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CLASSES OF RECURSIVE FUNCTIONS BASED
ON ACKERMANN'S FUNCTION

ROBERT W. RITCHIE

Grzegorczyk has defined an increasing sequence of classes
g ^ of functions with the properties that gf3 is the class of
elementary functions of Csillag-Kalmar and Ugf71 is the class
of primitive recursive functions. Further, g^ + ι properly
contains gfn, if n>2 then g^ + 1 contains a "universal function"
over all one-argument functions in gfw, and a sequence of
functions gn(%, V) in terms of which the ^ n are defined has
the property that each gn+i(%, %) (eventually) majorizes all the
one-argument functions in g771.

The functions gn{%, y) are defined by somewhat artificial
nested recursions, and Grzegorczyk poses the following question:
"Can the same theorems be proved for classes J^n as for the
classes g"w V Here ^ n differs from c£ n only in substituting
a more natural function fj(%, y) for each gn(x, y) in the
definition of the class. In this paper, we answer his question
affirmatively. Indeed, we prove that ^n=- c£n for all n^O,
and further, fή+i(xf x) eventually majorizes all the one-argu-
ment functions in

In the first section below, we define the functions fn(xf y) (trivial
variants of Grzegorczyk's fή{x, y)) which we shall use in place of gn(x, y),
and develop various properties of these functions. In the second section,
we define and study a sequence &n of classes of one-argument functions.
Each 5fn is defined from fn(x, x) and other initial functions by compo-
sition and pure iteration as studied by Robinson [7]. In the third
section, we define j ^ n (slight modifications of Grzegorczyk's J^n) and
establish various properties of these classes including that U ^ is the
class of all primitive recursive functions. In the final section we
establish the equality of ^l and g7*, and then discuss Grzegorczyk's
fή(x,y) and prove that ^~n also equals gf\

1* The functions fn(x, y). In [1], Ackermann defines a function
of three variables which he shows is not primitive recursive. He obtains
this function by considering the functions x + y, xy and xv, observing
that each is obtained from the preceding by a recursive definition and
generalizing this process. Let us depart slightly from [1] and gener-
alize the sequence of three functions as follows:
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DEFINITION 1.1. For each n ^ 0, define the function fn(x, y) by

fo(x, y) = x + 1

fx{x, y) = x + y

f2(χ,y) = x y

f%+1(x, 0) = 1

, 1/)))

This differs from Ackermann's generalization in that we begin
with x + 1, not x + y, and also we set /Λ(cc, 0) equal to 1 instead of
x for all n ^ 4. The resulting difference between /Λ(α?, y) and <£>(#, ?/, w)
as defined in [1, p. 120] (or ξ(n, y, x) as the function is written in [5,
p. 272]) is minor as the following, which results from Lemma 1.1, shows

/»+i(α, V) = <p(x, V> w) = ξ(n, y, x) for n = 0,1, 2, all α, #

/»+i(», 2/ + 1) ̂  9>0», 1/, w) = !(w, i/, x)<fn+1(x, y + 2)

for w ̂  3, α ^ 2 , all j/ .

These changes from Ackermann's definition were made here because
starting with fo(x, y) — x + 1 aligns the subscripts or our functions
with those of Grzegorczyk, and letting fn(x, 0) be 1 instead of x
simply seems more natural to the author.

Let us begin our study of the functions fn(x, y) by establishing
three lemmas which yield information on the rate of growth of these
functions. These three lemmas are closely related to Ackermann's
results (properties III and ΠIB, IV, and V of [1, pp. 121-2]).

LEMMA 1.1. For all n^l, x^2, and y^0,fn(x,y + l)>fn(x, y)^
y + 1. Hence fn(x, z)>fn(x, y) ̂  y + 1 for all z > y.

Proof. For n — 1 this simply states that x + y + l>x + y^
y + 1. Let us assume that the result is true for n and establish its
validity for n + 1. Since fn+1(x, 1) = x > fn+i(x, 0) = 1, the result
holds for y = 0. Let us prove it for all y by induction. Assume
Λ + i ( α , V + 1) > Λ + i ( a , y)^y + 1; t h e n f n + 1 ( x , y + 2) = fn(x, f n + 1 ( x , y +
1)) ^ f«+i{x, 2/ + 1) + 1 > fn+i(x, V + 1) by the assumed validity of the
theorem at n. Further fn+1(x, y + 1) > y + 1, or fn+1(x, y + 1) ̂  y + 2
by the assumption immediately above.

LEMMA 1.2. For all n ^ 0, x ^ 1, αmϊ y ^ 1, /»(», y) < fjx +

1, y); hence fn(x, y) < fn(z, y) for all z > x.

Proof. Immediate for n = 0, 1 and 2. Let us now assume that
we have established the theorem for n, and show then that it holds
for n + 1. Since for all y fn+1(l,y) = l and fnjrl(2,y)£2 (using
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./Λ+i(2,1) = 2 and Lemma 1.1), we have the result if x — 0 or x = 1.
Thus let us assume & ̂  2. Now fn+1(x, l ) = α?<sc + l = /w+i(a? + 1,1)
so the conclusion holds for y — 1. Assume it for /̂. Then it also
holds for y + 1 since

fn+1(x + l,y + l) = fn(x + 1, fn+ί(x + 1, »))

> /•(», Λ+i(a? + 1, y))

> /«0&, /»+l(&, 1/))

= f»+i(Xf y + i ) .

Here we used the assumption of the lemma at n and then the as-
sumption for y at n + 1 together with Lemma 1.1. This completes
the proof.

LEMMA 1.3. For all n ^ 2, x ^ 2, y ^ 0; /n(α, #) ^ /n+1(a?, y).

Proo/. /Λ+1(a?, 0) = 1 ^ fn(x, 0) for all w ^ 2

Λ+i(», ί/ + 1) = Λ(ί», Λ+i(α, 1/))

^ Λ(», i/ + l ) .

The last step follows since fnΛ1(x, y) ^ /̂ + 1 and /%(x, «) ^ fn(x, y + 1)
for any 2J ̂  /̂ + 1, both by Lemma 1.1.

These three lemmas will be used freely in the work below. Rather
than refer to them explicitly, we shall often simply refer to the
"monotonicity properties" of the fn(x, y).

We need one further important property of the functions fn(x9 y).
In Theorems 2.2 and 2.3 in the next section, we shall need to know
that fn(fn(x, k)9 I) ^ fn(x9 m) for some m dependent only upon k and
I whenever x is sufficiently large. In Theorem 1.1 below we find that
we can take m = Λ_i(&, I). The proof of this comprises the next five
lemmas and we get the companion result

f«-ι(fm(Xf V), fΛXf s)) ^ fJP, V + z)

for all m ^ n automatically in the proof. The remainder of this section
is devoted exclusively to the sequence of lemmas leading to the proof
of Theorem 1.1.

LEMMA 1.4. For all m ^ 3 and all x, y, and z,

χ, v ) , / « ( » , *)) ^ / « ( » , v + z ) .

Proof by induction on m. In the case m — 3, the lemma is im-
mediate since /3(cc, y) = xy, and f2(x, y) is multiplication of x by y. Let
us assume that the lemma is true for a fixed m (and for all x, y, and
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z). Under this assumption we shall prove that fm+i(x,y)mfm+1(x,z) S.

fm+i(®9 V + z) f ° r aH (VJ Z) with V = z which suffices by symmetry.
First we note that since fm+ι(x, 0) = 1, we have fm+1(x, 0) fm+1(x, z)^

fm+1(x, 0 + z) for all z ^ 0. We now proceed by induction on y,
assuming that we know the result for some y and all zf ^ y and
proving it for y + 1 and all z Ξ> y + 1. We begin this verification by
noting that the cases x = 0 and x = 1 satisfy the desired inequality
since /m+1(0, #) is 0 or 1 as y is odd or even, and / m + i ( l , 2/) = 1 for
all y, so that we may assume x ^ 2. Consider a value of^^^/ + l > 0 f

1/) + /m+i(aj, 2 - 1)]

y) fm + l(%, Z)]

y + s))

Here we have used, in order, the assumption of the lemma for the
fixed value m, the fact that a + b ^ a(b + 1) for all α, b ^ 1 along
with the monotonicity of fm+1(xf z) to see that fm+1(x, y) + fm+i(x, z — 1)^
fm+i(%,y)'fm+i(%,z), the monotonicity of fm(x9w), and finally the as-
sumption that fm+1(x, y) fm+i(Xf z) ^ fm+i(x, y + z) for our fixed value
of y and any larger z.

LEMMA 1.5. For all x ^ 2, A; ̂  0, i ^ 0; /3(/s(a?, fc), i) = /3(aj, fc ϊ)

We omit the straightforward inductive proof of this lemma since
it merely states that (xk)1 — xk'1.

The preceding two lemmas form the basis of an inductive proof
of the two properties we desire and state explicitly in Theorem 1.1
below. The next two lemmas form the inductive parts of the proofs
of each of the properties. Unfortunately, we seem to need both proper-
ties at each step in the induction, and the details become somewhat
involved.

LEMMA 1.6. Let n ^ 4 and x ^ 2. Assume that, for all k ^ 2
and I ^ 0, fn^(fn^(xf fc), I) ^ fn^(xf Λ_2(fc, I)) and further that for all
m ^ n and for all y and z

L-lfΛx, v), /«(«, z)] S fm(χ, y + z).

Then, for all m ^ n and for all y and z we have

fn-UΛ%, y), Mχ>z)] ^ Λ.(α, y + z).
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Proof by induction on m. First, let us note directly from the
equations fn(x, 0) = 1 and /w(l, y) — 1 that the cases y = 0 and z — 0
are immediate. Hence we shall assume now that both y and z are
positive.

Consider the case n — m.

^ Λ-i{&, /•(<*, (y + 2) - 1)}

= /»(«, 2/ + z) .

Here we used the first hypothesis with k — fn(x, y — 1) and I = A(^, z)
and then the second hypothesis, and, of course, monotonicity.

Now let us assume the result for m — 1 and prove it for m. As
in Lemma 1.4 we shall prove the result for pairs (y, z) with z ^ y and
leave the remaining case to the reader. We have already noted that
the result holds for pairs (0, z). Let us now induce on y (still assuming
the result for all pairs (y, z) at m — 1). Assuming we have the result
for all z ^ y — 1 at m, we now establish the result for all pairs (y, z)
with z ^ y.

fn-l{fm(X, V), /»*(», Z)}

= /*-l{/m-l|>, /m(ff, 1/ - 1)], Λ-i[ί», /«(», « - 1)]}

^ Λ-i{fl5, /«(«, 1/ - 1) + fm(x, Z - 1)}

^ Λ-i{», /a[Λ(», y - 1) + 1, Λ(α, « - 1)]}

=S /^{x, /n_2[/m(a?, y - 1) + 1, fm(x, z - 1)]}

^ fm~i{χ, Λ-2[/m(χ, y), /«(»,« - l)]}

Here we have used, in order, the assumption of the lemma at m — 1,
the fact that a + b ^ (a + 1)6, monotonicity (/2(α, 6) ^ /w_3(^, 6) and
then /m(cc, j/ — 1) < (/m(a?, 7/)), the second hypothesis of the lemma, and
monotonicity.

LEMMA 1.7. Let n^4,x^2,k^2 and I ^ 0. Assume that

fn-i[fn(x, V), fn(x, «)] ^ /»(«, 1/ + «) for all y and z. Then

MM*, k), I) < fn(x, fn^(k, I)) .

Proof by induction on I. If I = 0, the lemma is immediate.
Assuming it for I, we now establish the case I + 1.
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MM*, k), I + 1)

Here we used the assumption of the lemma at ϊ, the hypothesis with

2/ = fc and z — fn-ι{k, I), and monotonicity to see that /2(fc, /w_i(fc, ϊ ) ) ^

Λ-2(fc, Λ_i(fc, 0).

We may now put the preceding four lemmas together into an
inductive proof of the following theorem, with which we conclude our
preliminary discussion of the functions fn(x, y).

THEOREM 1.1. For all n ^ 3, x ^ 2, k ^ 2 and I ̂  0; fn(fn(x, Jc), I) S
fΛχ, fn-i(h, I))' {In fact the inequality is strict if n > 3.) Further,,
for all y and z and for all m ^ n, fn-i{fm{xy y), fm(x, z)) g fjx, y + z).

Proof by induction on n. Lemmas 1.4 and 1.5 establish the twσ
statements for n — 3. In the inductive step, we assume both state-
ments for n — 1, and establish the second statement for n by Lemma
1.6. Then the first statement follows for n by Lemma 1.7.

2* The classes ^ n of one-argument functions* In this section,
we shall make use of iteration and a particular set of pairing functions,
both due to Robinson, in defining a sequence of classes of one-argument
primitive recursive functions. Let us being by stating some definitions.

DEFINITION 2.1. The function f{x) is said to be defined from g{x)
by iteration (more precisely, "pure iteration with no parameter be-
ginning at 0") if /(0) = 0 and f{x + 1) = g(f(x)). We shall sometimes
write f(x) = gx{0). The function f{x{n)) is said to be defined by the
substitution of h^x^), ---,hm{x{n)) into g{yim)) if

Here either m or n is allowed to be 0. We have used the notation
x{n) for xlf « ,xn, which we shall employ freely below.

We shall make heavy use of the pairing functions J, K and L
used in [7, §4], These are defined as follows:

J(χ, v) = ((» + vf + χy + y
K{z) = Elz1'2]

L{z) = E{z) .
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Here E{z) is the excess of z over a square (z — [z1/2]2), and [z1'2] is the
largest integer not exceeding the square root of z. The important
properties of these pairing functions are:

( 1 ) K(J(x, y)) — x and L(J(xf y)) — y (but not necessarily
J(K(z), L(z)) = z)

( 2 ) J(0, 0) = 0, hence K(0) = L(0) = 0.
( 3 ) If L(z + 1) Φ 0 then K(z + 1) = if (z) and L(z + 1) = L(z) + 1

(even in those cases in which z is not a value of J(x, j/)).
The significance of (3) is the ease with which one can obtain all

the pairs (x, y), , (x, 0) from J(x, y + 1) — z. Namely, merely list
(K(z - 1), L(z - 1)), (K(z - 2), L{z - 2), until you reach a pair of
the form (K(z — k), 0). This is used in reducing the number of
arguments in recursive definitions in [7, §§ 3, 4] (see Lemma 3.1 below).

Let us immediately generalize these functions J, K and L which
establish a one-to-one correspondence between pairs of (nonnegative)
integers and some integers. These new functions J{n),Mfn), •• ,ikf7̂

)

will establish a correspondence between ^-tuples and some integers,
and will be used heavily in § 3, especially in connection with the notion
of "associate" defined there. The definitions are inductive and self-
explanatory (given our convention that x{n) means xu

 β

 9xn).

J{1\z) = Mll)(z) = z

J(»+i>(fl.<»+i>) = J[J<">(α;<*>), χn+1]

M t

{ n + 1 ) ( z ) = M i n ) ( K ( z ) ) 9 f o r all l ^ i ^ n

M i V Λ z ) = L(z) .

It is immediate from these definitions that the following generalizations
of (1), (2), and (3) (which will be used in § 3) hold:

(1') Mln)(J{n)(x{n)) = x, for all 1 ^ i ^ n.
(2') J (%)(0, , 0) = 0, hence M/%)(0) = 0 for all 1 ^ i S n.
(3r) If Min)(z + 1)ΦQ then Min)(z + 1) = Min)(z) for all 1 ^ i ^

n — 1 and Min)(z + 1) = Min)(z) + 1 (even in those cases in which z
is not in the range of J{n)(x{n))).

We shall use one further notation, this taken essentially from [6].
We shall write \f{x) = 0 — g(x); h(x)y for "either g(x) if f(x) = 0
or h(x) otherwise". Given the functions 0x = (x = 0 —»1; 0)> and
sgn (x) = (x — 0 -* 0; 1>, we can define </(a?) = 0 —* #(#); λ(a?)> as
g(x)-0fix) + h(x)-sgn(f(x)). Hence we may note that </(«;) = 0—>
βr(x); fe(ίc))> is definable from /(a?), #(#), h(x), 0x and sgn (a;) by addition,
multiplication and substitution of one-argument functions into one-
argument functions.

Now we have the necessary background to define the classes &n

of one-argument functions. These will be defined to include the one-
argument functions which we have just discussed and to be closed
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under the operations above as well. We make these statements more
precise in Theorem 2.1 below.

DEFINITION 2.2. We shall say the function f(x{n), y) is defined
from g(x[n)), h(x{n\ y, z) and j(x{n\ y) by limited recursion (see [4]) if

f{χ{n\y)Sj(χ{n\y).

We shall say that the function f(x) is defined from h(x) and j(x)
by limited iteration if f(x) = hx(0) and f(x) S j(x)

DEFINITION 2.3. For each n ̂  2, &n is the smallest class of one-
argument functions containing S(x), E(x), [x1'2] and fn(x, x) which is
closed under addition (f(x) — g(x) + h(x)), multiplication (f(x) — g{x)*h{x)),
composition of one-argument functions (f(x) ~ h(g(x))) and limited
iteration.

THEOREM 2.1. Each class &n contains
( i ) the identity function I(x) = x,
(ii) the constant function k(x) for each k ̂  0,
(iii) K(x) and L(x) (in fact Mln)(x) for each n ^ 1 and 1 ̂  i ^ n),
(iv) sgn (x) = (x = 0 — 0; 1>,
(v) 0x = <x = 0 —> 1; 0>, α r̂f
(vi) /<(«?, a?) /or 0 ̂  i ^ 2.

Further, each &n is closed under

(vii) pairing (f(x) = J{n){f{x), •-,/»(»)), αmZ
(viii) conditional expression (f(x) = ζg(x) — 0 —> /&(#); i(x) > ).

Proo/.
( i ) J(α>) - Sβ(0), I(x) ^ S(a?).
(ii) 0(a?) = /^(O), 0(α?) ̂  I(x), and Jk(α) = SΛ(0(α;)) for each fixed

integer k.
(iii) K(x) = E[xιι% L{x) = £;(ίc) and each M/W)(ic) is obtained by

composition from these.
(iv) sgn (x) = l (0), sgn (x) ^ l(a?)
(v) 0 = £?{S2

(vi) /0(a?, a?) =
Λία;, x) =

(vii) J(ff(a?), λ(«)) = [(g(x) + M*))2 + ff(*)]8 + h(x), obtained by ad-
dition and multiplication from g(x) and h(x)
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(viii) ζg(x) = 0 — h(x); j(x)> = h{x)-W{x) + j(x)-agn (g(x)) obtained
by composition, addition and multiplication.

THEOREM 2.2. For any n ^ 2 and any f(x) in gf Λ, £Λere is α
positive integer k such that, for every x Ξ> 2, /(a;) < fn+1(x, k).

Proof. The theorem holds for the basic functions of g^w, namely
S(a?) < /„(&, 2) rg /w + 1(s, 2), E(x) <x = fn+1(x, 1), [a?1'/8] < x = /n+1(aj, 1)
and /w(o5, a?) = /W+I(ί», 2) < /n+1(ίc, 3). Now assume inductively that
g(x) < fn+1(x, k) and /&(#) < fn+ί(x, I) for fc and I both greater than 1
(without loss of generality). We shall show that the four operations
in terms of which ^ n is defined preserve the boundedness property.
If f(x) is defined by limited iteration the result is obvious. If f(x) —
g(x) + h(x) or g(x) h(x), then, since x, k and I are all at least 2, we
have f(x) < fn+1(x, k)-fn+1(x, I) ^ f%¥1(x, k + I) by Lemma 1.4. Finally,
if /(a?) = h(g(x)), we use Theorem 1.1 to see that

as desired.

DEFINITION 2.4. The function /(cc) majorizes g(x) if there is an
integer k such that fix) > gix) for all x ^ k.

COROLLARY. For every n ^ 2, £/&e function fn+1(x, x) majorizes
every function in gf Λ. Hence 5f\ Φ &'m for m Φ n.

The next theorem tells us that iteration (unlimited) does not lead
out of the union of the gf Λ. - This, in connection with a result of
Robinson [7 Th. 3], shows that U &n is the class of all one-argument
primitive recursive functions. However, we shall obtain that corollary
result a little differently at the end of the next section, so we do not
state it explicitly here.

We precede the theorem with a lemma which we shall use in its
proof.

LEMMA 2.1. For every n ^ 2 and k ^ 1 the function hn,kix) —
fn(k, x) is in &m for every m ^ n; hence, in particular it is in %?n.

Proof by induction on n. For n = 2f we merely note that h2>kix) —
kix)Ίix). Let us assume that hntk(x) is in gfm for all m ^ n and all
k. Then define h'n+llk(x) by:
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Λ;+lf4(0) = 0

hn+Lk(X + 1) = 9n,k(K+Lk(x))

K+uk(x) S fn+1(k, x) S Λ+1(fc + x, k + x) ^ /m+1(fc + a?, A? + x)

where gn,k(x) = hn,k{(x = 0 —> 1; sc», a function in 5^m for every m^n
by Theorem 2.1 (viii) and fm+1(k + x,k + x) is in S^w+i since it results
from substituting k(x) + I(x) into the basic function fm+1(x, x). Thus
h'n+ltk(x) is in gf m for every m ^ w + 1, and Λn+i,fc(a0 = <X+i,*(#) =
0 —* 1; /&£+liJfc(ίc)>, is also in ^ m as desired.

THEOREM 2.3. If f(x) is defined by iteration from g{x), that is,
fix) — 9*(0)t and if g(x) is in &n9 then f(x) is in &n+1.

Proof. Let g(x) be less than fn+1(x, k), for all x ^ 2 and some
k ^ 2 (by Theorem 2.2). We shall show that, for any x ^ 2 and
1/ ^ 0, flf^y) ̂  Λ+1(^, /»+i(&, a?)) where y is the maximum of y and 2.
From this it will follow that f(x) = flf*(0) ̂  /w+1(2, Λ+1(AJ, x))9 which is,
by monotonicity, at most fn+1(k, fn+1(k, a?)). But fn+1(k, x) is a one-
argument function Λ(a ) in &\+1 by the lemma. Our bounding function
is then h\x), again in Sf Λ+i. Thus it suffices to show that ^̂ (̂ z) <̂
fn+iiv, fn+i(k, x)). Here ^"'(T/) is taken to mean the function defined by

g°(y) = y, gx+1(y) = fftoW).

Now g\y) = y ^ / n + 1 (^, Λ+i(fc, 0)), so let us establish our bound on
9x(y) by induction on x. Assuming that gx(y) ^ fn+1(y, fn+i(k, x)) for
a fixed value of x and for all y, we have

g*+1(v) = g(gx(y))

^ fn+Un+l(y, f«+l(k, X)),

= Λ+l(^, /n+1(fc, » + 1)) .

Here we have used the first part of Theorem 1.1 and then the second
part of Theorem 1.1 having noted that k = fn+1(k, 1).

COROLLARY. The union of the classes 5fn, n ^ 2, is closed under
addition, multiplication, composition of one-argument functions and
iteration.

3* The classes J ^ of primitive recursive functions* In this
section we define classes J^n which are essentially the ^ n introduced
by Grzegorczyk (see the final paragraph of § 4). We shall use results
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of Robinson to show that, for each n ^ 2, &n is the class of all one-
argument functions in ^ n . In fact, we shall show that ^l is the
class of all functions which have their one-argument "associates" under
the pairing functions included in ^ n . We shall make this precise in
Definition 3.2 and Theorem 3.4 below.

We begin by defining the classes

DEFINITION 3.1. For each n ^ 0, let ^ be the smallest class of
functions containing the successor function S(x)9 the zero function
0(#), the identity functions U?(xl9 •••,#„) = xi9 and fn{x9y) which is
closed under substitutions and limited recursion (see Definitions 2.1
and 2.2).

It is an immediate consequence of this definition and the mono-
tonicity of the fn(x, y) that fn(x9 y) can be defined by limited recursion
in every class ^ m where m is at least as large as n. Hence, j^~n is
contained in ^~m for every m ^ n ^ 0. That this containment is proper
will follow from the relation between J^ and & n to be established
below. We now prove a theorem which, though it consists only in
listing several functions in j^~n9 establishes part of this relationship.

THEOREM 3.1. The functions x + y, x*y9 x — y, [xll2]9 Ex and
fn(x, x) are in ^l for every n ^ 2. Hence 2 ^ % c _ ^ for every n^2.

Proof. We define a sequence of functions in ^ n which includes
the desired functions. Each definition is either by substitution or
limited recursion from functions already known to be in

x + 0 = x χ-0 = 0

x + (y + 1) = S(x + y) χ-(y + 1) = x + (χ-y)

x + y^ fn(S(S(x)), y), x y^ fn(χ, y)9 (by Lemma 1.3)

(see Lemma 1.3);

P(0) = 0 x ^ 0 = I(x) 0° = 1

P(x + 1) = I(x) = U}(x) x -- (y + 1) = P(x - y) 0^+1 = 0(0*)

P(x) g I(x) x - y ^ U}(x, y) 0* g S(x)

x2 = I(x)-I(x)fn(x9 x) = fn(I(x),

[01/2] = 0

[(x + 1)1/2] = [x1'2] + o

All the basic functions of S^w are among these. Hence we need
only show that ^"n is closed under the operations used in defining gf\
to complete the proof. But this is immediate since the addition and



1038 ROBERT W. RITCHIE

multiplication functions are in J^n and it is closed under substitution
and limited recursion.

We wish to show that ^ n is precisely the class of all one-argument
functions in J?~n. In fact, we shall show that j^~n is just the class
of all functions which can be obtained from ^ n by use of the pairing
functions alone. A critical step in this process is the replacement of
definition by limited recursion with definition by its special case, limited
iteration. The replacement of primitive recursion by iteration was
carried out in [7, §§3 and 4] following earlier work by Peter. We
modify that replacement slightly so that it will yield immediate bounds
on the functions in question and thus apply to the limited recursions
and iterations we are using. Lemma 3.1 follows [7] directly, but we
include it here for completeness and for notational convenience. Lemma
3.2 differs slightly from Robinson's work; the difference is introduced
so that the f\z) we obtain can be expressed in terms of the original
function for all values of z, thus keeping the bound on f{z) for all z.

LEMMA 3.1. Let f(x{n\ y) be defined by primitive recursion from
g(x{n)) and h(x{n), y, z):

f(x{n), 0) -

Then F(z) = f(Mln+1)(z), , M7[lt1](z))9 and hence f(x{n\ y) =
F(J{n+1)(x{n\ y))9 where F(z) is defined by

F(0) = g(0™)

F(z + 1) = H(z, F(z))

where

H(z, w) = (M^(z + 1) = 0 — g[Ml*+1)(z + 1), . ., M^+1)(z + 1)];

Proof by induction on z. Since Min+1)0 — 0, we have the desired
result for z = 0. Assuming the result for z, we consider F(z + 1).
There are two cases according as Mϊli1](z + 1) = 0 or not. In the
former case the result is immediate by the definition of f(x{n), 0) as
g(x{n)). In the latter case the result follows by induction and an
observation that, by property (3') of the pairing functions, Mln+1)(z+l) —
Mln+1){z) for all 1 g i ^ n and M^iz + 1) - 1 - M&Πz).

LEMMA 3.2. Let F(z) be defined by primitive recursion:

F(0) - k

F(z + 1) - H(z, F(z)) .
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Then f'(z) = <z = 0 -> 0; J(z, F(z))> and hence F(z) = (z = 0 -> fc;
L{f(z))y where f(z) is defined by pure iteration, namely:

/'(0) - 0

f\z + 1) - J{JΓ(/'(s)) + 1, H'[K(f'(z)), L(f(z))]}

with

H'(z, w) = <z = 0 — if (0, k); H(z, w)> .

Proof. First we define .F'(z), a function which agrees with F(z)
except when z — 0:

^'(0) = 0

F\z + 1) = iϊ'(^, F'(^)) .

Then we note that f\z) — J(z, F'(z)) as desired.
These two lemmas combine into the following general theorem.

THEOREM 3.2. Let f(x{n\ y) be defined by primitive recursion
from g(x{n)) and h(x{n), y, z), where n is any nonnegative integer
(possibly zero). Then there is a function f'(z) such that

f(z) = <z - 0 - 0; J(z, f(Ml«+1\z), , MΊ[\γ\z))y ,

and hence

f(x{n\ V) = (J{n+1){x{n\ y) = 0 -> g(0{n)); Lf'(J<»+1)(x™, j/))>

where f'(x) is defined by pure iteration, namely

f'(0) = 0

f'(z + 1) = H"(f'(z))

with

H"{w) = J{K(w) + 1, H\K(w), L(w))} ,

H'(z, w) = <z = 0-> H(0, g(0^); H(z9 w)> ,

H(z, w) = (MΊ[\γ\z + 1) = 0 -> g[M^ι\z + 1), , M^\z + 1)];

Now we are prepared to prove the two theorems which relate the
classes j^~n and ^n. We begin with the definition of an associate of
a function.

DEFINITION 3.2. The function g(x{m)) is called the m-argument
associate of the function f{x{n)) if g(Mlm)(x), , Mlm)(x)) =
f(Mϊn)(x), . . . , Jlf^ία)) for all x.
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Let us note two important facts about associates. First, if g(x{m))
is an associate of f(x{n)) it must be the function

f(Min)(J{m)(x{M)))9 , Min\J{m)(x{m)))) .

Thus there is at most one m-argument associate of any given n-
argument function. However, there need not be any. For example,
the one-argument function f{x) — x does not have a 2-argument associate.
For, assuming that g{x, y) is an associate, we have by the above that
9(v9 V) = f(J(x, V)) = ((% + V)2 + %Y + V But this function g(x, y)
does not satisfy the defining condition that, for every x, g{K(x), L(x))~
f(x). In particular /(I) = 1 but K(l) = L(l) = 0, hence g(K(l), L(l)) =
0; in fact g(K(y4), L{y')) = 0 for all y since K{y") = L{y") = 0. (The
reader may show easily that in general an ^-argument function f{x{n))
will have an m-argument associate if and only if f(Min)(x), ,Min)(x)) =
f{Min){y), --,MΊ[

n)(y)) whenever Mim)(x) = Mlm)(y) for all 1 ^ i ^ m.
However, we make no use of this fact here.)

We shall show, in the next two theorems, that J^n is precisely
the class of all associates of functions in gfn.

THEOREM 3.3. The class of all associates of functions in &% is
closed under substitutions and limited recursion. Further, any
function defined by primitive recursion from functions with associ-
ates in ^ n has an associate in &n+1.

Proof. First let us consider substitutions. Assume 0ί(αsίm)), 1 ^
i ^ n, and h(x{n)) are associates of functions g*(x) and h*(x) in &k.
Then f{x{m)) = hig^x™), , gn(x{m))) is an associate of f*(x) =
h*{J^{g*{x),.**,g~t{x))). But /*(α?) is in &k by Theorem 2.1 (vii)
and closure under substitutions.

Now let us turn to recursion. Assume g(x[n)) and h(x{n\ y, z) are
associates of functions g*(x) and h*(x) in &k, and let f(x{n\ y) be
defined from g(x{n)) and h(x{n\ yy z) by primitive recursion. By Theorem
3.2, f*(x) = f(Ml"+»(x), , mii»(x)) = <x = 0 -> flr(0< >); L(/;(α?))>,
where the function /'(x) is defined by pure iteration from H"{w) as
described in the theorem. But H"(w) is in ^ A , as we now show. It will
be in ^ k if H'(K(w), L{w)) is, by the closure of &k under conditional
expression. For the same reason, H'(K(w), L(w)) will be in &k if
H(K(w), L(w)) is. But this last function is precisely (Min

+ϊ1](K(w) +
ΐ) = 0-*g*(K(K(w) + l));h*(w)> which is in gf4. Hence H"(w) is
in &k so that an application of Theorem 2.3 shows that f'(x) is in
2^fe+1. But then f*(x) is also in &k+1 as desired.

We have now only to show closure of the associates of ^ k under
limited recursion. To do so, we reason as follows. If, in fact, f'(x)
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is bounded by some function in <&k, then f(x) and hence /*(#) will
also be in gf k. But exactly this is the case if f(x{n\ y) is defined by
limited recursion with a bounding function with an associate, say j*(x),
in gffc. For then f(x) ^ J(x, j*{x)). This completes the proof of the
theorem.

THEOREM 3.4. For every n ^ 2, the class ^ n is the class of all
associates of all functions in ^ n.

Proof. First, we have ^ncz^n by Theorem 3.1. But every
associate of any f(x) in &% is obtained by substituting J{k)(x{k)) into
f(x) by the remarks following the definition of asssociate. Since _ ^
is closed under substitutions by definition, all these associates are in
+β\. To prove the converse, we note that, by Theorem 3.3, it suffices
to show that the basic functions of ^~n are associates of functions in
^ Λ . This is obvious for all the basic functions except fn(x, y), and
we shall prove that fn(x, y) has an associate in &n by induction on n.
We first observe that the function K(x)-L(x) is an associate of f2(x, y)
which is in ^ 2 , so that the result holds for n — 2. The inductive
step follows from Theorem 3.3 since fn+1(x, y) is defined from l(x) and
h(x, y, z) = fn(Ul(x, y, z), Ui{x, y, z)) by primitive recursion.

We conclude this section with three corollaries which spell out the
relationship of the classes 5 '̂n9 J^n, and the class of all primitive
recursive functions.

COROLLARY. For every n Ξ> 2, &n is precisely the class of all
one variable functions in

Proof. ^ n is the class of all one-variable associates of functions
in Sf n .

COROLLARY. For every n ^ 2, &nis properly contained in ^n+ϊ.
For every n ^ 0, j ^ % is properly contained in S^n+1.

Proof. As commented immediately after the definition of the
classes j^~n, each j ^ n is contained in ^ ^ + 1 . But, by the corollary to
Theorem 2.2, fn+1(x, x) is in ^ ^ + 1 but not

COROLLARY. The union of the increasing sequence of classes <β\
is the class of all primitive recursive functions.

Proof. The primitive recursive functions can be characterized (see,
for example, [3, p. 49]) as the smallest class of functions containing
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S(x), 0(x) and U?(xl9 •••,#») which is closed under substitutions and
primitive recursion. The very definition of the J^ provides containment
of these basic functions and also closure under substitutions. Closure
of the union under primitive recursion is provided by Theorems 3.3
and 3.4.

4* Equality of ^ n and &n. In this section we shall show that
rn — <gn for every n 7> 0. We begin with Grzegorczyk's definition of

of gn(x, y) and if \

DEFINITION 4.1. We define gn(x, y) by setting

9i{χ, v) = x + v

Λ(B, y) = (χ + i

gn+1(x, 0) = gn(x + 1, x + 1))

0«+i(α, 1/ + 1) = gn+1(gn+1(x, y), y))

Then we define if" as the smallest class of functions containing
S(x)9 0(x), Ui{xu ••-,»„) and gn(x9 y) which is closed under substitutions
and limited recursion.

We have written gn(x, y) for the function which Grzegorczyk
denoted by fn(y, x)9 and have trivially modified the list of basic
functions of if% (Grzegorczyk observed that it was sufficient to take
S(x)9 Uι(x9y) and Uξ(x,y) as basic since 0(#) and U?(xl9 •••,«*) could
be defined from these by substitutions).

Let us include for reference a list of monotonicity properties of
the gn(x9 y) which were established in [4, p. 28], We shall use these
frequently below in relating fn(x, y) to gn(x9 y), and refer to them
simply as "[4, p. 28]".

( 1 ) gΛ®, y) > x tor n^2

( 2 ) gn(x9 y + 1) > gn(x9 y) for n ^ 1

( 3 ) gn(x + l,y)> gn(x,y) tor n^O.

Each inequality is easily proved from the definitions.
Now let us prove a lemma to be used in relating ^ n and i f .

The first assertion of the lemma was noted and used by Grze-
gorczyk in the case n — 3 [4, p. 29] and by Axt for all n ^ 3 [2, p.
58].

LEMMA 4.1. For every n^3, gn(x, y) = hn(x, 2V) where hn(x, y)
is defined by
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hn(x, 0) = x

hn(x, y + ΐ) = gn^(hn(x9 y) + 1, K(x, y) + 1) .

Further, fn(x, y) < gn(x, y) for every n ^ 2, x, y ^ 0.

Proof. A completely straightforward induction on z establishes
the identity hn(hn(x, y), z) = hn(x, y + z) for all x, y and z. Then
another straightforward induction on y establishes that gn(x, y) —
hn{x, 2y) completing the first part of the lemma. Turning to the second
assertion, we observe that f2(x, y) < g2(x, y) is immediate. Let us
assume now that n ^ 3. In case x — 0, we have /n(0, 0) = 1 < flrΛ_1(l, 1) =
flrw(0, 0), by [4, P. 28]. Further /n(0, y + 1) ̂  1 < gn(09 y + 1) by
another application of [4? p. 28]. In case x — 1, we have / n (l, #) =
1 < ^ ( 1 , 1 ) - gn(0, 0) < (/.(I, y) by [4, p. 28]. Thus we need to
establish fn(x, y) ^ gn(χ, y) only for n Ξ> 3, a? ̂  2. In these cases we
shall in fact show that fn(x, y)<K(x,y)<gn(x,y). That K(x,y)<gn(x,y)
follows immediately from the definition of hn(x, y), the property ([4,
p. 28]) that gn_x(x9 y) > x and the first part of this lemma. To see
that fn(x, y) < hn(xy y) we proceed inductively on y assuming that we
already have fn^(x9 y) < gn-i(x, y). We begin by noting that hn(x, y)^x
by induction on y. Now fn(x, 0) = 1 < hn(x, 0), and then

fn(x, y + 1) = Λ_i(x, fn(x, y))

< Λ_i(x, hn(x, y))

< ί/»-i(a?, K(x, y))

< gn-i(hn(x, y) + 1, hn(x, y) + 1)

= K(x, y + 1) .

This completes our proof.
Now we establish the equality of g"w and J ^ .

THEOREM 4.1. For every n^0, ^"% = g"\

Proof. For n = 0,1 the two classes have identical definitions.
For n i> 2, to establish equality it will suffice to show that fn(x, y) is
in g7" and that flrn(a;, y) is in ^ ^ . But, by the preceding lemma,
fn(®9 V) < Qn(%, y) for all n ^ 2? and this allows us to define fn(x, y)
by limited recursion in g^ . Namely, f2{x, y) is defined by primitive
recursion from f(x, y), which we know to be in g7 1 £ g72. (That
g7*1 g g^ + 1 is proved in [4, pp. 33-4]). Since f2(x, y) is bounded by
a function in tf2,f2(x,y) is then in g72. Assuming fn(x,y) is in g7™,
we find that /w+i(aj, y) is in g7 ί l + 1 by the same argument. Now we
know that _ ^ Q &n and need only to define gn{x, y) within ^ n to
complete the proof. We shall proceed by induction on n, beginning at
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n = 2 where g2(x, y) — f2(x + l,y + l), a function in ^ n . Assume the
result holds for n. By Theorems 3.3 and 3.4 we see that hn+1(x9 y)
is in J^~n+1 since it is defined by primitive recursion from functions in
^l; namely I(x) and gn(Ui(x, y, z) + 1, Ui(x, y, z) + 1). But then
gn+1(x, y) = hn+1(x, 2y) is in J ^ + 1 since 2V = /s(2, ί/) is in J ^ + 1 for all
n ^ 2.

* * *
Technically, Grzegorczyk did not pose his question about the classes

^n based upon the functions fn(x, y). Instead he asked about classes
whose definition is obtained from that of ^ n by replacing fn(x, y)

by fή(x, y). The definition of these functions fή(x, y) is in turn obtained
from that of fn(x, y) by deleting the special definition of f2(x, y) and
letting the general case cover that as well. Namely, (except for the
fact that we are consistently reversing the order of his variables)
Grzegorczyk defined fn(x, y) as

/<>'(&, y) = x + 1

f&x, y) = x + y

Λ'+1(£,0) = l
for all n ^ 1 .

fi+i(x, y + l)= ffo, /»+i(a?, V))
This makes fi(x,y) = x-y + 1, fi(x,y) = xy+ - +a? 1 +l = (xy+1-l)/(x-l),
and fή(x, y) for larger n relatively inexpressible. It is easily seen that
fjx9 y) S fn(x, y) for all n ^ 2 and all x and y. We leave the details
of the proof, which by now should suggest themselves immediately,
to the reader. From this it follows that fή+ι(%> %) majorizes every one-
argument function in j ^ ~ n . The containment of ^ n in J^71 follows
since fn(x, y) is definable within ^ n by limited recursion. But then
j ^ n — J?Γn since fή(x, y) is in ^ n by induction on n using Theorems
3.3 and 3.4 and the fact that f!ι+1(x, y) is defined from fή(x, y) by
recursion.
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