NOTE GENERALIZING A RESULT OF SAMUEL'S

Luther Claborn

Abstract

Let $C(A)$ denote the class group of a Krull domain A. Samuel has established (a) $C(A) \rightarrow C\left(A\left[\left[X_{1}, \cdots, X_{n}\right]\right]\right)$ is injective, and (b) $C(A) \rightarrow C\left(A\left[\left[X_{1}, \cdots, X_{n}\right]\right]\right)$ is bijective in Case A is a regular U.F.D. This note establishes that $C(A) \rightarrow$ $C\left(A\left[\left[X_{1}, \cdots, X_{n}\right]\right]\right)$ is bijective in Case A is a regular noetherian domain, thus adding a complement to (a) while generalizing (b). A corollary of this is that $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]_{S}$ is a U.F.D. if A is a regular Noetherian domain and S is the set of nonzero elements of A.

In [1], Samuel gave an example of a nonregular noetherian U.F.D. A such that $A[[X]]$ is not a U.F.D. In this case certainly, the mapping of the class group $C(A)$ into $C(A[[X]])$ is not onto (since a unique factorization domain is characterized by $C(A)=0$). In the same article, Samuel showed that $A[[X]]$ is a U.F.D. in Case A is a regular U.F.D. Here it is proved that $C(A) \rightarrow C\left(A\left[\left[X_{1}, \cdots, X_{n}\right]\right]\right)$ is one-to-one onto in Case A is a regular noetherian domain. The main tool is the technical Theorem 3 below, which shows that if W is unmixed of height 1 in $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$, then there is an unmixed height 1 ideal I of A such that $I W$ is principal. From this the result stated above follows directly.

Two lemmas are needed to facilitate the main results.
Lemma 1. Let B be a regular noetherian domain and let I and W be two unmixed height 1 ideals of B such that I and W have no associated prime ideals in common. Then $I W=I \cap W$.

Proof. For each M, B_{Δ} is a regular local Noetherian ring, hence a U.F.D., so $I B_{M}$ and $W B_{M}$ are both principal ideals. Since I and W have no associated prime ideals in common, neither do $I B_{M}$ and $W B_{M}$. It follows that $I B_{M} \cap W B_{M}=I B_{N} \cdot W B_{A}$. Thus for each $M,(I \cap W) B_{M}=$ $I B_{M} \cap W B_{M}=I B_{M} \cdot W B_{M}=(I W) B_{M}$. This establishes the lemma.

Lemma 2. Let B be a regular noetherian domain and Z be an unmixed height 1 ideal of B. If X is an element of B such that (α) X is in the Jacobson radical of B and (b) $Z: X B=Z$, then $Z+X B$ is unmixed of height 2.

Proof. Let P be an associated prime ideal of $Z+X B$. Then B_{P} is a regular local ring, hence is a U.F.D. [3, Thm., p. 406]. $Z B_{P}$ is

[^0]principal, so choose T in Z such that $Z B_{P}=T B_{P}$. Then $P B_{P}$ is an associated prime ideal of $(Z+X B) B_{P}=Z B_{P}+X B_{P}=T B_{P}+X B_{P}$. But $Z: X B=Z$ implies that $Z B_{P}: X B_{P}=Z B_{P}$, or $T B_{P}: X B_{P}=T B_{P}$, so $\{T, X\}$ is a prime sequence in B_{P}. This implies that height of $P B_{P}=2$ [3, Thm. 2, p. 397]. But height of $P=$ height of $P B_{P}$.

THEOREM 3. Let A be a regular noetherian domain and let $B_{n}=$ $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$. If W is any unmixed height 1 ideal of B_{n}, then there is an unmixed height 1 ideal I of A such that $I W$ is principal and $I W=I B_{n} \cap W$.

Proof. Let $B_{0}=A$. The theorem will be proved for $n \geqq 0$ by induction on n.
(1) $n=0$. W is an unmixed height 1 ideal of A. Since A is regular, it is integrally closed, so $W=P_{1}^{\left(n_{1}\right)} \cap \cdots \cap P_{k}^{\left(n_{k}\right)}$ where the $P_{i} i=1, \cdots, k$ are height 1 prime ideals and $P_{j}^{\left(n_{i}\right)} i=1, \cdots, k$ is the n_{i} th symbolic power of P_{i}. Choose d an element of A so that $V_{P_{i}}(d)=$ $n_{i} i=1, \cdots, k$ where $V_{P_{i}}$ denotes the discrete valuation determined by P_{i}. Then $d A$ can be written

$$
d A=P_{1}^{\left(n_{1}\right)} \cap \cdots \cap P_{k}^{\left(n_{k}\right)} \cap P_{k+1}^{\left(n_{k+1}\right)} \cap \cdots \cap P_{l}^{\left(n_{l}\right)}
$$

where the $P_{k+j} j=1, \cdots, l-k$ are further height 1 prime ideals of A. Let $I=P_{k+1}^{\left(n_{k+1)}\right.} \cap \cdots \cap P_{l}^{\left(n_{l}\right)}$. Then visibly $I \cap W=d A$ is principal. By Lemma 1, $I \cap W=I W$.
(2) Suppose the theorem has been established for $n-1(n \geqq 1)$. Let W be an unmixed height 1 ideal of B_{n} and write $W=Z X_{n}^{k}$ where $Z: X_{n} B_{n}=Z$. If $Z=B_{n}$, the theorem follows trivially. If $Z \neq B_{n}$, then Z is also unmixed of height 1 . Thus $Z+X_{n} B_{n}$ is unmixed of height 2 by Lemma 2. Let $Z_{0}=Z+X_{n} B_{n} / X_{n} B_{n}$. Z_{0} is unmixed of height 1 in B_{n-1}. By induction, there is an ideal I of A such that $I Z_{0}=I B_{n-1} \cap Z_{0}$ is principal, say $I Z_{0}=u_{0}\left(X_{1}, \cdots, X_{n-1}\right) \cdot B_{n-1}$. Choose an element $u\left(X_{1}, \cdots, X_{n-1}, X_{n}\right)$ in $I Z$ whose leading coefficient when written as a power series in X_{n} is $u_{0}\left(X_{1}, \cdots, X_{n-1}\right)$.

Let $f\left(X_{1}, \cdots, X_{n}\right)$ be any element of $I B_{n} \cap Z$. Then $f\left(X_{1}, \cdots, X_{n-1}, 0\right)$ is in $I B_{n-1} \cap Z_{0}$. This implies that $f-g_{0} u=X_{n} \cdot f_{1}$, where f_{1} is in B_{n} and g_{0} is in B_{n-1}. Since f and u are both in Z, f_{1} is in $Z: X_{n} B_{n}=Z$. Clearly f_{1} is in $I B_{n}$. So repeating, we can find an f_{2} in B_{n} and a g_{1} in B_{n-1} such that $f_{1}-g_{1} u=X_{n} \cdot f_{2}$. Continuing, we get that

$$
f=u \cdot \sum_{i=0}^{\infty} g_{i} X_{n}^{i}
$$

showing simultaneously that $I B_{n} \cap Z$ is principal and that $I B_{n} \cap Z=I Z$.
To conclude, $I W=I Z X_{n}^{k} B_{n}=u \cdot X_{n}^{k} B_{n}$ is principal. If v is in $I B_{n} \cap W$, from v in W it follows that $v=X_{n}^{k} \cdot v^{\prime}$, where v^{\prime} is in Z. But then v^{\prime} is in $I B_{n}$ so v^{\prime} is in $I B_{n} \cap Z=I Z$. This gives that $v=$ $X_{n}^{k} v^{\prime}$ is in $I Z X_{n}^{k}=I W$, showing that $I B_{n} \cap W \subseteq I W$. The opposite inclusion is trivial, so the induction is complete.

Corollary 4. The map $C(A) \rightarrow C\left(A\left[\left[X_{1}, \cdots, X_{n}\right]\right]\right)$ of the class group of A into the class group of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ is one-to-one onto if A is a regular noetherian domain.

Proof. Samuel [2, Prop. 1, p. 156 and Prop. 3, p. 138] has shown that the map is one-to-one. Theorem 3 proves that it is onto in the present case.

Corollary 5. Let A be a regular noetherian domain. Let M be a multiplicative set of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$. Then $C\left(A\left[\left[X_{1}, \cdots, X_{n}\right]\right]_{M}\right)$ is a homomorphic image of $C(A)$.

Proof. Samuel [2, Prop. 2, p. 157] shows that $C(R) \rightarrow C\left(R_{S}\right)$ is always onto. Corollary 4 supplies the rest.

Corollary 6. Let A be a regular noetherian domain. Let S denote the nonzero elements of A. Then $B^{\prime}=A\left[\left[X_{1}, \cdots, X_{n}\right]\right]_{s}$ is a U.F.D.

Proof. Let W be an unmixed height 1 ideal of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$. Then there is an unmixed height 1 ideal I of A such that $I W$ is principal, say $I W=(U)$. Then $U B^{\prime}=I B^{\prime} \cdot W B^{\prime}$, but $I B^{\prime}=B^{\prime}$, so $W B^{\prime}=U B^{\prime}$ is principal.

Remarks. (1) Samuel [2] has established the analogue of Corolary 4 for $A\left[X_{1}, \cdots, X_{n}\right]$. This implies that Corollaries 5 and 6 also hold for $A\left[X_{1}, \cdots, X_{n}\right]$, Corollary 6 of course being trivial.
(2) As originally submitted, this note established Theorem 3 and its corollaries only in the case that A is a Dedekind domain. In the original presentation, Corollary 6 was the main tool for the proofs of Corollaries 4 and 5. I wish to express my gratitude to the referee for bringing Samuel's results [2] to my attention and for suggesting the generalization to regular Noetherian domains. Lemma 1 is the only addition necessary to effect the generalization.

References

1. P. Samuel, On unique factorization domains, Illinois J. 5 (1961), 1-17.
2. - Sur les anneaux factoriels, Bull. Soc. Math. France, 89 (1961), 155-173.
3. O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Princeton, I). Van Nostrand Company (1960).

Cornell College

[^0]: Received July 17, 1964.

