NOTE GENERALIZING A RESULT OF SAMUEL'S

LUTHER CLABORN

Let C(A) denote the class group of a Krull domain A. Samuel has established (a) $C(A) \rightarrow C(A[[X_1, \dots, X_n]])$ is injective, and (b) $C(A) \rightarrow C(A[[X_1, \dots, X_n]])$ is bijective in Case A is a regular U.F.D. This note establishes that $C(A) \rightarrow C(A[[X_1, \dots, X_n]])$ is bijective in Case A is a regular noetherian domain, thus adding a complement to (a) while generalizing (b). A corollary of this is that $A[[X_1, \dots, X_n]]_S$ is a U.F.D. if A is a regular Noetherian domain and S is the set of nonzero elements of A.

In [1], Samuel gave an example of a nonregular noetherian U.F.D. A such that A[[X]] is not a U.F.D. In this case certainly, the mapping of the class group C(A) into C(A[[X]]) is not onto (since a unique factorization domain is characterized by C(A) = 0). In the same article, Samuel showed that A[[X]] is a U.F.D. in Case A is a regular U.F.D. Here it is proved that $C(A) \rightarrow C(A[[X_1, \dots, X_n]])$ is one-to-one onto in Case A is a regular noetherian domain. The main tool is the technical Theorem 3 below, which shows that if W is unmixed of height 1 in $A[[X_1, \dots, X_n]]$, then there is an unmixed height 1 ideal I of A such that IW is principal. From this the result stated above follows directly.

Two lemmas are needed to facilitate the main results.

LEMMA 1. Let B be a regular noetherian domain and let I and W be two unmixed height 1 ideals of B such that I and W have no associated prime ideals in common. Then $IW = I \cap W$.

Proof. For each M, B_M is a regular local Noetherian ring, hence a U.F.D., so IB_M and WB_M are both principal ideals. Since I and Whave no associated prime ideals in common, neither do IB_M and WB_M . It follows that $IB_M \cap WB_M = IB_M \cdot WB_M$. Thus for each $M, (I \cap W)B_M = IB_M \cap WB_M = IB_M \cdot WB_M = (IW)B_M$. This establishes the lemma.

LEMMA 2. Let B be a regular noetherian domain and Z be an unmixed height 1 ideal of B. If X is an element of B such that (a) X is in the Jacobson radical of B and (b) Z: XB = Z, then Z + XB is unmixed of height 2.

Proof. Let P be an associated prime ideal of Z + XB. Then B_P is a regular local ring, hence is a U.F.D. [3, Thm., p. 406]. ZB_P is

Received July 17, 1964.

LUTHER CLABORN

principal, so choose T in Z such that $ZB_P = TB_P$. Then PB_P is an associated prime ideal of $(Z + XB)B_P = ZB_P + XB_P = TB_P + XB_P$. But Z: XB = Z implies that $ZB_P: XB_P = ZB_P$, or $TB_P: XB_P = TB_P$, so $\{T, X\}$ is a prime sequence in B_P . This implies that height of $PB_P = 2$ [3, Thm. 2, p. 397]. But height of P =height of PB_P .

THEOREM 3. Let A be a regular noetherian domain and let $B_n = A[[X_1, \dots, X_n]]$. If W is any unmixed height 1 ideal of B_n , then there is an unmixed height 1 ideal I of A such that IW is principal and $IW = IB_n \cap W$.

Proof. Let $B_0 = A$. The theorem will be proved for $n \ge 0$ by induction on n.

(1) n = 0. W is an unmixed height 1 ideal of A. Since A is regular, it is integrally closed, so $W = P_1^{(n_1)} \cap \cdots \cap P_k^{(n_k)}$ where the $P_i \ i = 1, \dots, k$ are height 1 prime ideals and $P_j^{(n_i)} \ i = 1, \dots, k$ is the n_i th symbolic power of P_i . Choose d an element of A so that $V_{P_i}(d) = n_i \ i = 1, \dots, k$ where V_{P_i} denotes the discrete valuation determined by P_i . Then dA can be written

$$dA = P_1^{(n_1)} \cap \dots \cap P_k^{(n_k)} \cap P_{k+1}^{(n_{k+1})} \cap \dots \cap P_l^{(n_l)}$$

where the P_{k+j} $j = 1, \dots, l-k$ are further height 1 prime ideals of A. Let $I = P_{k+1}^{(n_{k+1})} \cap \dots \cap P_{l}^{(n_{l})}$. Then visibly $I \cap W = dA$ is principal. By Lemma 1, $I \cap W = IW$.

(2) Suppose the theorem has been established for $n - 1 (n \ge 1)$. Let W be an unmixed height 1 ideal of B_n and write $W = ZX_n^k$ where $Z: X_n B_n = Z$. If $Z = B_n$, the theorem follows trivially. If $Z \ne B_n$, then Z is also unmixed of height 1. Thus $Z + X_n B_n$ is unmixed of height 2 by Lemma 2. Let $Z_0 = Z + X_n B_n / X_n B_n$. Z_0 is unmixed of height 1 in B_{n-1} . By induction, there is an ideal I of A such that $IZ_0 = IB_{n-1} \cap Z_0$ is principal, say $IZ_0 = u_0(X_1, \dots, X_{n-1}) \cdot B_{n-1}$. Choose an element $u(X_1, \dots, X_{n-1}, X_n)$ in IZ whose leading coefficient when written as a power series in X_n is $u_0(X_1, \dots, X_{n-1})$.

Let $f(X_1, \dots, X_n)$ be any element of $IB_n \cap Z$. Then $f(X_1, \dots, X_{n-1}, 0)$ is in $IB_{n-1} \cap Z_0$. This implies that $f - g_0 u = X_n \cdot f_1$, where f_1 is in B_n and g_0 is in B_{n-1} . Since f and u are both in Z, f_1 is in Z: $X_n B_n = Z$. Clearly f_1 is in IB_n . So repeating, we can find an f_2 in B_n and a g_1 in B_{n-1} such that $f_1 - g_1 u = X_n \cdot f_2$. Continuing, we get that

$$f = u \boldsymbol{\cdot} \sum\limits_{i=0}^{\infty} g_i X_n^i$$

showing simultaneously that $IB_n \cap Z$ is principal and that $IB_n \cap Z = IZ$. To conclude, $IW = IZX_n^k B_n = u \cdot X_n^k B_n$ is principal. If v is in $IB \cap W$ from v in W it follows that $v = X^k \cdot v'$, where v' is in Z.

 $IB_n \cap W$, from v in W it follows that $v = X_n^k \cdot v'$, where v' is in Z. But then v' is in IB_n so v' is in $IB_n \cap Z = IZ$. This gives that $v = X_n^k v'$ is in $IZX_n^k = IW$, showing that $IB_n \cap W \subseteq IW$. The opposite inclusion is trivial, so the induction is complete.

COROLLARY 4. The map $C(A) \rightarrow C(A[[X_1, \dots, X_n]])$ of the class group of A into the class group of $A[[X_1, \dots, X_n]]$ is one-to-one onto if A is a regular noetherian domain.

Proof. Samuel [2, Prop. 1, p. 156 and Prop. 3, p. 138] has shown that the map is one-to-one. Theorem 3 proves that it is onto in the present case.

COROLLARY 5. Let A be a regular noetherian domain. Let M be a multiplicative set of $A[[X_1, \dots, X_n]]$. Then $C(A[[X_1, \dots, X_n]]_M)$ is a homomorphic image of C(A).

Proof. Samuel [2, Prop. 2, p. 157] shows that $C(R) \rightarrow C(R_s)$ is always onto. Corollary 4 supplies the rest.

COROLLARY 6. Let A be a regular noetherian domain. Let S denote the nonzero elements of A. Then $B' = A[[X_1, \dots, X_n]]_s$ is a U.F.D.

Proof. Let W be an unmixed height 1 ideal of $A[[X_1, \dots, X_n]]$. Then there is an unmixed height 1 ideal I of A such that IW is principal, say IW = (U). Then $UB' = IB' \cdot WB'$, but IB' = B', so WB' = UB' is principal.

REMARKS. (1) Samuel [2] has established the analogue of Corolary 4 for $A[X_1, \dots, X_n]$. This implies that Corollaries 5 and 6 also hold for $A[X_1, \dots, X_n]$, Corollary 6 of course being trivial.

(2) As originally submitted, this note established Theorem 3 and its corollaries only in the case that A is a Dedekind domain. In the original presentation, Corollary 6 was the main tool for the proofs of Corollaries 4 and 5. I wish to express my gratitude to the referee for bringing Samuel's results [2] to my attention and for suggesting the generalization to regular Noetherian domains. Lemma 1 is the only addition necessary to effect the generalization.

LUTHER CLABORN

References

1. P. Samuel, On unique factorization domains, Illinois J. 5 (1961), 1-17.

2. ____, Sur les anneaux factoriels, Bull. Soc. Math. France, 89 (1961), 155-173.

3. O. Zariski and P. Samuel, *Commutative Algebra*, Vol. II, Princeton, D. Van Nostrand Company (1960).

CORNELL COLLEGE