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NORMS AND NONCOMMUTATIVE
JORDAN ALGEBRAS

K. MCCRIMMON

Roughly speaking, a norm on a nonassociative algebra is
a nondegenerate form Q satisfying Q(Mxy) = m(x)Q(y) for all
x, y in the algebra where Mx is a linear transformation having
something to do with multiplication by x and where m is a ra-
tional function; taking Mx = Lx or Mx — Ux = 2L2

X — Lx% we get
the forms Q satisfying Q{xy) = Q(x)Q(y) or Q(Uxy) = Q(x)2Q(y)
investigated by R. D. Schafer. This paper extends the known
results by proving that any normed algebra % is a separable
noncommutative Jordan algebra whose symmetrized algebra 9ϊ+
is a separable Jordan algebra, and that the norm is a product
of irreducible factors of the generic norm. As a consequence
we get simple proofs of Schafer's results on forms admitting
associative composition and can extend his results on forms
admitting Jordan composition to forms of arbitrary degree q
rather than just q = 2 or 3. We also obtain some results of
M. Koecher on algebras associated with ω-domains. In the
process, simple proofs are obtained of N. Jacobson's theory
of inverses and some of his results on generic norms. The
basic tool is the differential calculus for rational mappings of
one vector space into another. This affords a concise way of
linearizing identities, and through the chain rule and its corol-
laries furnishes methods not easily expressed "algebraically".

Algebras having some sort of "norm" have appeared in various in-
vestigations. R. D. Schafer proved in [12] that any algebra 31 with a
nondegenerate form Q admitting associative composition Q(xy) — Q(x)Q(y)
is a separable alternative algebra. In [11] he proved that if 31 is com-

mutative and has a form Q of degree 2 or 3 admitting Jordan composi-

tion Q(Uxy) = Q(xfQ(y), where Ux — 2L\ — LX2, then it is a separable

Jordan algebra. In the applications of Jordan algebras to several com-

plex variables [9] M. Koecher considered domains in a real vector space

on which a positive homogeneous real-analytic function ω was defined

satisfying ω(Hxy) = det Hx ω(y), where Hx was essentially the Hessian

of log ω at x. He associated with such an ω-domain a real εemisimple

Jordan algebra 3t in which Hx = ~U~λ. In all these cases the algebra

was a separable noncommutative Jordan algebra and the norm Q (or ώ)

was essentially a product of the irreducible factors of the generic norm

of 21.
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doctoral dissertation written at Yale University under Professor Nathan Jacobson.
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The present paper originated in an attempt to prove algebraically
that the algebra of an ω-domain is a Jordan algebra. Professor Nathan
Jacobson suggested that the resulting proof (Lemma 1.3) could be ex-
tended to an arbitrary field and might yield at the same time a uni-
form derivation of Schafer's results, and this led to a general investi-
gation of normed algebras. Speaking very roughly, a norm on a non-
associative algebra SI is a form Q satisfying Q(Mxy) — m(x)Q(y) where
Mx is a linear transformation on SI having something to do with multi-
plication by x, and where m is a rational function.

In this paper we will make a systematic study of normed algebras.
The basic tool is the standard differential calculus for rational mappings
of one vector space into another. This affords a concise way of line-
arizing identities, and through the chain rule and its corollaries furnishes
methods not easily expressed "algebraically".

The paper is divided into three parts, the first of which is devoted
to proving that all normed algebras are separable noncommutative Jordan
algebras. After recalling the fundamental results of the differential
calculus we make precise the definition of a form Q admitting com-
position on an algebra. With such a Q we associate an associative
symmetric bilinear form called the trace of Q. We define Q to be
nondegenerate if its trace form is nondegenerate, and show that this
agrees with Schafer's definition of nondegeneracy in the cases of in-
terest. A norm on an algebra is then a nondegenerate form admitting
composition. The results of Schafer and Koecher follow easily from the
main theorem that every normed algebra is a separable noncommutative
Jordan algebra. Our definition of nondegeneracy has the advantage
that bilinear forms are easier to work than g-linear forms, hence we
can extend Schafer's results on forms admitting Jordan composition to
forms of arbitrary degree q rather than just q — 2, 3. It also allows
us to obtain his results when the base field has more than q elements,
which is a weaker hypothesis than his condition that the characteristic
is 0 or is greater than q.

The second part of the paper is devoted to characterizing the norm
of a normed algebra. We first extend N. Jacobson's theory of inverses
in Jordan algebras to noncommutative Jordan algebras; the proof of
the main properties of these is simpler than his. We next prove a
lemma to the effect that under fairly general conditions if Q admits
some kind of composition then so do all its irreducible factors. Using
this and a technique of N. Jacobson's we can easily derive the basic
properties of the generic norm. Applying these results to normed
algebras we show that the norm of any normed algebra is a product
of irreducible factors of the generic norm.

The last part of the paper is devoted to the work of Koecher [9]
and N. Jacobson [6] on isotopes and the group of norm-preserving
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transformations of a commutative Jordan algebra.

CHAPTER I

!• Some conventions* In this paper we will always work over
a field Φ of characteristic p Φ 2 (p may be zero); | Φ | will denote the
cardinality of Φ. In Chapter I we will always assume that Φ is in-
finite (except in § 5), and that X, 2), $ are finite-dimensional vector
spaces over Φ. "Algebra" will always mean nonassociative algebra with
identity.

We briefly recall the well-known facts about the differential calculus
for rational mappings over an infinite field [2, pp. 21-37]. Relative
to bases {xl9 •••,&*} and {y19 , ym} for the vector spaces X and 2) a
rational mapping F: X —> 2) has the form

F
x = ΣξtXi • y = Σrjjyj

where rj3 — F3 (ξl9

 # β , | % ) are rational expressions in Φ(ξl9 •• •,£„). The
value F(x) is defined only for those x in the Zariski-open subset of 36
where the denominators of the components F3 of F don't vanish. A
rational mapping F:%—>Φ is called a rational function. We will
always use x, y, z to denote the "independent variables" of rational
mappings on X, while u, v, w and α, h, c will denote fixed vectors in 36.

If F is a rational mapping of 3c into 2) then dF denotes the dif-
ferential of F and ΘF\X the differential of F at a point aeX; the
latter is a linear map from X into 2), and we denote by duF\x its
value dF\x(u) at a vector %e36. Relative to bases {x{} for £ and {y3}
for 2) the matrix of dF\x is the Jacobian (ΘjFi \x) where 0 ^ |β is the
formal partial derivative of Fi(ξl9 , ξn) with respect to the indeter-
minate ξj evaluated at x. x—>ΘuF\x is a rational mapping duF of X
into 2), and the map F—>duF is just partial derivation du in the
direction w.

As an example, in this notation the chain rule, which is funda-
mental in the sequel, becomes

or

du{FoG}\x = ΘυF\G{z) for v = duG\x.

The logarithmic derivative

θu\ogF=F-18uF

of a rational function is well defined even though there is no function
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logF, and the usual rules hold:

Θ log {F-G} = 0 log F + d log G

dudυ log F = βA log F = F-2{F-dudvF - 9 . F - W .

If F is a homogeneous mapping of degree q, ie. F(Xx) = XqF(x), then
the Euler differential equations imply.

Finally, if F is a rational function such that duF — 0 for all ueϋ
then FeΦ(ξf, •••,££) relative to any basis for X (p always denotes
the characteristic of Φ; if p — 0 the condition is that FeΦ).

2. Forms admitting composition. By a form on a vector space
X we mean a homogeneous polynomial function; throughout the rest of
this chapter Q will denote a form on X of degree q > 0. If 21 is an
algebra on X with identity c we say a form Q admits composition on
§1 if there are two rational mappings E: x —• Ex, F: x —> Fx of X into
Horn (X, X) satisfying

(a) EC = FC = I

( b ) dJΞ I = aLu, ΘUF \c = βRu for 0 Φ α, β e Φ where Luf Ru

(1.1) are left and right multiplications by ue%

(c) Q(Exy) = e(x)Q(y), Q(Fxy) = f(x)Q(y) for some rational func-

tions e,f on X wherever all mappings involved are defined.

Note that Q admits composition on any extension algebra 2tfl, Ω an
extension field of Φ.

For example, if 91 admits associative composition Q(xy) = Q(x)Q(y)
we may take Ex = Lx, Fx = Rx, a — β — l9e—f—Q. If §1 is commuta-
tive and admits Jordan composition Q(Uxy) = Q(xfQ(y), where Ux =
2L2

X - LX2, we may take Ex = Fx = Ux, a = β = 2, e = / = Q\ Indeed,

= 2{LULC + LeLu} — L c u + u c — 2LU = 2i?w .

For typographical reasons we will often write E(x), L(x) in place of
Ex, Lx etc.

A more complicated example is the following. Suppose St is quasi-
associative, that is, there is an extension Ω of Φ such that 3Iβ is obtained
by defining xy = Xx-y + (1 — X)y x for some λ e Ω where ft = (Xβ, •) is
an associative algebra on HΩ (if 3t itself is associative we assume SC = §1,
λ = 1). Suppose Q is a form on X whose extension to Xβ satisfies
Q(x-y) — Q(x)Q(y) identically (such as the generic norm of 2ί, since
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SίΩ and % have the same generic norm; see the Corollary to Theorem
2.5). Set φ = λ(l - λ), EX = LX + φUx_c, FX = RX + φUx_c, a = β = l,
e(x) = f(x) = Q(φ(χ - c)2 + x) where Ux = i(Lx + Rxf - i(Lx* + Rx*).
It is known [1, p. 583] that φeΦ,1 so E,F,e,f are all rational map-
pings on 9c (not just ΊίQ). Clearly Ec = Fc — I. It is also easily checked
that Uxy = x y x in terms of the multiplication in St. Then

Q»{Uχ-o} I (v) = u-y(c - c) + (c - c) τ/.^ = 0 ,

so ΘUEXI = LU9 duFx I = Ru. Finally,

Q(Exy) = Q(xy + q>Ua_oy)

= Q(λx y + (1 - λ)2/ α + λ(l - λ)(a; - c)-y-(x -c))

- o) + φ i H ( l - λ)(a? - o) + c})

(a? - c) + c)Q((l - λ)(α? - c) + c)Q(?/)

(by assumption on Q)

= Q(λ(l - λ)(α - c)2 + (x - c) + c)Q(i/)

- e(x)Q(y) .

Similarly Q{Fxy) — f(x)Q(y), so Q admits composition on 2ί.
The following weak form of the open mapping theorem is well

known.

LEMMA 1.1. If F:%-^y) is a rational mapping whose differential
OF is surjective at a point xeH then there is no nonzero rational
function G: 2) —> Φ which vanishes on the range F(%) of F.

Proof. If there were such a G there would be one which was a
polynomial; since Φ is infinite, the hypotheses would remain valid over
a perfect extension Ω of Φ. But there the nonexistence of such a
polynomial follows from [7, p. 268].

Suppose Q admits composition on an algebra SI with identity c.
The mapping E: x —* Exc has differential al at c since

1 In fact, if Lx, Rx, Lx, Rx denote the multiplications in % S then

Lx = λLx + (1 - λ)Rx , Rx = λRx + (1 - λ)Lx , Lx + Rx - L* + Rx

Associativity of 21 means [Ltt, Rv] = 0 for all u, v. Hence

[Lx, Ry] = λ(l - λ){[Lx, Ly) + [Rx, Ry]}

= λ(l - λ)[Lχ + Rx, Ly + Ry]

= λ(l - λ)[Lx + RX,L + Ry] .

If we can find x, ye%a%Q with [Lx, Ry] ΐ O we can conclude that ψ = λ(l — λ)eΦ;
otherwise, [Lx, Ry] = 0 identically and 5ί is associative, so by assumption λ = 1,
^ = OeΦ.
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dE I (u) = ΘUE \ΰ = (ΘUE. \c)c = aLuc = an .

If Q(C) = 0 then Q(E(x)) = Q(#xc) = e(x)Q(c) = 0 would imply Q = 0
by Lemma 1.1, contradicting degQ > 0. Thus if Q admits composi-
tion we necessarily have Q(c) Φ 0; in particular, we can always nor-
malize Q so that Q(c) = 1 if we wish.

We define a rational mapping x —> τx of H into the space of sym-
metric bilinear forms on X by

τx(u,v) = -θudυlogQ\. .

The form τx is defined whenever Q(x) Φ 0. We just saw Q(c) Φ 0, so
τ — τc is defined; τ is the trace form of Q. If Q is the generic norm,
τ is the generic trace, and if Q(x) = det Lx or det Ux for Z7β = 2LI — LX2
then τ — tr or 2ίr where έr is the usual trace form tr(u, v) — trace Luυ.

LEMMA 1.2. / / Q admits composition on ?X then for those x, y
where all functions involved are defined we have

(1.2) 8*(β)β log Q U ( β ) y = 0, log Q

(1.3) τmx)y(Exu, Exv) = ry(w,

(1.4) τy{Luy, v) = 0 i(tt)υ log Q

(1.5) r(LMw, v) + τ(w, Luv) = ^9,0, log Q |β

dually with E, L replaced by F, R. Also, τ is an associative
form:

(1.6) τ(uv, w) = τ(u, vw) .

Proof. For (1.2), first observe that Ex\y—>Exy is linear in y, so
dEx \y — Ex where d is applied to functions of y. Then using the chain
rule we have

&Eix)v log Q \Eix)v = d log Q \mx)y (Exv)

= dlogQ\Eix)yodEx\y(v)

= d log {QoE.} \y (v) = 8β{log e(x)Q] \y

= θvlogQ\1f.

Regarding (1.2) as a function of y and applying du\y, the r ight
side becomes dudΌ\ogQ \y = — r ^ , v), while the left side yields

log Q}o J&,} I, = θ ^ o , , log Q} E(χ)y

by the chain rule where w = 9J5Z,, [„ = ^ u ; thus the left side finally
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r e d u c e s t o dmx)udEix)υ log Q \E{x)y = - τE{x)y(Exu, Exv). E q u a t i n g g ives
(1.3).

Now regard (1.2) as a function of x and apply du |β. The differ-
entiation is routine, but we will go through it in detail this once.
The left side of (1.2) is F(Exv, Exy) if F(z, y) = dz log Q \y, and

duF(Exv, Exy) I = duF(E.v, Ecy) \c + θuF(Eev, Exy) \c

by the usual rule for differentiating a function of two variables. F
is linear in the first variable so we can move the partial inside; hence
the first term is F(du{Exv} |c, y) = F(aLuv9 y) = adL{u)v log Q \y. By the
chain rule the second term reduces to dwF(v, x) \E{c)y = dwdv log Q y

—τy{w, v) for w — du{Exy} \c — aLuy. Now the r ight side of (1.2) is
independent of x, so applying du \c gives 0. Thus

adL{u)υ l o g Q\y- τy{w, v) = 0 ,

adL{u)v l o g Q\y = a τ y { L u y , v) .

Canceling a gives (1.4).
Similarly, applying Θw \c to (1.4) as a function of y gives

τc{Luw, v) + dw{τy(u, v)}\e = τ{Luw, v) - dwduΘv log Q \c

for the left side and dwdL{u)v log Q \c = —τ(w,Luv) for the right side.
Equating gives (1.5).

Interchanging u and v in the dual of (1.5) we get

τ(Rwu9 v) + τ(u, Rwv) = Θudvdw log Q \c .

The latter is symmetric in u, v, w so comparing with (1.5) we get
τ(u, vw) = τ(w, uv)9 proving (1.6).

3* N o n d e g e n e r a t e forms* We call a form Q on an algebra §1
with identity c nondegenerate if the trace form τ — τc is a nonde-
generate bilinear form.

Assume for the moment that the characteristic of Φ is 0 or p > q,
and let Q be an arbitrary form of degree q on a vector space X. Then
ql is not zero in Φ; we claim

[x19 •• ,α>ff] = l / g ! 0 β l . . . 0 j B f f Q | β

is a symmetric g-linear form with Q(x) = [x, •••,#]. Clearly it is a
symmetric and multilinear. Note t h a t since Q is of degree qy dXχ ΘXQ
is of degree 0, ie. constant, so [x19 , xq] = l/q\ dXl dXqQ \x for any
x. From the Euler equations we have
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? ! [a?, , x] = d ^ T 7 d χ Q \x = l l θ

(1.7) £

Thus Q(#) = [cc, , a?], and hence [a?!, , xq] is the unique symmetric
g-linear form obtained by polarizing Q. R. D. Schafer has called Q
nondegenerate if there is no u Φ 0 such that [x, , x, u] = 0 for all
x (or equivalently, by linearizing, [xlf •• ,xq-.l9 u] = 0 for all xk). As
in (1.7) we see [x, , x, u] — 0 for all x if and only if l/qduQ \x = 0,
so Schafer's condition of nondegeneracy is that duQ — 0=^u = 0. Since
the characteristic is 0 or p > q, this means that Q is not independent
of any variables in the sense that there is no basis {xl9 •••,#»} for 36
relative to which Q e Φ[ξlf , |v_i]. Certainly this is a reasonable
restriction.

If Q is nondegenerate in our sense it is always nondegenerate in
Schafer's, since duQ = 0 would imply

τ(u, v) = -dβu log Q I = -dυ{Q^duQ} \c = 0

for all v. We claim the converse is true if Q is a form admitting
composition on an algebra SI (still assuming the characteristic is 0 or
p > q). Suppose such a Q is degenerate in our sense, so τ has a non-
zero radical 3ΐ. τ is associative by (1.6), so 9t is an ideal. As we
remarked after Lemma 1.1, we may assume Q(c) — 1. Then duQ \c —
Qi^y^uQ |c = du log Q\e = τ(c, u) (taking y = v = c in (1.4)) so as in
(1.7) [c, , c, u] = 1/g 0%Q |β = 1/g τ(c, ^) = 0 if u e 9ΐ. Thus we have
proven the relation [c, , c, y, , y, u] — 0 for all w e Sft, ?/ e §1 when
the number of y's is 0. Assume it proven when there are m y's.
Applying dXχ d to Q(Exy) = e(x)Q(y) as a function of ^ gives

[Exxlf , JS?xajg]

By our induction hypothesis we conclude

[#,c, , E9c, Exy, , Eay, Exu] = 0

for ue$i if there are m y's. If we apply θy \c to this as a function
of x we get three groups of terms. Applying dy\c to Exu gives the
term [c, ? c, ?/, •••,?/, ̂ *] where there are m 2/'s and where

w* = ©y^u} |c = aLyu — ayu

but u* e 3Ϊ since 3ΐ is an ideal, so the term vanishes by the induction hy-
pothesis. Applying dy |c to the Exy'& gives the term m[c, ,c,τ/, ,y,y*9u]
where there are m — 1 y'a and where y* = ayy. But this is just the
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result of applying dy* \y to the induction hypothesis as a function of
y, so it vanishes too. Thus the final term (q — 1 — m) [c, , c, c*,
V, * ,y,u] obtained from the Exc's must vanish. But c* = ay, so
[c, , c, 7/, , y, u] — 0 when there are m + 1 y's, and the induc-
tion is complete. Hence [y, , 2/, u] = 0 for all w e 9ΐ, y e 21 and Q is
degenerate in Schafer's sense.

4* Normed algebras* A norm on an algebra 21 is a nonde-
generate form Q admitting composition on 21. If 21 has a norm it is
called a normed algebra. Since a nondegenerate form remains nonde-
generate on any extension of the base field, 21 β is normed for all ex-
tensions Ω of Φ.

We saw in §2 that the algebras studied by Schafer [11, 12]
were normed algebras. Another important example of a normed alge-
bra is the following. Suppose 9c is just a vector space, with no alge-
bra in sight. Let Q be a form on 3c, cede a point where the trace
form τc(u, v) = —θuθυ log Q \c is nondegenerate. Then each bilinear form
τx is obtained from τ — τc as

τx(uf v) = τ{Hxu, v)

where H: x —+ Hx is a rational mapping of £ into Horn (3t, 3c) defined
for all x with Q(x) Φ 0. £Γ depends on the choice of basepoint c.
iΓc — If and the iί^'s are self-ad joint relative to τ since each τx is
symmetric Consider the symmetric trilinear form

σ(u, v, w) = -ϊdu{τx{v, w)} |c = \dndβw log Q \c

since τ is nondegenerate σ(u, v, w) — τ(Luv, w) for some Lu e Horn (36, ϊ )
where u—+Lu is linear. Then u v = Lwτ; defines a bilinear pairing on
36. From the definition of σ we see Ltt = —\dJH.z\0\ if is homogeneous
of degree — 2 in x since τx is, so the Euler equations imply dcHx \0 —
— 2HC, and LC~HC — I. Since τ is symmetric the pairing is com-
mutative, so u c — c u = u. If Q admits composition in the sense
that Q(Hxy) = h(x)Q(y) for some rational function h whenever both
sides are defined we define the Koecher algebra 2ΐ(Q, c) to be 21 = (X, •).
Then 21 is a commutative algebra with c as identity. Taking E — F—H,
a — β— — 2, e — f — h we see that 21 is a normed algebra. Such alge-
bras were first studied by M. Koecher [9, pp. 39-43] in connection
with ω-domains. We will see later there is a close connection be-
tween normed algebras in general and Koecher algebras (Theorem 2.9).

From now on let τ — τc be the trace form of a norm Q on an
algebra 21. We define Hx for Q(x) Φ 0 as above by τ(Hxu,v) = τx(u,v).
Since τ is nondegenerate, each linear functional dlogQI* can be ob-
tained from τ as
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dυlogQ\β = τ(x#,v)

for some vector x%. # is a rational mapping of X into itself defined
whenever Q(x) Φ 0. We have Quτ(x%, v) \x = ΘJ)Ό log Q\x= —τx(u, v) =
-τ(Hxu, v), so dj \x = -Hxu.

LEMMA 1.3. If "Ά is a normed algebra then for those x for
which all mappings involved are defined we have

(1.8) L* = Rx , R* = Lx

(* the adjoint relative to τ)

(1 9) HXRX — Lxί , HXLX — Rx$

(1.10) Hx, Rx, Lxί commute Hx, Lx, Rx$ commute

(1.11) x%-x = χ.χ% = c

(1.12) x# x 2 - ^ a;# = x

(1.13) EΓ.fl. = / ^Λ6re t^. = Λ.(Λ. + Lx) - Rm* = L.(L. + Λ.) - L.t

(1.14) Sί tos 710 nonzero ideals 35 wΐ£Λ S32 = 0 .

Proof. By our assumptions it suffices to pass to the algebraic
closure Ω of Φ and prove the result there.

(1.8) is just the associativity (1.6) of τ.

τ(HxLux, v) = τx(Lux, v)

= »zc,β log Q |β = τ(α?#, L.v) = τ(L*x#, v)

from (1.4) so that

HxRxu — Hx(u-x) = Ha-L̂ a? = LJx# = Rux% = L^u

dually if,.!/,. = i?^^ so (1.9) is proven. Hence we have

R.H. = L*H* = (H.L.)* = Λ*f = Lβ t = HXRX ,

so iZ,. and Hx commute, hence both commute with their product Lx^
The dual result holds, so (1.10) is proven.

(1.11) is a bit longer. First,

θu{Φχ} I = {».*# !.}•» + »# {9.» I.}

= -Hxu-x + a;# w = {-RXHX + L ^ = 0

by (1.9), (1.10) for all u, x. Hence

0 = d.τ(x# x, v) - d%τ(x%, x-v) = θ.{0..β log Q |.}
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for all u, v, x. Thus relative to a basis for 3c dx.Ό log Q \x is in Ω(ξf9 •••,££)
where p is the characteristic of Ω; since Ω is perfect, it must be a pth
power. If Q = Π Q*9ί f ° r Q* distinct irreducible factors then

dx.υ log Q = Σq^v log Qi

for R = Π Q», Rί = QϊxR, S a polynomial. But in reduced form R^S
must be a pth power, and the denominator of the reduced form is
composed of some of the distinct irreducible factors Qiy so it can be
a pth power only by being constant. Hence τ(x% x, v) = dx.Ό log Q \x

itself is a polynomial. Yet it is homogeneous of degree 0 since by
the chain rule

Oλx.υlogQ\λx=dxυlog{Qoχ}\x

= 9*.*{log λ< + log Q} \x = dx.υ log Q \x ,

so it must be constant. Thus τ(## cc, v) = τ(c# c, v) = r(c, v) since
^# c = Lc,c = fίci2cc = c by (1.9). This holds for all v, so by nonde-
generacy %%•% — c wherever x% is defined. The dual result is estab-
lished similarly, so (1.11) is finished.

(1.12) follows from (1.10), (1.11) by

x# x2 = Lx<Rxx = RxLx*x = Rx(x%-x) = Rxc = x

and dually. (1.13) holds since for all u

Iu — %I - duX I — du{x$-xί} x

= {-H.u)'tf

= {-R.*H. +

= {-R,*H. +
= {RJRX + L

I /y H' . //y»

HJtx(L

•U + M X)

. + R.)\u>

by (1.9), (1.10) and dually.
For (1.14), suppose u, ve^8 where S3 is an ideal with S32 = 0.

Then τ(u9 v) = τ{c, u-v) = 0, so τ(», S3) = 0. If Q(a ) ^ 0 then Hx is
defined, and by (1.13) UXHX — /, so Ux is invertible. Since S3 is an
ideal and Ux is composed of multiplications, UJ& c S3; by nonsingularity
UJ& = S3 = iί.SS. Thus τx(u, v) = r(£Γβ%, v) e τ(S3, S3) = 0. If {xl9 , x J
is a basis for X with {ccTO+1, •••,»„} a basis for S3, and if β denotes the
algebraic closure of Ω{ξ19 , ξm) then 9tt90 log Q \x — —τx(u, v) — 0 for
t6, v e S3 implies 9υ log Q e Ω(ξi+1, , ξζ). Repeating the argument of
(1.11) with all factorization taking place over Ω we see dυ log Q must
be a polynomial in ξm+1, , ξn with coefficients in Ω. But for v e S3,
deg Q > deg 0υQ = deg {Q dv log Q} = deg Q + deg 9, log Q ^ deg Q unless
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dv log Q is the zero polynomial (where deg means the degree as a poly-
nomial in fm+1, , ξn). Hence we must have dv log Q = 0. Then

τ(w,v) = ~dwdυ\og Q \c = 0

for all w e 31, and by nondegeneracy v = 0, S3 = 0.
Notice that the proof would be greatly simplified if we assumed

the characteristic of Φ to be 0 or greater than q. At least in this
case, formulas (1.8) to (1.13) arise quite natually when one starts dif-
ferentiating the relations (1.1). In fact, they appear (disguised) in the
work of 0. S. Rothaus [10, p. 210] on the differential geometry of ω-
domains.

5* Norms and noncommutative Jordan algebras* Recall that
a noncommutative Jordan algebra [11] is a nonassociative algebra in
which LX,RX,LX2,RX2 commute for each x. An algebra is separable if
it is a direct sum of simple ideals with separable centers, or equiva-
lently if it is semisimple and remains so under any extension of the
base field.

THEOREM 1.1. If 31 is a normed algebra then it is a separable
noncommutative Jordan algebra, and the symmetrized algebra 3I+ is
a separable commutative Jordan algebra.

Proof. We can apply Lemmas 1.2 and 1.3. By (1.6), τ is a non-
degenerate associative symmetric bilinear form, and by (1.14) 31 has
no ideals 23 Φ 0 with S32 = 0, so by Dieudonne's theorem SI is semi-
simple. Any extension of 3ί remains normed, hence semisimple, so 31
is separable. If Q(x) Φ 0, from (1.13), (1.8), and the selfadjointnesa
of Hx we get

RX(RX + Lx) - Rx, = Hx' = {H~xγ

= {LX(LX + Rx) - Lxr

hence Rx commutes with Lx. From (1.10) we see Hx, Lx, Rx generate
a commutative algebra of linear transformations which contains Ux by
(1.13), hence also RX2 and LX2. Thus Rx, Lx, RX2, LX2 commute for those
x where Q(x) Φ 0; since Φ is assumed to be infinite this set is dense,
so they commute for all x, and SI is a noncommutative Jordan algebra-

In 31+ we have Li = i(Lx + Rx) = Ri, so SI+ is a commutative
Jordan algebra, τ is still a nondegenerate associative form for 31+,,
and averaging (1.13) shows

U =
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is composed of multiplications in 21+, so the proof of (1.14) carries over
verbatim. Thus 21+ is semisimple by Dieudonne's theorem; the same
holds for all extensions of 21+, and 2ί+ is separable.

It is known [1, p. 585 and argument on pp. 590-593] that this
implies the simple summands of 21 are either commutative Jordan alge-
bras, quasiassociative algebras, or are of degree 2. We will see in
Theorems 2.8 and 2.4 that the generic norm of a separable commuta-
tive Jordan algebra is nondegenerate and admits Jordan composition
N(Uxy) — N(xfN(y) and therefore such algebras are normed. If 2ί is
a separable quasiassociative algebra and Ω the extension of Φ such
that 2Iβ = 2Ϊ(λ) for 2Ϊ associative, λ e Ω, then % must be separable too
and Theorem 2.8 shows that the generic norm is nondegenerate. By
the remarks at the beginning of § 2 we see that 21 is a normed alge-
bra. However, it is not known if all separable flexible algebras of
degree 2 are normed, so the converse of Theorem 1.1 is incomplete.

THEOREM 1.2. If Q is a form on a vector space X, c e 36 a point
where the trace form τc is nondegenerate and relative to which
Q(Hxy) — h(x)Q(y) whenever both sides are defined (where τc(Hxu, v) =
τx(u, v) and h is some rational function) then the Koecher algebra
2I(ζ), c) is a separable commutative Jordan algebra. If normalized,
Q admits Jordan composition Q(Uxy) — Q(xfQ(y) for Ux — 2LI — LX2.

Proof. We have observed before that 2ί is normed; since it is
commutative, Theorem 1.1 shows that it is a separable commutative
Jordan algebra. (1.13) shows that Ux = H~\ so Q(Uxy) = hix^Qiy).
If Q is normalized, putting y — c gives Q(x2) = Q(Uxc) = hix^Qic) =
h(x)~\ so Q(Uxy) = Q(x2)Q(y). Putting y = x2 gives Q((x2Y) = Q(xJ,
so Q(z2) — Q(zf if z is of the form x2. But the differential of x —-> x2

at c is 2/ since dux
2 \c — 2u; by Lemma 1.1, Q(z2) = Q(zf for all z.

Thus Q(Uxy) = Q(xfQ(y).

REMARK. This is related to a result of Koecher's [8, Satz 5].
We note also that the above result holds over the field of real num-
bers if Q is a positive homogeneous real-analytic function 0) on an
open subset 2) of H such that c e 2) is a point where the Heεsian of
\ogω is nondegenerate and ω{Hxy) = det Hx-ω(y) for all x, yety. The
Koecher algebra can be defined as before and the formulas of Lemmas
1.2 and 1.3 remain valid on 2). We can conclude that Ly commutes
with Lyi for y e 2), and the commutativity extends to all xeH by
analytic continuation. This gives an algebraic proof that the algebra
of an ω-domain is a Jordan algebra [9, p. 44].

5* Some results of R* D* Schafer* In this section we will ont
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assume that Φ is infinite, so we cannot immediately apply the methods
of the differential calculus as previously formulated. A polynomial
Q G Φ[ξ19 , ξn] together with a choice of basis {x19 , xn} for a vector
space X determine in a canonical way a function on X; if this induced
function Q(u) = Q(μ19 , μn) vanishes for all u = μλxγ + + μnxn

in X and if | Φ \ > deg Q then by the usual specialization theorem we
conclude Q must be the zero polynomial. For u = Σμixi we set duQ =
ΣμfliQ where di is formal partial derivation with respect to the in-
determinate ξi. Then we can define a bilinear form

τx{u, v) = -θuθv log Q(x)

- Q(x)-2{Q(x)dudvQ(x) - duQ(x)θvQ(x)}

whenever Q(x) Φ 0. Note that if Φ is infinite these definition agree
with the usual ones of the differential calculus.

THEOREM 1.3. Let 31 be an algebra with identity c. If {xlf , xn}
is a basis for 31 and Q e Φ[ξlf , ξn] a homogeneous polynomial of
degree q such that the trace form τc is defined and nondegenerate
and Q(ab) = Q(a)Q(b) for all a, b e SX, and if \ Φ \ > q then SI is a
separable alternative algebra. Conversely, if 31 is a separable al-
ternative algebra and {xly •••,&„} a basis then the generic norm
N(ξ19 , ξn) is nondegenerate and N(ab) = N(a)N(b).

Proof. The assumption that \Φ\ > q implies that Q(xy) — Q(x)Q(y)
holds under extension of Φ to an infinite field Ω. As we have noted
before, taking Ex = Lx, Fx = Rx makes 3Iβ a normed algebra. Hence
by Theorem 1.1 it is separable. By (1.3), τ(u9 v) — τE{x)c(Exu, Exv) —
τx{Lxu, Lxv) so I = L*XHXLX = RXHXLX - RXLXHX by (1.8), (1.10). But

form (1.13) I = UXHX; thus RXLX = Ux = RX(RX + Lx) - R^ whence
R2

X — RX2. Dually L\ — Lxi, so 3Iβ is alternative (again, strictly speak-
ing this has been proved only for those x where Q{x) Φ 0, but since
Ω is infinite this set is dense and hence the identities hold every-
where). Since 3Iβ is a separable alternative algebra, εo is 31.

Conversely, if 31 is a separable alternative algebra then by Theorem
2.8 and the Corollary to Theorem 2.5 the generic norm has nondegener-
ate trace form and N(xy) = N(x)N(y).

THEOREM 1.4. Let 31 be an algebra with identity c. If {x19 , x J
is a basis for 31 and Q e Φ[ξlf , ξn] a homogeneous polynomial of
degree q such that the trace form τc is defined and nondegenerate
and Q{{aba}^) = Q(afQ(b) — Q({aba}2) for all α, b e 31 where {aba}1 =
2α(6α) — ba\ {aba}2 = 2(ab)a — a2b, and if \Φ\ > 2q then

(a) % is a noncommutative Jordan algebra
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(b) 21 and 21+ are separable
(c) (La - Ra)

2 = 0 for all a e 21.
Conversely, if 21 satisfies (a), (b), (c) and if {xl9 •••,«»} is α δαsis
then the generic norm N(ξu , ξn) has nondegenerate trace form and
admits the above compositions.

Proof. For the first part we may pass to an infinite extension Ω
of Φ by our assumptions on | Φ |. Let Ex = 2LXRX - Rxi, Fx = 2RXLX - Lχ2,
a = /3 = 2, e = / = Q2; then EC = FC = I, ΘUEX \c = 2LU, ΘUFX |β = 2#M, and
Q(£7βj/) = Q(xfQ(y) = Q(Fxy) since {αδαh = Eab, {ala}2 = Fab. By (1.1)
we see that Q is a norm on 2Iβ. By Theorem 1.1, 2Iβ and 2Ij are
separable noncommutative and commutative Jordan algebras respective-
ly. From (1.3) we have τ(u, v) = τE(χ)c(Exu, Exv) so I = E*HE{x)cEx =
FXHX2EX by (1.8), and EXFX = H^1. As in the proof of Theorem 1.1,
H~x — Ux; now 2IJ is a commutative Jordan algebra, so ί7+2 = (Uxf
(see (2.1) below). Thus EXFX = (Ux)\ Applying dc \x we get

dc{ExFx} \x = {2LX + 2RX - 2RX}FX + EX{2RX + 2LX - 2L,}

= 2{LXFX + ^ β j

and 0c(C7j)2 L = 2L^?7ί + 2C7-Lί; hence LXFX + £7,22. = L+Ut + ̂ L ί .
Applying 0C |x again, the left side becomes

Fx + Ex + ALXRX = ALXRX + 4RXLX - (Lβ3 + i2.a)

= 8LXRX — 21/̂ 2

and the right side becomes 2Ut + 4LJ2 = 8L^2 — 2L,!2, so equating gives
Li2 = LXRX, (Lx + RJ = 4LXRX, and finally (Lx - Rxf = 0. Since these
results hold for %Ω they hold for 21.

Conversely, suppose 21, 21+ are separable; since the generic norm of
21 = 0 21; is N — Π Ni it suffices to consider simple algebras 21, and
as we remarked after Theorem 1.1 such an 21 is either a commutative
Jordan algebra, a quasiassociative algebra, or is of degree 2. In the
first case Ex — Fx — Ux, and the result follows from Theorems 2.4 and
2.8 below. Suppose 21 is a separable quasiassociative algebra with
(La — Raf = 0. Since this identity is of degree 2 it is valid on the
extension 2ίβ, Ω the algebraic closure of Φ. Now Stfl = 2t(λ) for λ e Ω,
so if Ra, La denote the multiplications in the associative algebra 21 we
have

La = XLa + (1 - X)Ra , Ra = XRa + (1 - λ)Lα ,

(La - RJ = (2λ - l)2(Lα - Raf .

If λ = i, 21 is a Jordan algebra, and we just saw the result holds in
that case. Otherwise we must have (La — Raf = 0. This is impossible
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in matrix algebras of degree > 1 (take α, b such that ab — b Φ 0,ba — 0),

and since tί is separable it is a direct sum of matrix algebras; hence

these must be of degree 1, and since Ω is algebraically closed S is a

direct sum of fields, so again 31 is a commutative Jordan algebra.
It remains to consider the case where Sί is a separable flexible

algebra of degree 2 satisfying (b) and (c); these hypotheses remain
valid on an infinite extension Ω of Φ, and it will suffice to show the
extension of N is nondegenerate and admits the given composition on
2tfl. Now (b) and Theorem 2.8 imply N is nondegenerate (since 2tfl and
SIJ have the same generic norm), so we only have to show N admits
Ex, Fx as composition. Since 2tβ is flexible,

RX(RX + Lx) - Rx, = LX(LX + Rx) - Lβ. = 2Lf - L^ = Ux

by averaging (see (2.6) below). Hence Ex = Ul + RX(LX - Rx), Fx =
Ui + LX(LX - Rx). Write %Ω = Ωc^M where 2Ji = c 1 is the orthogonal
complement of Ωc under τ; since τ is the generic trace and 2ίJ is of
degree 2, xy + yxe Ωc if a;,j/e 501. Thus iί xy = ac + z (ze 2Ji) then
yX — βc ~ z. By flexibility,

α# + zx — (xy)x — x(yx) — βx — xz ,

(β — α)cc = ^x + xz e Ωc .

But x 6 3Ji, so β = a. Then τ(c, [x, y]) = r(c, 2») = 0.. Since

[λc + x, μc + y] = [a;, y]

we have τ(c, [u, v]) — 0 for any u, v e 2lΛ. Since

£ : ^ = j7+n; + (Lx - Rx)Rxw = tf+w + [», waj]

we have

τ(c, £?βϋ;) = τ(c, Uiw) .

Next,

- Rx}y, y) - r({i2, - L,}x, R+c)

= τ(R;{Ry - Lυ}x, c) = τ({i2, - LJiZ+a?, c)

, y], c) = 0

by the above since Theorem 2.4 and Lemma 1.2 show τ is associative
for SIJ. Polarizing gives

(Lβ - Rx) + (L. - Λ.)* - 0 ,

hence (Lx - RX)*(LX - Rx) = 0 by (c). Now (c) also implies

L.(L. - Λ.) - RX(LX - JB.) = Li(L. - Rm)
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all operators commute here, so

E*E, = {Ui + U(LX - RxY){Ui + Lt{Lx - Rx)}
ττ+2 i TT+T +ίί T J? \ i / T T? \*\

— Ux ~j- UX1JX\\1JX — -^x) i \J~Jz — £*x) j

i T +2/ T J? \*ί T T? \

-f- ±JX \-Ltx — J^x) \-LJχ — -K>%)

and finally

τ(Exu, Exv) = τ{Uϊu, U v) .

But from N(c) — 1 and deg N = 2 we get

τ(u, v) - iV(c)-2RiV | c β.iSΓ |β - N(c)dudvN \c}

= τ(c#,u)τ(c#,v)-duN\v.

By (1.11), c§ = c$-c ~ C) therefore

= τ(c, Exu)τ(c, Exv) - τ(Exu, Exv)

= τ(c, Utu)τ{c, Uiv) - τ(Uiu, U+

Xv)
1 = 1 Vu + (x)uN U + (x)v — Vui-N °Uχ) \v

for all u, v; from du{NoEx - NoUx} \υ = 0 we see NoEx - NoΊJi is
in Ω[ξf, , ξζ\. But it is homogeneous of degree 2, εo NoEx — NoUt,
and by Theorem 2.4 N(Exy) = N(Uϊy) = N(xfN(y). Similarly for ί7,,
so iV admits composition.

These theorems are due to Schafer [11, 12]. He assumed that Q
was given as a function Q: x —> [x, , #] on 21 where [, ,] was a
g-linear form. It is easy to see that a basis {xl9 ••-,#*} for SI deter-
mines a unique homogeneous polynomial Q e Φ[ξly , ξn] of degree q
such that the functional relation Q(x) — [x, , x] remains valid under
all extensions of Φ, so our assumptions are essentially equivalent to
his. His formulation in terms of functions has the advantage of be-
ing intrinsic, but it requires that Φ have characteristic 0 or p > q,
while the above proofs hold if only | Φ | > q or | Φ \ > 2q.

Schafer proved Theorem 1.4 only for the special cases q = 2, 3.2

Different choices for the noncommutative ternary compositions lead to
slightly different classes of algebras; for example,

Ex = 2L2

X — LX2 , Fx = 2R\ — RX2

leads to the algebras satisfying (Lx — Rxf(Ll — L^) = 0, which includes
all alternative algebras.

2 Professor L. Paige informs me that Mrs. E. Papousek has independently ex-
tended Schafer's results to arbitrary q.
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When p — 0 or p > q analogous results hold even if the dimension
of 21 is infinite. The differential calculus, Lemma 1.2, and the discus-
sion of nondegeneracy carry over straightforwardly; in the analogue of
Lemma 1.3 we cannot define Hx or αj#, so the notation is less con-
venient, but the proof is not much longer. Although we cannot draw
any conclusions about separability, we can conclude that an infinite di-
mensional normed algebra is a noncommutative Jordan algebra (Theorem
1.1) and from this we can get Schafer's result that infinite-dimensional
algebras admitting associative or Jordan composition are alternative or
Jordan algebras respectively (Theorems 1.3 and 1.4). However, it is
conjectured that all normed algebras are necessarily finite-dimensional,
so for convenience we have restricted ourselves to the finite-dimensional
case.

CHAPTER II

1. Inverses* In this chapter we do not assume that Φ is infinite,
and in this first section we do not assume that the algebras are finite-
dimensional. Let 21 be a commutative Jordan algebra; then we have
the following identities [5, pp. 1155-1156]:

(2.1) Uu{x)y = UxUyUx (Ux = 2LI - Lxή

(2.2) [Lx, Lyz] + [Ly, Lzx] + [Lz, Lxy] = 0

(2.3) LzLyLx + LxLyLz + L{xz)y — LyzLx + LxzLy + LyxLz

(2.4) Lxn = 2Lχn-iLx - Lχn-2UX (n ̂  2) .

We say that an element a e SI is regular with inverse b if ab = e and
a2b — a (where c is the identity of 31).

THEOREM 2.1. Let SI be a commutative Jordan algebra with
identity c. Then for a e 21 the following are equivalent:

(a) a is regular
(b) c is in the range of Ua

(c) Ua is an invertible transformation.
The inverse is unique; if a has inverse b then b has inverse a and
UaUb — UhUa — I. In this case Lh = U~xLa, all Lak, Lbj commute, and
Φ(a, b) is a commutative associative algebra.

Proof. If Ua is an invertible transformation then clearly c is in
its range; conversely, if c is in the range of Ua, say Uad = c, then by
(2.1) I=UC = Uσia)d = UaUdUa, so Ua is invertible.

If Ua is invertible and b — U~ιa then Uac — a2 = Laa = LaUab =
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UaLab = Ua(ab) (Ua commutes with La since Lα2 commutes with La in
a Jordan algebra). Since Ua is one-to-one, ab = c. We get Uaa — Ua(a2b)
in the same way, so a2b — a (which also follows from

a = Uab = 2a{ab) - a2b = 2a - a2b) .

Hence a is regular with inverse b.
If a is regular with inverse b, then Lab = /, so (2.2) shows [Lα,Lδ2] =

[Lb, Lα2] = 0. Thus

Uab
2 = 2Ll(Lb2c) - La,{b2) = 2Lb,{L2

ac) - aΨ

— a2b2 — LaiLhb = LhLaώ — Lba = c

is in the range of Ua.
Uab — 2a(ab) — a2b — a shows the inverse b is uniquely determined

as U^a; it also shows Ua = Uσ{a)b = UaUbUa by (2.1), so UaUb =
ί76?7α = I. Then 6 has inverse U^b = Uab = a.

In this case [Lb, Lo2] = [Lb, Ua] = 0 (since Ua — U^1), so Lb com-
mutes with 2L« = Ua + Lα2. Thus putting cc = # = α, 2; = 6 in (2.3)
yields La = (2L2

α - Lα2)L6 = C7αL6, Lδ = U?La. Hence C/6, L6 are in the
commutative algebra of linear transformations generated by Lα, Lα2, Z7"1;
by (2.4) this includes all Lαfc, L6j, so they all commute. Then it is easy
to see that Φ(a, b) is a commutative associative algebra.

This theorem is due to N. Jacobson [4, 5]. The above proof is
simpler than his; the simplification comes from repeated use of the
"fundamental formula" (2.1), which was unknown when he first proved
the theorem.

Now let SI be a (possibly infinite-dimensional) noncommutative
Jordan algebra. The following identities hold [1, pp. 573-575]:

(2.5) [Lx, Rz] = [Rx, Lz]

(2.6) Ryx + LxLy = Lxy + RxRy

(2.7) RxLy(Rx + Lx) + Lyx2 = RxiLy + Lyx(Rx + Lx) .

We define a e 51 to be regular with inverse b if ab = ba — c,a2b —
ba2 — a (c the indentity of 21).

THEOREM 2.2. If 21 is a noncommutative Jordan algebra then
a G 21 has an inverse b if and only if b is the inverse of a in the
commutative Jordan algebra 2I+. Then Lb = U^Ra, Rb = U~λLa where
Ua = Ra(Ra + La) - Ra, = La(La + Ra) - La* = U+. All L^ Ra«, LbJ, RbJ

commute, and Φ(a9 b) is a commutative associative algebra.

Proof. Clearly if ab — ba — c, a2b — ba2 — a then a has inverse b
in 2ί+. Conversely, suppose a has b as inverse in 2ί+; then ab + ba —
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2c, α2δ + δα2 = 2α. From (2.6)

(Lα 2 - Raφ = (LI - R\)b

= (La - Ra)(La + Ra)b = 2(La - Ra)c = 0

so α2δ = δα2 = α. Then δα = δ(α2δ) = (δα2)δ = αδ, so αδ = δα = c, and

δ is the inverse of a in SI.

By (2.5), [Lβ, Λ6] - [Λβ, L 6 ] ; by (2.6), αδ - δα = c implies # α # 6 =

L α L 6 , Λ6Λβ - L δ L α , so [Ra, Rb] = [La, Lb]. Then

[Ra + Lα, Lb] = i[Ra + Lα, Rb + L 6] = 2[Lα

+, U] - 0

from Theorem 2.1. Hence putt ing x — ayy — b in (2.7) yields

i2α - {#α(i2α + La) - i2α2}L6 = UaLb .

Now (2.6) implies R\ — i2α2 = L 2 — Lα2, so averaging gives

Ua = Ra(Ra + La) - Ra2

= La(La + Ra) - La, = 2Lα

+2 - L J = Ui .

By Theorem 2.1, ί7ί is invertible, so Lb = C/ j 1 ^. i26 = E/r1!^ follows

by duality. It is standard t h a t Rx> Lx, RX2 LX2 generate all RXJC, LχJc (by

induction using (2.7), its dual, and power-associativity) so the rest of

the proof proceeds as in Theorem 2.1.

COROLLARY. An algebraic element a in a noncommutative Jordan
algebra has an inverse if and only if it has an inverse in the as-
sociative algebra Φ[a],

Notice that formulas (1.9) to (1.13) of Lemma 1.3 show again that
in a normed algebra %% — or 1, Hx — Z7"1, Lx-i — U~XRX9 Rx-i = TJ'^L^

and UX9 Lx, RXf Lx-i, Rx-i all commute.

2* Standard properties of the generic norm. In this section
again all algebras are finite-dimensional, but Φ is not assumed to be
infinite. We will give alternate proofs of the results of N. Jacobson
[3] concerning the generic norm. After first proving a general lemma
about polynomials admitting some kind of composition, an application
of a technique involving the theory of inverses and the Hubert Nul-
lstellensatz (due to N. Jacobson [3, p. 37]) yields the desired results
in a direct fashion.

LEMMA 2.1. If Qe Φ[ηΊ, , τjm] is a polynomial and Ml9 , Mm

are rational expressions in Φ(ξif •• fξn9i}19 •• , ) ? w ) which are linear

in the indeterminates r]j and such that

(a) Q{Mx{ξ, η), , Mm{ξ, Ύ])) = m{ξ)Q{η) for some rational expres-
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sion m(ξu . . . , ξn) e Φ(ξu ••-,!*)
(b) Mi(c, rj) — η. for some c = (c19 , cn) where ^eΦ

then each irreducible factor Q{ of Q admits the composition

, y), , Mm(ξ9 V)) = m

for some rational expression mim

Proof. For convenience let M{ξ,η) denote (M&ξ.η), , Λfm(f, η)).
Let Q = Π Oί* be the factorization of Q into distinct irreducible factors.
From (a) we have

Π Qi(M(ξ, V))qί = Q(M(ξ, V)) = m(ξ)Q(η) = m(|) Π £*(?)« .

Since each Q{ divides the right side and is irreducible as a polynomial
over Φ(ξl9 •••,!») it must divide some QάM&η)), say Qj(M(ξ9η)) =
mi(ξ, y)Qi(£) where m{ is rational in ξ and a polynomial in η. From
(b), specializing ξ—*c gives Qi(^) = m^c, 7])Qi{7)). Since the Qfc are
distinct and irreducible, i — j ; then Qi(M(ξ, η)) = m^ξ, yj)Qi{yj) and the
assumed linearity of the Mk(ξ, η) in η imply m< is of degree 0 in jy,
mt(ξ9 rj) = m^ξ). Hence Qi(M(ξ9 η)) = m^Q^η) as desired.

As a corollary, if Q is homogeneous we may take n = l9 Λf(λ, 77) =
λ)?; then from

Q(M(λ, 77)) = Q(χrj) = X«Q(η)

we conclude by the lemma that each irreducible factor Q{ satisfies
Q^Xη) = mi(X)Qi(η). But Π m^λ) = λg, so m^λ) = λg* and we see that
each irreducible factor of a form is again a form. Of course, this is
obvious anyway.

If 21 is a strictly power-associative algebra over Φ (ie. remains
power-associative under any extension of the base field) the generic
minimum polynomial mf(λ) of SI is the mimimum polynomial of the
generic element ξ = ξxxτ + + ξnxn of 2U Σ = Φ(ξu , | w ) , relative
to some basis {#!, , xn} for 2ΐ over Φ. Specializing ξ-^>x gives a poly-
nomial mx(X) which has the same irreducible factors as the minimum
polynomial μx(X) of x in 21 (this and the following assertions are found
in [3, pp. 27-28]). The generic norm is the constant term N(ξlf , ξn)
of me(λ); it is a homogeneous polynomial in the ξi9 As a polynomial
function the generic norm is independent of the basis for 21, and the
generic norm of an extension algebra %Ω is just the natural extension
of N to 2Iβ. Note, however, that N is given initially by a polynomial
and a choice of basis rather than by a polynomial function (compare
with Theorems 1.3, 1.4).
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THEOREM 2.3. If % is a commutative Jordan algebra, the generic
norm N(x) has the same irreducible factors as K(x) — det Ux.

Proof. It suffices to prove everything over the algebraic closure
Ω of Φ: the K, N of 2Iβ are just the natural extensions of those of
21, so if the former have the same irreducible factors over Ω the latter
must have the same irreducible factors over Φ. By Theorem 2.1 and
the Corollary to Theorem 2.2 K(x) = 0 <=> x has no inverse in Ω[x].
Since Ω[x] is associative, x has no inverse <=> the constant term of
μx(X) is zero. But μx{X) and mx(X) have the same irreducible factors,
so their constant terms vanish on the same set. The constant term
of mx(X) is N(x), so K(x) = 0 <=> N(x) — 0. Because Ω is algebraically
closed we can apply the Hubert Nullstellensatz to conclude that K and
N have the same irreducible factors.

THEOREM 2.4. If WL is a commutative Jordan algebra, all nor-
malized irreducible factors M of the generic norm admit Jordan
composition M(Uxy) = M(xfM(y).

Proof. By the fundamental formula (2.1), UU{x)y = UxUyUx, so
taking determinants gives K{Uxy) = K(xfK(y). Since this holds for
an infinite extension of Φ, it becomes an identity between polynomials
relative to a choice of basis for §1, and since Uc = I we can apply
Lemma 2.1 and Theorem 2.3 to conclude that each irreducible factor M
of K or N admits composition M(Uxy) = m(x)M(y). From M(c) — 1
we can conclude M(Uxy) — M(xfM(y) as in the proof of Theorem 1.2

THEOREM 2.5. Let 21 be a strictly power-associative algebra, 33
a subalgebra. Then the restriction N |^ of the generic norm N of 2ί
to 33 is a polynomial on 33 having the same irreducible factors as
the generic norm N<$ of 33. // M is any normalized factor of N
then M(xy) = M(x)M(y) if x, y are contained in an associative sub-
algebra.

Proof. For the first assertion, if x e 33 then

jV |ςg (x) = 0 <===> N(x) = 0 <=* x has no inverse in Φ\x\\

since Φ[x] c 33 c 2ί the same reasoning shows N%(x) = 0 <=> x has no
inverse in Φ[x], Thus N\%(x) = 0 <=> N%(x) = 0; this remains valid on
extension of Φ to its algebraic closure, so as in Theorem 2.3 we con-
clude N\<g,N% have the same irreducible factors.

Next, let M be a normalized irreducible factor of N and assume
33 is an associative subalgebra of 21. If D(x) is the determinant of
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left multiplication by x on 33 then the associativity Lxy — LxLy of 23
gives D(xy) — D(x)D(y). Since this remains valid on an infinite ex-
tension of Φ, relative to a basis for 33 it becomes an identity between
polynomials. Applying Lemma 2.1 we see that every irreducible factor
of D admits composition. But by the same argument as before, N\%
has the same irreducible factors as D. Hence Λf |ςg, as a factor of
N\%, admits composition M |$ (xy) = m(x)M\% (y); taking y — c, the
assumption that M is normalized gives m(x) = M\^(x). Hence if x, y
are in an associative subalgebra 23 we have

M(xy) = M Igj (xy) = M ̂  (α?)ΛΓ ̂  (») = ΛΓ(aO W .

COROLLARY. 1/ §1 is an alternative algebra, all normalized irre-
ducible factors M of the generic norm admit associative composition
M(xy) = M(x)M(y).

THEOREM 2.6. Let 21 be an alternative or Jordan algebra. If
{xlf •••,#„} is a basis and Q e Φ[ξl9 , ξn] a homogeneous polynomial
of degree q such that Q(ab) = Q(a)Q(b) or Q( Uab) = Q(afQ(b) respec-
tively for all a, b e SI, and if \ Φ \ > q or \ Φ | > 2q then in either
case Q is a product of irreducible factors of the generic norm N.

Proof. The assumptions on | Φ | guarantee that we can pass to the
algebraic closure of Φ and prove the result there. We saw Q(c) Φ 0 in
§ 2 of Chapter I (c the identity of §t). If N(x) Φ 0 then x has an in-
verse y in Φ\x\, xy — Uxy — c. Thus Q(c) equals Q(x)Q(y) or Q(xfQ(y),
and in either case Q(x) cannot be 0. Thus Q(x) = 0 =φ N(x) — 0, and
the Hubert Nullstellensatz yields the result.

THEOREM 2.7. The generic norm of a simple alternative or Jordan
algebra is irreducible.

Proof. We refer to [3, pp. 33 and 39].

THEOREM 2.8. The generic norm of an alternative or Jordan
algebra 21 with identity c has nondegenerate trace form τc if and
only if 31 is separable.

Proof. By the Corollary to Theorem 2.5 or by Theorem 2.4 N
admits Rx, Lx or Ux on 2ίβ, Ω an infinite extension of Φ. Thus if τc

is nondegenerate 2Iβ is normed, so is separable by Theorem 1.1, and
hence 21 is too. Conversely, assume Sϊ is separable; it will suffice to
prove NΩ is nondegenerate for Ω the algebraic closure of Φ. Then
SI*? = 0 21; for 21; simple alternative or Jordan algebras respectively,
and NΩ — HNif τ — φ τ ^ , so it will suffice to prove N{ is nondegen-
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erate. We are thus reduced to considering the case of a simple alge-
bra SI over an algebraically closed field Ω. By Lemma 1.2 τ is a well-
defined associative biliner form, hence by simplicity it is either non-
degenerate or the zero form. Assume τ — 0; from (1.4) with y = c,
Ex = Lx or Ux we get τx{Lxu, Lxv) = τ(u, v) = 0 or τJJJxu, Uxv) =
z(u, v) — 0 respectively. Then τx = 0 or τβ2 = 0 on the sets where Lx

or ZJa. are nonsingular. Since Ω is infinite, τ^ = 0 for z in a dense set
in either case, so τx = 0 for all a?; in other words dudυ log N = 0 for all
u, v. Thus 8wlog JVe fl(ff, , ξζ); but it is homogeneous of degree — 1 ,
so it is zero, and ΘVN = Ndvlog ΛΓ = 0 for all v. Then iVe Ω[ξ?9 •••,£*];
since £? is perfect, iV is a pth power, which contradicts Theorem 2.7.
Thus r ^ O , so it must be nondegenerate.

4* Applications to normed algebras* In this section we use
the foregoing results to characterize all possible norms on a normed
algebra. Throughout the section we will assume that Φ is infinite.

LEMMA 2.2. / / Qe Φ[ηu , ηm] is a polynomial and M19 , Mm

are rational expressions in Φ(ξlf •• 9ξufηlf •• ,^m) which are linear
in the indeterminates ηk and such that

(a) Θk log QCMid, η), , Mm(ξ, η)) = dk log Q(η) for all k where dk

is formal partial derivation with respect to rjk

(b) Mi(c, η) = rji for some c — (cl9 ••-,(?„) where c{£Φ
then Q — QfQ" where each irreducible factor Qι of Q' admits the com-
position Qi(MJ&9 rf), •••, Mm(ξ, Ύ])) = midξQiiη) for some rational ex-
pression m{ and where Q" e Φ[ηΐ, , ηl\.

Proof. For convenience we set M(ξ, η) — (Mx(ξ9 η), , Mm(ξ, η)).
Let Q = Π Qll be the factorization of Q as in Lemma 2.1 Suppose
Qi, * 9 Qi are the Q{ which admit composition. Write Q = Q'Q" for
Q' = Π « i Qϊ*. Then Q'(J|f(f, 7 )) = m'(ξ)Q'(V), so

0, log Q'(M(1,3?)) = 9. log m'(f) + dk

Since dk log Q = θk log Q' + 9fc log Q", subtraction from (a) gives

dklogQ"(M(ξ,V))=dklogQ"(7]).

Now

where R = Πof Qi> -K. = Φΐ"1^ In reduced form the denominator of
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Όk log Q" thus consists of some of the distinct irreducible factors Q{ of
R with i > j , while the denominator of

θklogQ"(M(ξ,7i))

= R(M(ξ, V))-1 Σ 9A(M(f, ηWuQmξ, V))

considered as a rational expression in η with coefficients in Φ(ξu , ξn)
is just i2(M(£, η)) = IL>; Qί(Λf(£ ^)) I f Q* *s a factor of the former
denominator it must be a factor of the latter; then as in Lemma 2.1
we see that Qi admits composition. This contradicts our assumption
that Qi does not admit composition for i > j , so no such Qt exists, and
the denominator of R^S in reduced form must be a constant. Then
^ l o g Q " is a polynomial; we noticed after Lemma 2.1 that each Q{ is
homogeneous, so dk\ogQ" is homogeneous of degree — 1 , and thus
must be identically zero. Then dk Q" = Q"dk log Q" = 0 for all jfc, and

THEOREM 2.9. If Q is a norm on a normed algebra 21 with
identity c then Q is a product of irreducible factors of the generic
norm N of 21. The symmetrized algebra 2t+ is the Koecher algebra
2ί(Q,c). In particular, any commutative normed algebra is the Koecher
algebra of its norm.

Proof. Q remains a norm on 2Iβ, Ω the algebraic closure of Φ, and
N remains the generic norm, so it suffices to prove the result over Ω.

We have

ΘHΘV log {Q o Hx} \y = θmβ)uθmβ)v log Q H(χ)y

= -τHix)y(Hxu, Hxv)

= -τ(H*Hmx)yHxu, v) .

ΊNow H* = Hx and by averaging (1.13) H? = 2Lϊ2 - L^ = U+, so from
the fundamental formula (2.1) for the commutative Jordan algebra 2I+

HχHπ(χ)yHχ = (UXUHWVUX)"1

— (UlΠx)H(x)v) ~ Uy = = •"»

Therefore

Ά log {Q o Hy} \y = -τ{Hyu, v)

= -τy{uy v) = ΘJSV log Q \y ,

and
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8Λ8, log {Q o # . } - 9 . log Q} I, = 0 .

The term in braces is homogeneous of degree — 1 , so taking u — y
gives dvlog{QoHx) \y = dv\ogQ \y by Euler's equations. Since Ω is in-
finite, the relation dv log Q(Hxy) = dv log Q(y) becomes a relation between
polynomials relative to a basis for SI, and we can apply Lemma 2.2 tσ
write Q = Q'Q" where all the irreducible factors Qt of Q' admit Hx as
composition and where Q" is a pth power (since Ω is perfect). If Q;
admits Hx it admits E/g. = H~u

f if we normalize it as in Theorem 1.2
we can apply Theorem 2.6 to conclude Q{ is an irreducible factor of
N. Let Q = ΐ[Qϊi be the factorization of Q. If p does not divide
q{ then Qj< is not a pth power, hence not all of it can appear in Q",
so Qi must appear in Qf and hence be an irreducible factor of JV. Tσ
complete the proof we need only show that for each j we can alter
the exponents so that Q = Π Q?* * s still a norm but p does not divide
q3. By Lemma 2.1, all Qt admit Ex, Fx of (1.1), so any Q does too;
hence Q will be a norm as soon as its trace form τ is nondegenerate.

If SHΩ — φ §1̂  is the decomposition of 2Iβ into simple ideals guaran-
teed by Theorem 1.1 then N = Π Ni9 N{ the generic norm of %. By
Theorem 2.7 the N{ are the irreducible factors of JV over Ω, so if p
does not divide q{ then Q̂  is an N3 . If p divides g4 then ΘQ^ — 0 and
hence Q{ does not contribute to the trace form τ of Q. Thus τ is a
linear combination of the traces of the Nj. The latter are concentrated
on the 2I/s, so by the nondegeneracy of τ all the Nj must appear among
the Qi with q{ not divisible by p. We may renumber so that Q{ = i\Γ{

for 1 ^ i ^ m. Thus the Qά for j > m are the ones p divides ^i. By
Theorem 2.8 the trace form τ { of Qi = N{ is nondegenerate on SIΐ. By
Lemma 1.2, τ3- for j > m is a (perhaps degenerate) associative bilinear
form on 2Iβ, so τ3- = ®i^m^iτi f ° r some XieΩ (because any associative
form on the simple algebra 2t̂  over the algebraically closed field Ω is
a scalar multiple of the given nondegenerate form r<). If we pick in-
tegers qt such that q{ί + λ{ Φ 0 in Ω and set Q = Πi^m Q!* then 0 =
QjQ has trace form τ — φ ^ m (^ + λ^)^ which is nondegenerate. The
exponent of Q3 in Q is 1, so Q is the desired norm. (As a matter of
fact, since this implies Q3 is an irreducible factor of N it is one of the
Ni and hence there actually is no Q3 for j > m).

For the last statement of the theorem, observe that the Koecher

algebra is defined because Q admits Hx. Multiplication in §I+ is Li —

i(Lu + Ru), so

τ(Liv, w) = iτ({Lπ + Ru}v, w)

= 3δ 8A log Q I
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by (1.8) and (1.5). But this defines the multiplication in the Koecher
algebra, so 31+ = 2I(Q, c).

Note that the norms on 21 are precisely all Q — Π Np where no
nt is divisible by p (in particular no n{ is 0).

CHAPTER III

1* Isotopes* Throughout this chapter 21 will denote a finite-
dimensional commutative Jordan algebra (not necessarily semisimple and
Φ not necessarily infinite). We first recall the standard results about
isotopes [5], which are all consequences of MacDonald's Theorem. Let
u be any element of 21 = (X, •). We define a new multiplication on 36
by X'uy = (x-u)-y + (u-y)-x — (x-y)-u. The algebra Wu) = (X, u) has
an identity if and only if u is regular, in which case the identity is
w1. In this case we say 2IU) is the u-isotope of 21; 2IU) is again a
Jordan algebra, and the operator Ux

u) is given by

(3.1) D™ = UXUU.

The relation of isotopy is symmetric and transitive.

THEOREM 3.1. Let Q be a form on a finite-dimensional vector
space X over an infinite field Φ and c e X a point where the Koecher
algebra 21 = 2I(Q, c) is defined: thus the trace form τc is nondegenerate
and Q(Hxy) = h(x)Q(y). If cell is any point where τ^ is nondegenerate
then the Koecher algebra 21 = 2I(Q, c) is defined and is the u-isotope
of 21 for u — c~λ. Thus the Koecher algebras corresponding to dif-
ferent basepoints are isotopic.

Proof. Let τ — τe, τ — τ^ where τx(u, v) — —dudv log Q \x as usual;
then τ(Hyu, v) — τy(u, v) — τ(Hyu, v) — τ^(Hyu, v) — τ(H^Hyu, v) implies
Άy — HγHy by the assumed nondegeneracy of τ, τ. Then Q(Hxy) —
Q{H^Hxy) - h(c)-1h(x)Q(y) = h(x)Q(y) and t is defined. From (1.13)
we see Uy = Hy1 — H~λH^ — UyU^1. Since τ is defined we must have
Q(c) Φ 0, so we know u = c ~τ exists and equals c% by (1.11), (1.12).
Thus Wu) is a Jordan algebra with identity u~τ — c and Uy

u) — UyUu =
UyU^^UyU^1 using (3.1) and Theorem 2.1. But 21 has the same

identity and Uy = UyUf1 = Uy

u\ so S = Wu\

COROLLARY. / / 2ί, 2ί are commutative normed algebras on X, X

over an infinite field Φ with norms Q,Q respectively, and if W: X-^X

is a one-to-one linear transformation such that Q(Wx) = Q(x), then

W is an isomorphism of 2ί with an isotope of 2ί.
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Proof. W carries 3i in the natural way isomorphically onto an

algebra Si on 36 with identity c —We and norm Q = QoW~~\ By

Theorem 2.9, 3Ϊ is the Koecher algebra 3I(Q, c) of Q with basepoint c,

and Si is the Koecher algebra SI(Q, c) where c is the identity of SL

But Q(Wx) = Q(x) = Q(TFx) and Φ is infinite, so Q = Q; by Theorem

3.1 Sϊ is the c" 1 isotope of Si. Hence W is an isomorphism of SI with

an isotope of Si.

COROLLARY. If % is a separable Jordan algebra with generic
norm N,\Φ\ > degN, then a one-to-one linear transformation W of
Si into itself is an automorphism of 31 if and only if We = c and
N( Wa) = N(a) for all a e Si.

Proof. Clearly any automorphism satisfies the conditions. Con-
versely, any such W satisfies N(Wx) = N(x) on an infinite extension
by our assumption on \Φ\; if we take 31 = 21, Q = Q = N the proof
of the preceding corollary and the fact that (We)-1 = c1 — c show
that W is an isomorphism of 21 with 3ί(c) = Si.

Note that Q(Wa) = Q(a) need not hold for an automorphism W if
Q is an arbitrary norm on the separable algebra SI.

2* The group ^(31). We here generalize some results of Koecher
[9, pp. 70-73]; remember that 31 need not be semisimple and Φ need not
be infinite. Let S^(3I) be the set of all nonsingular linear transforma-
tions W on SI such that

uWx = wuxw*
for some linear transformation W* and all xf and let ^(31) be the
group generated by the Ux for x regular (see Theorem 2.1). One
easily verifies that 5f(3I) is a group, W* e gf(3I) for all W e SΓ(3I),
and (by (2.1)) ^(Si) is a subgroup; since

*)^ = UWmU£ e

it is a normal subgroup. If We 2 (̂31) then

TT —11 — WTT W*TT W**TT W*

but from (2.1) Uϋ{Wx)y - UWxUyUWx = WUxW*UyWUxW*, so equating
gives ΫF** —W. (WxWa)* = WfWf is clear, so * is an involution on
5 (̂31) which leaves the elements Ux fixed. Geometrically, W* =^oW~λo^
where # is the mapping x —+ x~λ — U^x:
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W*x = W*U-±iχ-1

Thus W *v = u

THEOREM 3.2. Two isotope Wu),Wυ) are ίsomorphic under a linear
transformation W if and only if We gr(Sί) and W*v=u. The group
of automorphisms of 21 is the subgroup of ί^(2ϊ) fixing the identity
c.

Proof. Suppose W: 2IU) —> 2I(W) is an isomorphism. Then W takes
the identity u~λ of Wu) onto the identity v1 of Wυ), so Wu~ι = v'1^
W*v = u, and by the multiplicative property

WLT = L"W=Ϊ WIT* = U"W=$ WUXUU = UWXUVW

(by (3.1)) =Φ UWx = WUXW* for W* = ί / . T ^ - 1 ^ 1 and all a?, so T7e gf (21).

Conversely, if We ί^(A) and T7*^ = % then for all x u = W*v =
(U^W-'UwJv, so Wx-vWx = UWxv = WUxu = W(x ux); by commuta-
tivity this linearizes to W(x uy) — Wx>vWy, and W is an isomorphism.

Applying this to the case u = v — c and noting that W*c — c<=>
We = c since c"1 = c, we see W is an automorphism of §1 = 2ί(c) if and
only if We &(%) and We = c.

Isotopes are not always isomorphic; for example, the algebras Φ(S)Λ,7)
for different 7 are isotopic but not necessarily isomorphic. However, if
Φ is algebraically closed then there is essentially only one φ(3)Λ,7). This
is a special case of the following general result.

THEOREM 3.3. / / Φ is algebraically closed, all isotopes Wu) are
isomorphic.

Proof. Since Φ is algebraically closed, every regular element has
a regular square root [3, p. 43], If Wu) is an isotope, u is regular
by definition, so there is a regular v e 21 with v2 — u. Then Uvc =
v2 = u, and Uv = Z7* e ^(Sί) c g"(5I) since v is regular, so by Theorem
3.2 Uv is an isomorphism of SIltt) onto 2I(C) = 21.

This can also be seen without recourse to Theorem 3.2. Let v2 = u
as above; by bilinearity and commutativity it will suffice to demonstrate
Uv(x ux) — (Uvx)-(Uvx) in order to prove Uv is an isomorphism of 21{u)

onto 21. But x ux ~ 2x (x-u) — x2 u = Uxu, so Uv(x ux) — UvUxu =
^ ^ ι ; a = [/,[/,C/Vc = UU{v)xc = (UvxY by (2.1).
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As a corollary of this result we get a quick proof of the following
proposition [3, p. 43].

COROLLARY. The generic norm of an isotope 2ίU) is N{u)(x) =
N(u)N(x).

Proof. It suffices to pass to the algebraic closure. There we can
find a square root v of u, and by the above Uv is an isomorphism of
Wu) onto 2Ϊ. Under an isomorphism corresponding elements clearly have
the same generic norm, so

N{u)(x) = N(Uυx) = N(v)2N(x) = N(v2)N(x) = N(u)N(x) .

COROLLARY. If Φ is algebraically closed, every We S^(2ί) can
be written W — UV where Ue^/{%) and V is an automorphism.

Proof. Since UWc — WUCW* is nonsingular, We is regular, and
hence as above has a regular square root v. Then U — Uve ^(21), and
V = u~xW has F e gf(21) and Fc = J7~1TΓc = £7~V = c, so V is an
automorphism by Theorem 3.2.

Suppose now that 21 is separable over an infinite field Φ with generic
norm N. We claim that ί^(2ί) is just the group of normpreserving
transformations W such that N( Wx) — ωN(x) identically with ωeΦ.
If N(Wx) = o)N(x) we can apply the differential calculus as in (1.3) to
get τWx(Wu, Wv) = τx(u, v), hence W*HWxW = Hx, HWx = W*~xΉ.mW-\
UWx = WUXW* and T7e 5f(2t); note that * here is the adjoint rela-
tive to the nondegenerate form τ. Conversely, if We&{%) then by
Theorem 3.2 W is an isomorphism of 2ίU) onto 21 for u = T7*c. Then
N(Wx) = N{u)(x) — N(u)N(x) by the first Corollary, and W is norm-
preserving.

The group 2^(21) has been computed by N. Jacobson [6, I, II, III]
for central simple 21; in each case it is easy to compute W*.

3. The Lie algebra of 5^(21). As a final example of the usefulness
of the differential calculus we give short proofs of some results of N.
Jacobson [3, pp. 42, 47, 48] on the Lie algebra of the algebraic group
5^(21). We will assume throughout the section that Φ is infinite. We
say a polynomial Q has a linear transformation W as Lie invariant if

Ow.Q L = o

identically. Such W form a Lie algebra ^ ( 2 1 , Q) of linear transfor-
mations. Indeed, applying dy \x to the defining relation gives
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QwyQ I. + QflwQ I. = 0 J

if W, Fej^(2I, Q) then

β*v*Q I = -θvJB**Q I = -θwjβVΛQ I - 0Γ 1 Γ βQ

and 8[TΓfF].Q |β = 0 implies [T7, F ] e _^(2I, Q).

THEOREM 3.4. / / N is the generic norm of a Jordan algebra §1
then La e jS^(3ί, AT) if and only if a has trace zero, ie. τ(c, a) = 0.
If SI is separable then

Jδf (31, iSΓ) = JS^(3Γ) 0 ^ ( 3 1 )

where JS^(SI') is ίfee space o/ multiplications La by elements of trace
zero and £§̂ (21) is ίfce Lie algebra of derivations.

Proof. For the first assertion it will suffice to prove dL{a)yN\y =
N(y)τ(c, a). We apply dα |e to N(Uxy) — N(xfN(y) as a function of x.
Using the chain rule the left side becomes

for b = da{Uxy} \c = 2Lay. Using N(c) — 1 and the Euler equations the
right side becomes

2N(c)daN \c N(y) = 2N(y)N(c)-1daN |β = 2N(y)da log N \e

= -2N(y)dβa log N \c = 2N(y)τ(c, a) .

Equating gives 2dLia)yN\y = 2N(y)τ(c, a).

For the second assertion, let W e .2^(21, N), We = a. Since 2ί is
now assumed separable, τ is nondegenerate by Theorem 2.8. Hence
we can define # as in § 4 of Chapter I, and

0 = N(x)-VWXN \x = θWx log N \x - r(flj#,

Putting x = c we get r(c, α) = 0, so Lα e ^^(2I r )cj^(5ί, JV). Therefore
D = W- Lae £f(Ά, N), Dc = 0. We will prove D is a derivation. As
above 0 = r(α#,Ite), so 0 = dy{τ{x%, Dx)} \x = r(a?#, 2>y) - r ( i J ^ , Da?).
By nondegeneracy D*x# = H^Da;, and UxD*x$ = JDx by (1.13). From
C 2̂ = C7J (by (2.1)) and (x2)# = x~* = t/^c = ίΓβc (by (1.11)-(1.13)) we
get

D(x-x) - 2x-Dx = I7βj)*(αj2)# - 2L,[/,£*£#

=-17,2)0 =
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linearizing shows D is a derivation. Hence

and we have shown jδ^(3I, N) c £?(&') + ^(31); but Jδf(SΓ) c .Sf (31, ΛΓ),
and ^(SC) c Jδf (21, AT) is known [14], so J^(2I, N) = L(W) + D{Έ).
Finally, jδf (2Γ) Π ̂ ( 2 ί ) = 0 since Lac = α, .Dc = 0, so the sum is direct.
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