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DEDEKIND DOMAINS: OVERRINGS AND
SEMI-PRIME ELEMENTS

LuTHER CLABORN

This paper develops two themes: (1) the relation of the
class group of a Dedekind domain A to that of an overring
B and (2) the question of finding a nonzero, nonunit element
2z of a Dedekind domain A such that A/rA is regular. We
obtain complete results in answer to the first question, giving
a corollary concerning the realization of certain groups as
class groups. We give various sufficient conditions in answer
to the second question; some in terms of the class group, others
concerning Dedekind domains which often arise in practice.

In §1 of the present paper, we study the class group of an over-
ring B of a Dedekind domain A and determine its class group in terms
of that of A. We generalize and also strengthen the results of §1 of
an earlier article [1]. Combining several results, we obtain an interest-
ing fact: if G is the class group of a Dedekind domain and G’ is a
homorphic image of G, then G’ is the class group of a suitable Dede-
kind domain.

Section 2 introduces the question of finding a nonunit « in a
Dedekind domain A for which A/xA is a direct sum of fields. Although
we obtain no definitive result, various sufficient conditions are given.
These require in part the developments of § 1. We also give examples
Dedekind domains with “pathological” class groups.

1. We state two well known propositions which we will need by
way of background.

ProrosiTioN 1.1. Let A be a Dedekind Domain with quotient field
F. Let B be a ring such that AC BC F. Then B= N A, over those
prime ideals P of A for which BC A,.

ProposiTioN 1.2. Let A be a Dedekind domain with quotient field
F. Let B be a ring such that AC BcC F. Then B is a Dedekind
domain.

ProposITION 1.3. Let A be a Dedekind domain with quotient field
F' and let B be a ring such that AC Bc F. The assignment I— IB
is a homomorphism of the set of fractionary ideals of A onto the set
of fractionary ideals of B.
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Proof. Let @ be a prime ideal of B and set P=Q N A. Then
PB = Q. The inclusion PBC Q is trivial, while B, = A, implies that
PB, = (PB)By = Q@B,. This yields PB = Q if we know that PB is not
contained in another prime ideal @ of B. But then @ would also lie
over P, which is not the case by Prop. 1.1.

If I is a fractionary ideal of A, then there is a d £ 0 in A such
that dIC A. But then clearly d(IB)C B, so IB is a fractionary ideal
of B. The mapping is clearly a homomorphism for multiplication. To
see that the mapping is onto, let @ be a prime ideal of B. We have
seen above that if P=@N A, then PB= Q. Thus the mapping is
onto the prime ideals of B, and these generate the group of fractionary
ideals of B.

COROLLARY 1.4. Let A be a Dedekind domain with quotient field
F and let B be a ring such that AC BcC F. The assignment
I— IB of fractionary ideals of A onto fractionary tdeals of B
induces a homomorphism + : I — IB of the class group of A onto that
of B.

Proof. It is sufficient to note that if I = xA, then IB = xB.

PROPOSITION 1.5. The kernel of « is generated by all P,, where
P, ranges over all prime ideals such that P,B = B.

Proof. Suppose P,B = B, and let I be a fractionary ideal such
that I = P,, i.e. I = aP, for xc F. Then IB = ¢P,B = B, so IB is
the identity.

Suppose now that I is a fractionary ideal of A such that IB = yB
for ye F. Then yI'B = B, showing that yI~* is a product of primes
P, of A for which P,B = B, and this establishes the assertion.

COROLLARY 1.6. Let A be a Dedekind domain and W = {P,} be
a collection of primes such that {P,} does not gemerate the full class
group of A. Then there are an infinite number of prime ideals of
A not in the set {P,}.

Proof. Let B =[\pew 4,. By Proposition 1.5, B is not a principal
ideal domain. Therefore there are an infinite number of prime ideals

of B, hence an infinite number of prime ideals of A which are not in W,

COROLLARY 1.7. Let A be a Dedekind domain with class group
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G. Let H be any subgroup of G. Then there is a Dedekind domain
whose class group 1s G/H.

Proof. In [1], we constructed the Dedekind domain A" = A[X]s,
where S denotes the set of all monic polynomials of A[X]. We showed
that A has the same class group as A [1, Prop. 2.3] and also that A
has a prime ideal in every class of the class group [1, Cor. 2-5].
Identify G and H at the class group and a subgroup of the class
group of A’. For each class of H, choose a prime P’ of A’ in the
given class. Let W denote the set {P’} so chosen. Then B = Ngew 4q
has class group G/H by Proposition 1.5.

2. DerFiNITION 2.1. Let A be a Dedekind domain. An element
2 of A which is not zero and not a unit will be said to be semi-prime
if A/xA is a regular ring.

REMARK 2.2, This condition is equivalent to (1) A/xA is a direct

sum of fields, or (2) xA is not contained in the square of any prime
ideal of A.

In what follows, sufficient conditions will be given for A to contain
semi-prime elements. If A has only a finite number of prime ideals,
then A is a principal domain and obviously A contains semi-prime
elements. This case (A has only a finite number of prime ideals) will
be excluded from the developments which follow.

ProposiTioN 2.3. If A has a finite class group, then there are
semi-prime elements in A.

Proof. Since we are assuming that A has infinitely many prime
ideals, there must be at least one class of the class group containing
an infinite set {P;} of the prime ideals. If » is the class number of
A, then P, :-- P, must be principal, say tA = P, --- P,. « is then a
semi-prime element.

ProposiTION 2.4. Let A be a Dedekind domain, and suppose that
every class of the class group (except possibly the principal class)
contains a prime ideal. Then A contains a semi-prime element.

Proof. If A is a principal ideal domain, then there is nothing to
prove. Otherwise let P be a nonprincipal prime ideal and let @ be a
prime in the class of P!, Then PQ is principal, say PQ = x4, and
2 will be semi-prime unless P = . We are therefore done unless
every class has exponent 2 and there is only one prime in each class.
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Choose P to represent one nonprincipal class and @ to represent a
different nonprincipal class. Choose a prime ideal R in the class of
PQ. Obviously R # P, R+ @, while PQR is principal. This gives a
semi-prime element in A.

We can actually prove a little more.

ProprosiTioN 2.5. Let A be a Dedekind domain, and suppose that
for every prime ideal P there is a prime of A in the class of P.
Then A contains a semi-prime element.

Proof. As in the proof Proposition 2.4 we may assume that every
class has exponent 2. The class group of A may therefore be regarded
as a vector space over the field with 2 elements. Since the prime ideals
of A generate the class group, we may choose a basis {P,} for the class
group consisting of classes of prime ideals. Let P be any prime ideal
of A and let P be its class. Let P= P, -.- P, be its representation
in terms of the given basis. Thus PP, --- P, is principal and we get
a semi-prime element unless P is in the set {P,}. We may assume
then that the set {P,} contains all prime ideals of A. But this con-
tradicts Corollary 1.6, and the proposition is established.

Before giving an example violating the hypothesis of Proposition
2.5, we present a lemma which will be useful in constructing such an
example and in a later proof.

LeMMA 2.6. Let F be a field of characteristic p such that
[FY”: F1=p. Let K be a separable extension of F'; then [K'": K= p.

Proof. Since K is a separable extension of F, we have K = F(K?*)
[3, Thm. 8, p. 69]. Thus K** = FY?(K). But F''* and K are linearly
disjoint [3, Thm. 35, p. 111], so we get [K'": K] = [F'""(K): K] =
[F: F] = p.

ExampLE 2.7. Let F' = Z/3Z(a) where Z denotes the integers
and o is indeterminant. Let F' be the separable closure of F' in its
algebraic closure. By Lemma 2.6, [F"**: F'] = 3. Consider the integral
closure A of F[X] in the field F(X, Y), where Y? =aX®+ X. It is
not difficult to show by a direct computation that A = F[X, Y], but
it is easier to notice that since the matrix of partial derivatives of
the equation Y® — aX®— X has always rank 1, F[X, Y] is regular
[2, Thm. 1. p. 201]. Over each prime ideal of F[X] there lies only
one prime ideal of A and for the relative degree f of the residue field
and the ramification index ¢ we have e =3, f=1or e=1, f =3 [3,
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Thm. 22, p. 289]. We show first that for all nonlinear prime elements
of F[X], we get e =1, f =38, so these remain principal. Let @ be a
prime ideal of F[X] generated by a nonlinear element; Q@ = X’ — ¢,
where ¢ is a power of 3 and t€ F. The residue field F[X]/(X? —t) is
F[t'"], while the residue field relative to A will be F[tY’, w], where
w® = at¥’ + tY*. Since [F'*:F] =3, we have F'*C F'[t'?], hence
a'®e F[t'"]. Thus at¥’ is a cube in F[tV]. But ¢! is not a cube in
F[t'"), so [F[t"", w]: F[t'?]] = 3. That is, f =3, ¢ = 1; thus we see
that nonlinear prime elements of F[X] remain prime in A.

For the linear primes X — ¢, teF, we get e =1, f =3 if at®* + ¢
is not a cube in F, while e=3, f=1 if at*+ ¢t is a cube in F.
Certainly we have the latter case at least for ¢ =0. Let P be a
prime ideal of A lying over a linear prime ideal of F[X] for which
e =3, f=1. Then P is not principal. For if P were principal, say
P = (c(X) + ei(X)Y + ¢(X)Y?) we would get

PP = (X)) + A X)aX® + X) + A X)X + 2aX* + X?) .

But P® = (x —t) for some tc F. Comparing degrees and using the
fact that 1, a, @ are independent over F® we get a contradiction.
Again let P be such a prime and suppose that the class of P? (which
is the clsss of P7') contains a prime Q. @ is certainly not principal ;
therefore @ lies over a linear prime ideal of F[X] and e =3, f=1
for @. We also get that P*Q* is principal, say

P = (d(X) + d(X)Y + do(X)Y?) .
Cubing, we get
(PP(@) = (@XX) + di(X )(@X* + X) + di(X)(@X° + 20X* + X?)).

On the left side of this equation we have a polynomial of degree 4,
while on the right we have a polynomial whose degree is divisible by
3, a contradiction.

ProrosiTiON 2.8. Let A be a principal ideal domain and let K be
a finite separable extension of the quotient field F' of A. Let B be
the integral closure of A in K and let C be a ring such that B C c K.
Then C contains a semi-prime element.,’

Proof. There are only a finite number of prime ideals @,, ---, @,
of B whose reduced ramification index is greater than 1 [3, Thm. 28,
p. 302]. Let P=mA be a prime ideal of A not lying under any
@, +-+,Q,. Then 7B is a product of distinct primes and is a semi-

1 The referee has kindly pointed out that this Proposition (and thus the following)
hold when B is not necessarily integrally closed.
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prime element in B. 7 will also be a semi-prime element in C unless
all prime ideals of B dividing = generate C. The result now follows
by Proposition 1.5 and Corollary 1.6.

ProposITION 2.9. Let A be the coordinate ring of an algebraic
curve over a perfect ground field F'. If A is a Dedekind domain, then
A contains a semi-prime element.

Proof. A= Fl|x, ---,2,]. Choose X in A such that A is integral
over F[X]; this is possible by [2, Thm. 1, p. 22]. Since A is inte-
grally closed in K = F(x,, -+, 2,), A is the integral closure of F[X]
in K. Let K’ be the separable closure of F'(X) in K, and let A’ be
the integral closure of F[X] in K. The conclusion holds for A’ by
Proposition 2.8.

Since [F(X)Y": F(X)] = p, we have [K"”: K'] = p by Lemma 2.6.
K is a purely inseparable extension of K’, so we may break the
extension from K’ to K into a chain of extensions each of which is
pure inseparable of exponent p. This chain can only be

K =KCcK"cK™c..-cK"™=K.

But then we have an isomorphism of K onto K’ given by z— 2™
which induces an isomorphim of A onto A’. Since A’ contained semi-
prime elements, so does A.
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