \in E''$, and so $\pi_{B}(\mathfrak{V}_{B}(z)) = z$.

REMARK. Thus $\pi_B(\mathfrak{V}_B(z)) = z$ for $z \in \overline{B}$ and $\mathfrak{F} = \mathfrak{V}_B(\pi_B(\mathfrak{F}))$ for $\mathfrak{F} \in \beta_B$.

COROLLARY 1. If either \mathcal{T} is the weak topology or B is convex, then every maximal convex filter on B is a \mathcal{T} -Cauchy filter.

COROLLARY 2. If either \mathcal{T} is the weak topology or B is convex,

then for every $\mathfrak{F} \in \beta_B$ and $M \in \mathfrak{M}$, there exist $x \in B$ such that $(M + x) \cap B \in \mathfrak{F}$.

Proof. Let $F \in \mathfrak{F}$ such that $F - F \subset M$ and $x \in F$. For $M \in \mathfrak{M}$ and $x \in B$ we define:

$$egin{aligned} & m{
u}_{\scriptscriptstyle B}(M,\,x) = \{\mathfrak{F} \in eta_{\scriptscriptstyle B} \,|\, (\mathring{M}+x) \cap B \in \mathfrak{F} \} \ & \mu_{\scriptscriptstyle B}(M,\,x) = \{\mathfrak{F} \in eta_{\scriptscriptstyle B} \,|\, \pi_{\scriptscriptstyle B}(\mathfrak{F}) \in ext{interior} \;\; M^{\circ \circ} + x \} \;. \end{aligned}$$

For $M, N \in \mathfrak{M}$ and $x, y \in B$, if $z \in (\mathring{M} + x) \cap (\mathring{N} + y) \cap B$ and $K = (M + x - z) \cap (N + y - z)$, then $\nu_B(M, x) \cap \nu_B(N, y) = \nu_B(K, z)$ and $\mu_B(M, x) \cap \mu_B(N, y) = \mu_B(K, z)$. Hence the class of all sets of the form $\nu_B(M, x)$ and the class of all sets of the form $\mu_B(M, x)$ (for $M \in \mathfrak{M}$ and $x \in B$) form bases of topologies, called the ν - and μ -topologies respectively, on β_B .

THEOREM 3. If $\pi_B(\beta_B) \subset \overline{B}$ (in particular if either \mathscr{T} is the weak topology or B is convex), then ν - and μ -topologies coincide and π_B is a homeomorphism of β_B onto \overline{B} .

Proof. If $\pi_B(\beta_B) \subset \overline{B}$, then, for $M \in \mathfrak{M}$ and $x \in B$, we have $\mu_B(M, x) \subset \nu_B(M, x)$, and so the identity mapping of β_B with the μ -topology onto β_B with the ν -topology is continuous.

Also π_B from β_B with the ν -topology onto \overline{B} is continuous. Let $\mathfrak{F} \in \beta_B$ and V a neighborhood of $\pi_B(\mathfrak{F})$ in $E''[\mathscr{T}_n]$. Let U be a closed convex neighborhood of 0 in E'' such that $U + U \subset V - \pi_B(\mathfrak{F})$, $M = U \cap E$, and $x \in (\mathring{U} + \pi_B(\mathfrak{F})) \cap B$. Then $(\mathring{M} + x) \cap B \in \mathfrak{B}_B(\pi_B(\mathfrak{F})) = \mathfrak{F}$, and so $\mathfrak{F} \in \nu_B(M, x)$. Also if $\mathfrak{G} \in \nu_B(M, x)$, there is a neighborhood W of $\pi_B(\mathfrak{G})$ such that $W \cap B = (M + x) \cap B = (U + x) \cap B$ so

 $\pi_{B}(\mathfrak{G}) \in \overline{W \cap B} \subset U + x \subset U + U + \pi_{B}(\mathfrak{F}) \subset V$.

Finally π_{B}^{-1} from \overline{B} onto β_{B} with the μ -topology is continuous by the definition of the sets μ .

COROLLARY 1. If either \mathcal{T} is the weak topology or B is convex, then B is closed in $E''[\mathcal{T}_n]$ if and only if every maximal convex filter on B has nonempty intersection.

COROLLARY 2. B is weakly compact if and only if every maximal weakly convex filter on B has nonempty intersection.

2. The space η . Let \mathfrak{A} denote the class of all convex sets of \mathfrak{B} and $\alpha = \bigcup_{B \in \mathfrak{A}} \beta_B$ the topological union of the spaces β_B . Let π be

1090

the continuous function from α into $E''[\mathscr{T}_n]$ defined by $\pi(\mathfrak{F}) = \pi_B(\mathfrak{F})$ if $\mathfrak{F} \in \beta_B$. For $A, B \in \mathfrak{A}$ such that $A \subset B$, define a mapping g_{BA} from β_A into β_B by $g_{BA}(\mathfrak{F}) = \mathfrak{V}_B(\pi_A(\mathfrak{F}))$ (for $\mathfrak{F} \in \beta_A$). Then $g_{BA} = \pi_B^{-1}\pi_A$ and consequently is a homeomorphism of β_A into β_B . Also, if $A \subset B \subset C$, then $g_{CA} = g_{CB} g_{BA}$.

THEOREM 4. Let $A, B \in \mathfrak{A}$ such that $A \subset B$, and let $\mathfrak{F} \in \beta_A$ and $\mathfrak{G} \in \beta_B$. The following three conditions are equivalent;

- (a) $\mathfrak{G} = g_{BA}(\mathfrak{F});$
- (b) $\pi(\mathfrak{F}) = \pi(\mathfrak{G});$
- (c) Every set of \mathfrak{G} contains a set of \mathfrak{F} .

Proof. $\mathfrak{F} = \mathfrak{V}_{\mathfrak{A}}(\pi_{\mathfrak{B}}(\mathfrak{F})), \quad \mathfrak{G} = \mathfrak{V}_{\mathfrak{B}}(\pi_{\mathfrak{B}}(\mathfrak{G})), \text{ and } g_{\mathfrak{B}\mathfrak{A}}(\mathfrak{F}) = \mathfrak{V}_{\mathfrak{B}}(\pi_{\mathfrak{B}}(\mathfrak{F})).$ Hence (a) and (b) are equivalent. Also (b) implies (c): Given $G \in \mathfrak{G}$ there is a neighborhood V of $\pi(\mathfrak{G}) = \pi(\mathfrak{F})$ such that $G = V \cap B \supset V \cap A \in \mathfrak{F}$. Also (c) implies (b): If $\pi(\mathfrak{F}) \neq \pi(\mathfrak{G})$, then $\pi(\mathfrak{F})$ and $\pi(\mathfrak{G})$ have disjoint neighborhoods V and W in E'', and so $W \cap A$ is a set of \mathfrak{G} containing no set of \mathfrak{F} .

COROLLARY. Let A and $B \in \mathfrak{A}$, $\mathfrak{F} \in \beta_A$, and $\mathfrak{G} \in \beta_B$. The following three conditions are equivalent:

- (a) $\pi(\mathfrak{F}) = \pi(\mathfrak{G}).$
- (b) There exists $C \in \mathfrak{A}$ such that $C \supset A \cup B$ and $g_{\sigma_A}(\mathfrak{F}) = g_{\sigma_B}(\mathfrak{G})$.
- (c) There exists $C \in \mathfrak{A}$ and $\mathfrak{H} \in \beta_{\sigma}$ such that $C \supset A \cup B$ and every set of \mathfrak{H} contains a set of \mathfrak{H} and a set of \mathfrak{G} .

Now let R be the equivalence relation $\pi(\mathfrak{F}) = \pi(\mathfrak{G})$ on α, η the quotient space α/R , ρ the canonical mapping of α onto η , and σ the mapping from η into E'' such that $\pi = \sigma \rho$.

THEOREM 5. σ is a homeomorphism of η onto the \mathcal{T}_n -closure \overline{E} of E in E''.

Proof. We need only prove $\sigma(\eta) = \pi(\alpha) \supset \overline{E}$. Consider the dual system $\langle E', \overline{E} \rangle$. Since every $u \in E'$ is uniformly continuous on E, the topology induced on \overline{E} by \mathscr{T}_n is admissible for this dual system. For $z \in \overline{E}$, there is a closed absolutely convex set $B \in \mathfrak{B}$ such that $|zu| \leq 1$ for every $u \in B^\circ$. Hence, $z \in B^{\circ \circ} =$ the closure of B in any admissible topology = the \mathscr{T}_n -closure \overline{B} of B.

For $B \in \mathfrak{A}$, the weakest topology on β_B for which every function of the form $\mathfrak{F} \to \mathfrak{F}(u)$ (for $u \in E'$) is continuous will be called the *weak topology* of β_B . Clearly β_B in the weak topology is homeomorphic with \overline{B} in the topology induced on \overline{B} by the weak-star topology of E''.

THEOREM 6. The following three conditions are equivalent:

- (a) $\overline{E} = E'';$
- (b) \overline{B} is weak-star compact for every $B \in \mathfrak{A}$;
- (c) β_B is weakly compact for every $B \in \mathfrak{A}$.

Proof. Clearly (b) and (c) are equivalent. Also (a) implies (b); by the Alaoglu—Bourbaki theorem, for $B \in \mathfrak{A}$, the weak-star closure of B in $E'' = \overline{E}$ is weak-star compact; but since \mathscr{T}_n is an admissible topology for the dual systm $\langle E', \overline{E} \rangle$, this weak-star closure is \overline{B} . Finally (b) implies (a): regarding \mathfrak{B} as a total class of bounded subsets of \overline{E} , by the Mackey-Arens theorem $\mathscr{T}_{\mathfrak{B}}$ is an admissible topology for the dual system $\langle E', \overline{E} \rangle$, and so $E'' = \overline{E}$.

THEOREM 7. For $B \in \mathfrak{A}$, β_B is weakly compact if and only if for every maximal weakly-convex filter \mathfrak{F} on B, there is a maximal \mathscr{T} convex filter on B which is stronger than \mathfrak{F} .

Proof. Let β_B^w be the space of all maximal weakly convex filters on B and π_B^w the homeomorphism of β_B^w into E'' with the weak-star topology. In general $B \subset \pi_B(\beta_B) = \overline{B} \subset$ weak-star closure of $B = \pi_B^w(\beta_B^w)$.

If β_B is weakly compact, then $\pi^w_B(\beta^w_B) = \pi_B(\beta_B) = \overline{B}$. So, for $\mathfrak{F} \in \beta^w_B$, $\pi^w_B(\mathfrak{F}) \in \overline{B}$ and hence $\mathfrak{V}_B(\pi^w_B(\mathfrak{F})) \in \beta_B$ is stronger than \mathfrak{F} .

Conversely, let $\mathfrak{F} \in \beta_B^w$ and $\mathfrak{G} \in \beta_B$ stronger than \mathfrak{F} . Then $\pi_B^w(\mathfrak{F}) = \pi_B(\mathfrak{G})$, and so $\pi_B^w(\beta_B^w) \subset \pi_B(\beta_B)$.

COROLLARY. $\overline{E} = E''$ if and only if, for every $B \in \mathfrak{A}$ and every maximal weakly-convex filter \mathfrak{F} on B, there is a \mathscr{T} -convex filter on B stronger than \mathfrak{F} .

3. Acknowledgement. The author wished to express his gratitude to Professor Ky Fan for the help and encouragement given him in the work presented here.

UNIVERSITY OF CINCINNATI