A GENERALISATION OF W*-ALGEBRAS

G. A. REID

Using the theory of double centralisers due to B. E. Johnson, we define a QW^* -algebra as being a B^* -algebra, A, such that the algebra of double centralisers of each closed *-subalgebra B is contained in a suitable related closed *-subalgebra B_{00} .

After obtaining explicit descriptions of the algebras of double centralisers of commutative and noncommutative B^* -algebras, we prove that in the general noncommutative case a W^* -algebra is c QW^* -algebra, and a QW^* -algebra is an AW^* -algebra, while in the commutative case the QW^* and AW^* conditions are equivalent.

We prove that if A is QW^* then so are its centre, any maximal commutative *-subalgebra, and any subalgebra of the form eAe for e a projection in A.

We shall be concerned with centraliser theory, for the basic details of which reference may be made to Johnson [2], [3].

I should like to take this opportunity of expressing my sincere gratitude to Dr. J. H. Williamson, my research supervisor, for his advice and encouragement.

DEFINITION 1. A left centraliser \mathcal{T} of the algebra A is a linear map \mathcal{T} of A into itself such that $\mathcal{T}(xy) = (\mathcal{T}x)y$ for all $x, y \in A$.

A right centraliser S is a linear operator on A such that S(xy) = x(Sy) for all $x, y \in A$.

A double centraliser (the concept is due to Johnson [2]) is a pair of linear operators $(\mathcal{T}, \mathcal{S})$ such that $x \cdot (\mathcal{T}y) = (\mathcal{S}x) \cdot y$ for all $x, y \in A$.

The set of all double centralisers on A is denoted by Q(A).

We will assume throughout that xA = 0 or Ax = 0 only holds for x = 0. We note that this holds for B^* -algebras since $xA = 0 \Rightarrow xx^* = 0 \Rightarrow x = 0$, and $Ax = 0 \Rightarrow x^*x = 0 \Rightarrow x = 0$.

It is not difficult to see that defining $(\mathcal{T}_x, \mathcal{S}_x) \in Q(A)$ for $x \in A$ by $\mathcal{T}_x(y) = xy$, $\mathcal{S}_x(y) = yx$, and algebraic operations in Q(A) by

$$egin{aligned} \lambda_1(\mathscr{T}_1,\mathscr{S}_1) + \lambda_2(\mathscr{T}_2,\mathscr{S}_2) &= (\lambda_1\mathscr{T}_1 + \lambda_2\mathscr{T}_2,\lambda_1\mathscr{S}_1 + \lambda_2\mathscr{S}_2) \ (\mathscr{T}_1,\mathscr{S}_1)ullet(\mathscr{T}_2,\mathscr{S}_2) &= (\mathscr{T}_1\mathscr{T}_2,\mathscr{S}_2\mathscr{S}_1) \end{aligned}$$

Received August 27, 1964.

we have A embedded as a subalgebra of Q(A), which is an algebra with identity. A = Q(A) if and only if A has an identity. Also, for $(\mathcal{T}, \mathcal{S}) \in Q(A)$, \mathcal{T} is a left centraliser and \mathcal{S} is a right centraliser, and either of \mathcal{T}, \mathcal{S} determines the other uniquely.

If A is commutative, the notions of right, left and double centraliser coincide, and for $(\mathcal{T}, \mathcal{S}) \in Q(A)$ we have $\mathcal{T} = \mathcal{S}$.

PROPOSITION 1. If A is a Banach algebra then all double centralisers are continuous.

Proof. Suppose $(\mathscr{T}, \mathscr{S}) \in Q(A)$ and say $x_n \to x, \mathscr{T}x_n \to y$. Then $z \cdot (\mathscr{T}x_n) = (\mathscr{S}z) \cdot x_n$

 $\rightarrow z \cdot y \qquad \rightarrow (\mathscr{G}z) \cdot x = z \cdot (\mathscr{T}x)$.

So $z(y - \mathscr{T}x) = 0$ for all $z \in A$ i.e. $A(y - \mathscr{T}x) = 0$ and so $y = \mathscr{T}x$. Therefore \mathscr{T} is a closed operator on the Banach space A, hence by the Closed Graph Theorem, \mathscr{T} is continuous. Likewise so is \mathscr{S} .

We are particularly interested in C^* -algebras and in both the commutative and noncommutative cases explicit descriptions of their centraliser algebras may be given.

By the Gelfand Representation Theorem a commutative B^* -algebra is isometrically isomorphic to the space $C_0(Z)$ of all continuous functions vanishing at infinity on its carrier space, Z, a locally compact Hausdorff space.

PROPOSITION 2. For a locally compact Hausdorff space Z we have $QC_0(Z) = C(Z)$, the space of all bounded continuous functions on Z.

Proof. Certainly any $h \in C(Z)$ defines an element \mathscr{T}_h of $QC_0(Z)$ by $\mathscr{T}_h f = h \cdot f$ for $f \in C_0(Z)$, for

$$f \in C_0(Z), h \in C(Z) \Longrightarrow hf \in C_0(Z)$$

and

$$h(fg) = (hf)g$$
.

We clearly have $||\mathcal{T}_h|| \leq ||h||_{\infty}$. Suppose conversely we are given a centraliser \mathcal{T} on $C_0(Z)$. Then for $f, g \in C_0(Z)$ we have

$$(\mathscr{T}f)g=\mathscr{T}(fg)=\mathscr{T}(gf)=(\mathscr{T}g)f$$

so for $z \in Z$ taking any $f \in C_0(Z)$ such that $f(z) \neq 0$ and defining $h(z) = \mathscr{T}f(z)/f(z)$ we have h(z) well defined independently of f.

Being a quotient of continuous functions, h is continuous at z, for each $z \in Z$. And for any $g \in C_0(Z)$,

$$\mathscr{T}g(z) = rac{\mathscr{T}f(z)}{f(z)}g(z) = h(z)g(z)$$

80

$$\mathcal{T}g = hg = \mathcal{T}_hg$$
 .

Now by Proposition 1, \mathscr{T} is a bounded operator, so taking $f \in C_0(Z)$ such that $0 \leq f \leq 1$ and f(z) = 1 we have $h(z) = \mathscr{T}f(z)$ and $|\mathscr{T}f(z)| \leq ||\mathscr{T}f||_{\infty} \leq ||\mathscr{T}|| ||f||_{\infty} = ||\mathscr{T}||$ so $||h||_{\infty} \leq ||\mathscr{T}||$ and we see $h \in C(Z)$.

Hence all \mathscr{T} are of the form \mathscr{T}_h and $||\mathscr{T}|| = ||h||_{\infty}$. So $QC_0(Z) = C(Z)$.

PROPOSITION 3. If A is a C^* -algebra over H, principal identity E, then Q(A) is isometrically isomorphic to

$$\{T \in \mathscr{B}(H): T = ETE, TA \cup AT \subset A\}$$
.

Proof. Recall that the principal identity of a C^* -algebra A is defined to be the orthogonal projection of H onto $M = H \bigoplus N$ where $N = \{\xi \in H: A\xi = 0\}$. Equivalently M is the closure of

$$M_{\scriptscriptstyle 1} = \{T {m \xi}: T \,{\in}\, A,\, {m \xi} \,{\in}\, H\}$$
 .

Suppose given $(\mathcal{T}, \mathcal{S}) \in Q(A)$, then \mathcal{T} is a bounded left centraliser.

Since A is a C*-algebra it has an approximate identity (Segal [6]), $(Z_{\lambda})_{\lambda \in A}$ say, so $||Z_{\lambda}|| = 1$, and $SZ_{\lambda} \to S$, $Z_{\lambda}S \to S$ for each $S \in A$. So $\mathscr{T}(Z_{\lambda}S) \to \mathscr{T}(S)$. But $\mathscr{T}(Z_{\lambda}S) = \mathscr{T}(Z_{\lambda})S = T_{\lambda}S$ where $T_{\lambda} = \mathscr{T}(Z_{\lambda})$, so $\mathscr{T}(S) = \lim_{\lambda} T_{\lambda}S$ and $||T_{\lambda}|| \leq ||\mathscr{T}|| ||Z_{\lambda}|| = ||\mathscr{T}||$. For $\xi \in M_{1}$, $\xi = S\eta$ some $S \in A, \eta \in H$ so $\mathscr{T}(S)\eta = \lim_{\lambda} T_{\lambda}S\eta = \lim_{\lambda} T_{\lambda}\xi$. Define $T\xi = \lim_{\lambda} T_{\lambda}\xi = \mathscr{T}(S)\eta$, then T maps M_{1} into M and $||T\xi|| \leq ||\mathscr{T}|| ||\xi||$ so $||T|| \leq ||\mathscr{T}||$.

So extend T to a map of M into M and define T = 0 on $H \bigoplus M$, so we have T = ETE and $\mathscr{T}(S)\eta = \lim_{\lambda} T_{\lambda}S\eta = TS\eta$. Therefore $\mathscr{T}(S) = TS$ and $||\mathscr{T}|| \leq ||T||$. So $||\mathscr{T}|| = ||T||$. We have

We have

$$(\mathscr{S}S)Z_{\lambda} = S(\mathscr{T}Z_{\lambda}) = STZ_{\lambda}$$

 $\rightarrow \mathscr{S}S \qquad \rightarrow ST$

So $\mathscr{S}(S) = ST$ for all $S \in A$, and as for $\mathscr{T}, || \mathscr{S} || = || T ||$. Since $TS, ST \in A$ for all $S \in A$ we have $TA \cup AT \subset A$. Conversely given any

T such that T = ETE and $TA \cup AT \subset A$, the maps $S \to TS$, $S \to ST$ both map A into itself and define a double centraliser of A. Hence result.

Denote the set $\{T \in \mathscr{B}(H): T = ETE, TA \cup AT \subset A\}$ by I(A), the idealiser of A in $E \cdot \mathscr{B}(H) \cdot E$.

Now let us suppose that B is a closed *-subalgebra of the B*-algebra A. We define $B_0 = \{x \in A : Bx = xB = 0\}$ and $B_{00} = (B_0)_0$. Then B_{00} is a closed *-subalgebra of A containing B. Should it be necessary to make explicit mention of the algebra A we will write $B_0(A)$, etc.

Suppose two elements x_1 , x_2 of B_{00} give the same double centraliser on B, so $x_1y = x_2y$ and $yx_1 = yx_2$ for all $y \in B$. Then $(x_1 - x_2)B = B(x_1 - x_2) = 0$ so $x_1 - x_2 \in B_0$. But $(x_1 - x_2)^* \in B_{00}$ so we have

$$(x_1 - x_2)^*(x_1 - x_2) = 0$$

and hence $x_1 - x_2 = 0$. So $x_1 = x_2$.

DEFINITION 2. A B^* -algebra A is said to be a QW^* -algebra if for each closed *-subalgebra B of A all double centralisers of B are given by elements of B_{00} . We see that for each double centraliser the corresponding element of B_{00} is unique, and so we may briefly say that A is QW^* if and only if $Q(B) \subset B_{00}$ for all closed *-subalgebras B.

We recall the definition of an AW^* -algebra (Kaplansky [4]).

DEFINITION 3. A B^* -algebra A is said to be an AW^* -algebra if (i) every set of orthogonal projections in A has a least upper bound in A.

(ii) every maximal commutative *-subalgebra B of A is generated by its projections.

We also recall that a W^* -algebra is a C^* -algebra, over H say, which is closed in the weak operator topology defined by seminorms $||T||_{\xi,\eta} = |\langle T\xi, \eta \rangle|$ for $\xi, \eta \in H$. Denote weak closure by ${}^{-w}$.

PROPOSITION 4. For A a C*-algebra, $I(A) \subset A^{-w}$.

Proof. By von Neumann's Double Commutant Theorem, $A^{-w} = \{T \in \mathscr{B}(H): T = ETE, T \in A''\}$ where as usual A'' denotes the double commutant of A.

Suppose $T \in I(A)$, $S \in A'$, $R \in A$, then certainly T = ETE and (ST - TS)R = S(TR) - T(SR) = TRS - TRS = 0. So (ST - TS)E = 0

and therefore ST = TSE. Since $T^* \in I(A)$, $S^* \in A'$ we have $S^*T^* = T^*S^*E$ so TS = EST. Thus TS = EST = ETSE = TSE = ST and so $T \in A''$. Hence $I(A) \subset A''$.

THEOREM 1. For a B*-algebra A, $W^* \Rightarrow QW^* \Rightarrow AW^*$.

If A is commutative, carrier space Z, then A is $QW^* \Leftrightarrow A$ is $AW^* \Leftrightarrow Z$ is extremally disconnected.

Proof. If A is a W^* -algebra and B is a closed *-subalgebra of A with principal identity E, then since A is W^* we note $E \in A$, and by Proposition 4, $I(B) \subset B^{-w} \subset A^{-w} = A$. Also we easily see that $B_0 = (I - E)A(I - E)$ so $B_{00} = EAE$. Thus $Q(B) \subset B_{00}$ by Proposition 3 and hence A is QW^* .

Suppose now that A is a commutative B^* -algebra, carrier space Z, so by the Gelfand Representation Theorem A is isometrically isomorphic to $C_0(Z)$.

It is well known that A is AW^* if and only if Z is an extremally disconnected compact Hausdorff space.

Suppose A is QW^* , then taking B = A we see that A has an identity, so Z is compact Hausdorff.

Let U be any open dense subset of Z.

Then taking $B = \{f \in C(Z) : f = 0 \text{ on } Z \setminus U\} = C_0(U)$, B is a closed *-ideal in A so $Q(B) = C(U) \subset A$.

So any continuous function f on U is extendible to Z. Therefore Z is extremally disconnected (see Gillman and Jerison [1], p. 96).

Now suppose that Z is an extremally disconnected compact Hausdorff space, and suppose B is a closed *-subalgebra of A = C(Z).

Let $(Z_{\lambda})_{\lambda \in A}$ be the sets of constancy of B (see Rickart [5], Ch. 3, § 2), then these form an upper semicontinuous decomposition of Z, so the space of these sets, Z' say, is a compact Hausdorff space and Bmay be considered as a space of continuous functions on Z'.

B is self-adjoint and separates points of Z', so by the Stone-Weierstrass Theorem, *either B* consists of all continuous functions on Z', in which case *B* has an identity so Q(B) = B, or *B* consists of all continuous functions on Z' vanishing at some point Z_0 of Z'. So Q(B) =all continuous functions on $Z' \setminus \{Z_0\}$.

Given any function on $Z' \setminus \{Z_0\}$ it corresponds to a function f on $Z \setminus Z_0 = Y$ say.

Y is open, so \overline{Y} is a compact open subset of Z, and therefore \overline{Y} is extremally disconnected (Gillman and Jerison [1], p. 23). So there exists an extension of f to \overline{Y} , and defining f = 0 on $Z \setminus \overline{Y}$ we extend f to a continuous function on Z.

Now since

$$B_0 = \{g \in C(Z) \colon g = 0 \text{ on } Y\}$$
$$= \{g \in C(Z) \colon g = 0 \text{ on } \overline{Y}\}$$

and

$$B_{\scriptscriptstyle 00} = \{g \in C(Z) \colon g = 0 \text{ on } Z \setminus \overline{Y}\}$$

we therefore have $Q(B) \subset B_{00}$.

So A is QW^* and we have proved our theorem for A commutative. Now let us return to the general case and suppose A to be QW^* .

(i) Suppose (e_{α}) is a set of orthogonal projections in A (so $\alpha \neq \beta \Rightarrow e_{\alpha}e_{\beta} = 0$).

Let B =closed *-subalgebra of A generated by the e_{α} 's.

= closed linear hull of the e_{α} 's.

Now there exists a unique $e \in B_{00}$ such that ex = xe = x for all $x \in B$ and e^* , $e^2 \in B_{00}$ with

$$e^*x = xe^* = x$$

 $e^2x = xe^2 = x$ for all $x \in B$.

So $e^2 = e^* = e$ and thus e is a projection.

Also $ee_{\alpha} = e_{\alpha}e = e_{\alpha}$ all α , so $e \ge e_{\alpha}$ all α .

Now suppose f is a projection in A such that $f \ge all e_{\alpha}$. Then $fe_{\alpha} = e_{\alpha}f = e_{\alpha}$ all α , so since all $x \in B$ are limits of linear combinations of the e_{α} 's, we have fx = xf = x for all $x \in B$.

Now

$$egin{array}{ll} y\in B_{\circ} &
ightarrow yfx=yx=0 \ xyf=0 & ext{all} \ x\in B
ightarrow yf\in B_{\circ} \end{array}$$

so for all $y \in B_0$,

$$fey=f0=0 \ yfe=0 ext{ thus } fe \in B_{\scriptscriptstyle 00}$$
 .

But

$$fex = fx = x$$

 $xfe = xe = x$

all $x \in B$, so since e is unique, e = fe.

So ef = fe = e and $e \leq f$.

Hence e is a least upper bound in A for the e_{α} 's.

(ii) Suppose B is a maximal commutative *-subalgebra of A. Then by Proposition 5 below, B is QW^* , thus since B is commutative it follows from the above result that B is AW^* , and is a maximal commutative *-subalgebra of itself and therefore generated by its projections.

1024

Thus we have both conditions for A to be AW^* .

The obvious question of interest arising from this theorem is whether or not the QW^* and the AW^* conditions are equivalent in the noncommutative case, but so far we have not been able to settle this problem.

We now prove some results for QW^* -algebras similar to those holding for W^* - and AW^* -algebras. We are indebted to the referee for pointing out case (iv) of Proposition 5 as generalising cases (i) and (ii).

PROPOSITION 5. If A is a QW^* -algebra then so also are the following closed *-subalgebras of A:

- (i) the centre Z of A,
- (ii) any maximal commutative *-subalgebra of A,
- (iii) the subalgebra eAe for any projection e in A,

(iv) S'' for any subset S of A such that $S^* = S$, where S'' is the double commutant of S in A.

Proof. We first prove (iv) from which (i) and (ii) follow immediately. (iv) Suppose B is a closed *-subalgebra of S''.

Since A is QW^* any double centraliser on B is given by some $x \in B_{00}(A)$.

To prove $x \in B_{00}(S'')$, since $B_0(S'') \subset B_0(A)$, we need only show $x \in S''$. Let $y \in S', z \in B \subset S''$, then

$$(xy - yx)z = x(yz) - y(xz) = xzy - xzy = 0$$

 $z(xy - yx) = (zx)y - (zy)x = yzx - yzx = 0$

so $xy - yx \in B_0(A)$.

Now

$$egin{aligned} u \in B_{\scriptscriptstyle 0}(A) &\Rightarrow yuz = 0 \ && zyu = yzu = 0 \ && ext{aligned} \ && ex$$

and likewise $u \in B_0(A) \Longrightarrow uy \in B_0(A)$.

Therefore since $x \in B_{00}(A)$, xyu = 0 and uxy = 0 for all $u \in B_0(A)$, so $xy \in B_{00}(A)$, and likewise $yx \in B_{00}(A)$. So $(xy - yx)^* \in B_{00}(A)$ and hence xy - yx = 0 for all $y \in S'$. Thus $x \in S''$ and the result follows.

(i) We have Z = A', Z' = A so Z = Z'', and clearly $Z = Z^*$, so the result follows from (iv).

(ii) Suppose C is a maximal commutative *-subalgebra of A, then by maximality C is closed and C' = C, so C = C'' and the result follows from (iv).

(iii) Let B be a closed *-subalgebra of eAe, then since A is QW^*

any double centraliser on B is given by some $x \in B_{00}(A)$. Since $B \subset eAe$ we have $y \in B_0(A) \Longrightarrow ey$, $ye \in B_0(A)$ and $x \in B_{00}(A) \Longrightarrow exe \in B_{00}(A)$.

But for $z \in A$ we have

$$zexe = (zx)e = zx$$

 $exez = e(xz) = xz$

so by the uniqueness of x in $B_{00}(A)$ we have x = exe. Thus $x \in eAe$ and so $x \in B_{00}(eAe)$. Hence eAe is QW^* .

References

1. L. Gillman, and M. Jerison, *Rings of Continuous Functions*, van Nostrand, Inc., Princeton, N.J. (1960).

2. B. E. Johnson, *Centralisers in topological algebras*, Ph.D. dissertation, Cambridge. (1961).

An introduction to the theory of centralisers, Proc. London Math. Soc.
 (3) 14 (1964), 299-320.

4. I. Kaplansky, Projections in Banach algebras, Ann. of Math. 53 (1951), 235-249.

5. C. E. Rickart, General Theory of Banach Algebras, van Nostrand, Inc., Princeton, N.J. (1960).

6. I. E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math. Soc. 53 (1947), 73-88.

ST. JOHN'S COLLEGE, CAMBRIDGE

1026