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A GENERALISATION OF W*ALGEBRAS
G. A. Reip

Using the theory of double centralisers due to B, E. Johnson,
we define a QW *-algebra as being a B*-algebra, A, such that
the algebra of double centralisers of each closed *-subalgebra
B is contained in a suitable related closed *-subalgebra By,.

After obtaining explicit descriptions of the algebras of
double centralisers of commutative and noncommutative B*-
algebras, we prove that in the general noncommutative case
a W*-algebra is 2. QW *-algebra, and a QW *-algebra is an
AW *-algebra, while in the commutative case the QW * and
AW* conditions are equivalent,

We prove that if A is QW * then so are its centre, any
maximal commutative *-subalgebra, and any subalgebra of the
form e¢Ae for e a projection in A.

We shall be concerned with centraliser theory, for the basic details
of which reference may be made to Johnson [2], [3].

I should like to take this opportunity of expressing my sincere
gratitude to Dr. J. H. Williamson, my research supervisor, for his
advice and encouragement.

DEFINITION 1. A left centraliser 7 of the algebra A is a linear
map 7 of A into itself such that .7 (xy) = (F%)y for all x, ye A.

A right centraliser & is a linear operator on A such that S (xy) =
x(y) for all z,yc A.

A double centraliser (the concept is due to Johnson [2]) is a pair
of linear operators (.7, .&°) such that x-(9%) = (&x)-y for all x, ye A.

The set of all double centralisers on A4 is denoted by Q(A4).

We will assume throughout that 24 — 0 or Ax = 0 only holds for
2 = 0. We note that this holds for B*-algebras since 24 = 0 = xx* =
0=2=0, and Ax =0=2*r = 0= o = 0.

It is not difficult to see that defining (7, &%) e Q(A) for x e A by
TAY) = vy, F(y) = yx, and algebraic operations in Q(A) by

7”1(%: %) + A'2(‘.7; %) - (’\’1% + k'ZL7;, xlu% + KZ%)
(T, A (T ) = (.95 AFA)
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we have A embedded as a subalgebra of Q(A), which is an algebra
with identity. A = Q(A) if and only if A has an identity. Also, for
(7, )eQ(A), 7 is a left centraliser and &7 is a right centraliser,
and either of 7, % determines the other uniquely.

If A is commutative, the notions of right, left and double centraliser
coincide, and for (7, %) e Q(A) we have 7 = .~

ProposiTION 1. If A is a Banach algebra then all double centralisers
are continuous.

Proof. Suppose (.7; &°)e Q(A) and say x, — %, 9%, —y. Then

2 (I®,) = (%2)-x,
— 2y — (S%2)-x = 2:(T%) .

Soz(y — 72)=0 for all ze A ie. Aly— %) =0 and s0 y = T w.
Therefore .7~ is a closed operator on the Banach space A, hence by
the Closed Graph Theorem, .7 is continuous, Likewise so is &~

We are particularly interested in C*-algebras and in both the
commutative and noncommutative cases explicit descriptions of their
centraliser algebras may be given.

By the Gelfand Representation Theorem a commutative B*-algebra
is isometrically isomorphic to the space C(Z) of all continuous functions
vanishing at infinity on its carrier space, Z, a locally compact Hausdorff
space.

ProprosITION 2. For a locally compact Hausdorff space Z we have
QC(Z) = C(Z), the space of all bounded continuous functions on Z.

Proof. Certainly any he C(Z) defines an element .77, of QC(Z)
by F.f = h-f for fe Cy(Z), for
feCyZ), he C(Z)= hfe C(Z)

and

k(f9) = (hf)g .

We clearly have || .7,|| < ||h|l.. Suppose conversely we are given a
centraliser .7~ on C,(Z). Then for f, ge C(Z) we have

(T g =T (fo) =7 (af) =(T9f

so for z e Z taking any fe C(Z) such that f(2) # 0 and defining A(z) =
7 f(2)/f(z) we have h(z) well defined independently of f.
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Being a quotient of continuous functions, & is continuous at z, for
each ze€ Z. And for any ge Cy(Z),

T9@) = ZLD 40) = M2)g(2)

f(z)
50

Tg=hg=9,9.

Now by Proposition 1, .7~ is a bounded operator, so taking fe Cy(Z)
such that 0= f = 1 and f(z) = 1 we have (z) = 9f(?) and | 7f(2)| =
1 TFlle =17 I flle =117"|l 80 [[R]l. =7 || and we see h € C(Z).

Hence all .7 are of the form 7, and || 7 || = || A ||l«. S0 QC(Z) =
C(Z).

ProrosiTION 3. If A is a C*-algebra over H, principal identity £,
then Q(A) is isometrically isomorphic to

{Te#H). T=ETE, TAUATCA}.

Proof. Recall that the principal identity of a C*-algebra A is
defined to be the orthogonal projection of H onto M = H S N where
N = {§e H: A = 0}. Equivalently M is the closure of

M, ={T¢: Tec A éc H}.

Suppose given (7, &)€ Q(A), then .7 is a bounded left centraliser.

Since A is a C*-algebra it has an approximate identity (Segal [6]),
(Z\)res 82y, 80 || Z,||=1, and SZ,— S, Z,S— S for each SeA. So
T (ZS)— 7 (S). But 7 (Z,8) = .7 (Z,)S = T,\S where T, = 7 (Z,),
so 7(S) =1lim, T\S and || L[| = |7 (I[| Zill =1|7 |l. For Ee M,
£=Sp some ScA,peH so 7 (S)y = lim, T,Sy = lim, T,&. Define
TE = lim, T & = 7 (S)y, then T maps M, into M and || TE|| = ||.7 || || €|l
so [Tl =[l7 .

So extend 7T to a map of M into M and define =0 on HO M,
so we have T = ETE and .7 (S)y = lim, T\Syp = TSyn. Therefore
J(S)=TS and || T || =I|IT|. So |7 [I=IT].

We have

(#8)Z, = S(7Z,) = STZ,
— S —ST.

So S(S) = 8T for all Sc A, and as for 7,||.<||=|T]|. Since
TS,STe A for all Se A wehave TA U AT < A. Conversely given any
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T such that T = ETE and TAUATCA, the maps S— TS, S— ST both
map A into itself and define a double centraliser of A. Hence result.

Denote the set {Te Z(H): T = ETE, TAU AT C A} by I(A), the
idealiser of A in E. < (H)-E.

Now let us suppose that B is a closed *-subalgebra of the B*-algebra
A. We define B, = {xe A: Bx = 2B = 0} and By, = (B,),. Then B, is
a closed *-subalgebra of A containing B. Should it be necessary to
make explicit mention of the algebra 4 we will write By(4), etc.

Suppose two elements x,, x, of B, give the same double centraliser
on B, so zy = %,y and yx, = yx, for all ye B. Then (%, — x,)B =
B(x, — x,) = 0 80 ®, — ®,€ B,. But (v, — 2,)* € By, 80 we have

(931 - xﬁ)*(xl - 902) =0

and hence z, — %, = 0. So x, = 2,.

DEFINITION 2. A B*-algebra A is said to be a Q W*-algebra if for
each closed *-subalgebra B of A all double centralisers of B are given
by elements of B,,. We see that for each double centraliser the cor-
responding element of B, is unique, and so we may briefly say that
A is QW* if and only if Q(B) < B, for all closed *-subalgebras B.

We recall the definition of an A W*-algebra (Kaplansky [4]).

DEFINITION 3. A B*-algebra A is said to be an AW *-algebra if

(i) every set of orthogonal projections in A has a least upper
bound in A.

(ii) every maximal commutative *-subalgebra B of A is generated
by its projections.

We also recall that a W*-algebra is a C*-algebra, over H say,
which is closed in the weak operator topology defined by seminorms
| Tllen = |<TE n>| for & ne H. Denote weak closure by ~*.

ProrosITION 4. For A a C*-algebra, I[(A)cC A™™.
Proof. By von Neumann’s Double Commutant Theorem, A= =

{Te #(H): T =ETE, Te A"} where as usual A” denotes the double
commutant of A.

Suppose Tel(A),ScA’,Rc A, then certainly T = ETE and
(ST — TS)YR=S(TR) — T(SR)= TRS — TRS =0. So (ST —~TS)E=0
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and therefore ST = TSE. Since T*e I(A),S*e¢ A’ we have S*T* =
T*S*E so TS = EST. Thus TS = EST = ETSE = TSE = ST and so
TeA”. Hence I[(A)C A".

THEOREM 1. For a B*-algebra A, W* = QW* = AW*,

If A is commutative, carrier space Z, then A is QW* = A 1is
AW* = Z is extremally disconnected.

Proof. If A is a W*-algebra and B is a closed *-subalgebra of
A with principal identity FE, then since A is W* we note Fe€ A, and
by Proposition 4, [BYC B *C A™ =A. Algo we easily see that B,=
(I— E)A(I— E)so B, = EFAE. Thus Q(B)C B, by Proposition 3 and
hence A is QW*.

Suppose now that A is a commutative B*-algebra, carrier space
Z, 80 by the Gelfand Representation Theorem A is isometrically iso-
morphic to Cy(Z).

It is well known that A is AW* if and only if Z is an extremally
disconnected compact Hausdorff space.

Suppose A is QW*, then taking B=A we see that A has an
identity, so Z is compact Hausdorff.

Let U be any open dense subset of Z.

Then taking B = {fe C(Z):f =0 on Z\U} = C(U), B is a closed
*-ideal in A so Q(B) = C(U) C A.

So any continuous function f on U is extendible to Z. Therefore
Z is extremally disconnected (see Gillman and Jerison [1], p. 96).

Now suppose that Z is an extremally disconnected compact Hausdorft
space, and suppose B is a closed *-gubalgebra of A = C(Z).

Let (Z))res be the sets of constancy of B (see Rickart [5], Ch. 3,
§ 2), then these form an upper semicontinuous decomposition of Z, so
the space of these sets, Z’ say, is a compact Hausdorff space and B
may be considered as a space of continuous functions on Z'.

B is self-adjoint and separates points of Z’, so by the Stone-
Weierstrass Theorem, either B consists of all continuous functions on
Z', in which case B has an identity so Q(B) = B, or B consists of all
continuous functions on Z’ vanishing at some point 7, of Z’. So Q(B) = all
continuous functions on Z'\{Z}.

Given any function on Z'\{Z,} it corresponds to a function f on
Z\Z, =Y say.

Y is open, so Y is a compact open subset of Z, and therefore Y
is extremally disconnected (Gillman and Jerison [1], p. 23). So there
exists an extension of f to Y, and defining f =0 on Z\Y we extend
f to a continuons function on Z.
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Now since
B,={geC(Z):9g =0 on Y}
={geC(Z):g=0on Y}
and
By, =1{9eC(Z):9g =0 on Z\Y}

we therefore have Q(B)C B,,.

So A is QW* and we have proved our theorem for A commutative.

Now let us return to the general case and suppose A to be QW *,

(i) Suppose (e,) is a set of orthogonal projections in 4 (so a +#
B = e.es = 0).

Let B = closed *-gsubalgebra of A generated by the e.’s.

= closed linear hull of the e,’s.

Now there exists a unique ¢ € B, such that ex = z¢ =« for all xe B

and e*, ¢’c B,, with

ety = xe* =
ex =xe* =x for all xeB.

So ¢* = ¢* = ¢ and thus ¢ is a projection.

Also ee, = e.e = ¢, all a, 50 ¢ = ¢, all a.

Now suppose f is a projection in A such that f = all ¢,. Then
fe. = e.f = e, all a, so since all x € B are limits of linear combinations
of the e,’s, we have fx = f = « for all x€ B.

Now

yeBy=yfr =yx =0

xyf =0 all xe B=yfe B,
so for all ye B,,
fey =70=0
yfe =0 thus fee By, .
But
fex = fr ==

rfe = xe =

all xe B, s0 since e is unique, e = fe.

So ¢f = fe=¢ and ¢ < f.

Hence ¢ is a least upper bound in A for the e.’s.

(il) Suppose B is a maximal commutative *-subalgebra of A. Then
by Proposition 5 below, B is QW*, thus since B is commutative it
follows from the above result that B is AW?*, and is a maximal com-
mutative *-subalgebra of itself and therefore generated by its projections.



A GENERALISATION OF W*ALGEBRAS 2025

Thus we have both conditions for A to be AW*,

The obvious question of interest arising from this theorem is
whether or not the QW* and the AW* conditions are equivalent in
the noncommutative case, but so far we have not been able to settle
this problem.

We now prove some results for QW *-algebras similar to those
holding for W*-and AW*-algebras. We are indebted to the referee for
pointing out case (iv) of Proposition 5 as generalising cases (i) and (ii).

ProposiTioN 5. If A is a QW *-algebra then so also are the fol-
lowing closed *-subalgebras of A:

(i) the centre Z of A,

(ii) any maximal commutative *-subalgebra of A,

(iii) the subalgebra eAe for any projection ¢ in A,

(iv) S” for any subset S of A such that S* =S, where S"” is
the double commutant of S in A.

Proof. We first prove (iv) from which (i) and (ii) follow immediately.

(iv) Suppose B is a closed *-subalgebra of S”.

Since A is QW™ any double centraliser on B is given by some
x € By(A).

To prove x € By(S"”), since B(S") C B,(A), we need only show ze S”.

Let ye S, ze BC S”, then

(xy — yx)z = 2(yz) — y(22) = w2y — 22y = 0
2oy —yx) = x)y — Ry)x = yze — yze = 0

80 xy — yx € B(A).
Now

U € By(A) = yuz = 0
zyu = yzu =0 all ze B=yuc B(A4),

and likewise u € B(4) = uy € B(4).

Therefore since x € B(A), xyu = 0 and uxy = 0 for all uec B(4),
80 xy € By(A), and likewise yx € By(A4). So (zy — yx)* € By(A) and hence
2y —yx = 0 for all ye S’. Thus e S” and the result follows.

(i) Wehave Z=A",2"' = A s0o Z=Z", and clearly Z = Z*, s0
the result follows from (iv).

(ii) Suppose C is a maximal commutative *-subalgebra of A,
then by maximality C is closed and C' = C, so C = C" and the result
follows from (iv).

(iii) Let B be a closed *-subalgebra of eAe, then since A is Q W*
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any double centraliser on B is given by some x € B,(A). Since B Cede
we have y € B(A) = ey, ye € B(A) and x € B, (A) = exe € By(A).
But for z€ A we have

zexe = (2x)e = 2&
exez = e(x2) = x2

80 by the uniqueness of & in By(A) we have x = exe.
Thus x€ede and so x € By(eAe). Hence ede is QW*.
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