ON A CONJECTURE OF R. J. KOCH

L. E. WARD, JR.

Dedicated to Professor Alexander Doniphan Wallace on the occasion of his sixtieth birthday

R. J. Koch proved that if X is a compact, continuously partially ordered space and if W is an open subset of X which has no local minima, then each point of W is the supremum of an order arc which meets X-W. More recently he extended this result to quasi ordered spaces in which the sets $E(x) = \{y\colon x \le y \le x\}$ are assumed to be totally disconnected and W is a chain. He conjectured that the latter hypothesis is superfluous, and we show here that Koch's conjecture is correct.

As a corollary it follows that if X is a compact, continuously quasi ordered space with zero (i.e., a unique minimal element), if each set E(x) is totally disconnected, and if each set $L(x) = \{y: y \le x\}$ is connected, then X is arcwise connected.

We begin by recalling a few definitions (see [1], [2], [3] and [4]). We say that $X = (X, \Gamma)$ is a continuously quasi ordered space provided X is a Hausdorff space, Γ is a quasi order (= reflexive, transitive relation) on X and the graph of Γ is a closed subset of $X \times X$. We identify Γ with its graph and regard the symbols $x \le y$, and $x \Gamma y$ and $(x, y) \in \Gamma$ as synonyms.

A *chain* of a quasi ordered space X is a subset C of X such that $a \leq b$ or $b \leq a$ holds for each a and b in C. We also define

$$L(a, \Gamma) = \{x \in X : (x, a) \in \Gamma\}$$
,
 $M(a, \Gamma) = \{x \in X : (a, x) \in \Gamma\}$,
 $E(a, \Gamma) = L(a, \Gamma) \cap M(a, \Gamma)$,

for each $a \in X$. It is also convenient to define

$$I(a, b, \Gamma) = M(a, \Gamma) \cap L(b, \Gamma)$$
,

the closed "interval" from a to b. Where there is no ambiguity we shall write $(L(a) \text{ (resp., } M(a), E(a), I(a, b)) \text{ for } L(a, \Gamma), \text{ (resp., } M(a, \Gamma), E(a, \Gamma), I(a, b, \Gamma)).$ It is well known [3] that if X is a continuously quasi ordered space then the sets L(a), M(a), E(a) and I(a, b) are closed and, if X is compact, then X contains a minimal element, that is, an element m such that L(m) - E(m) is empty.

¹ Received September 2, 1964. Presented to the American Mathematical Society, November 14. 1964. This research was supported by a grant from the National Science Foundation.

A subset Y of the quasi ordered space (X, Γ) is said to have no local Γ -minima if, for each $x \in Y$ and each neighborhood U of x, the set

$$Y \cap U \cap L(x, \Gamma) - E(x, \Gamma)$$

is nonempty. This definition is due to Koch [2].

In case the relation Γ is a partial order, it is known that a connected chain joining two distinct points is an arc. (Here we use the term arc to describe a continuum with precisely two non-cutpoints.) An arc which is also a chain is termed an order arc.

The following two lemmas will be of later use.

LEMMA 1. Let X be a compact, continuously quasi-ordered space, let a and b be members of X, and let K be a closed subset of X such that $I(a, b) \cap K = 0$. Then there exist open sets U and V such that $a \in U$, $b \in V$ and for each $a' \in U$ and $b' \in V$ it follows that $I(a', b') \cap K = 0$.

Proof. Suppose, on the contrary, that for all neighborhoods U and V of a and b, respectively, there exists $a' \in U$ and $b' \in V$ such that $I(a'b') \cap K \neq 0$. Then

$$\Gamma \cap (\bar{U} \times K) \cap (K \times \bar{V}) \neq 0$$
.

These sets form a family of nonempty closed sets with the finite intersection property and hence their intersection is nonempty:

$$\Gamma \cap (\{a\} \times K) \cap (K \times \{b\}) \neq 0$$
,

that is to say, $I(a, b) \cap K \neq 0$, contrary to the hypothesis.

LEMMA 2. If R is an open subset of the compact, continuously quasi ordered space X, then the set

$$F = \{(a, b) \in X \times X : I(a, b) - R \neq 0\}$$

is closed.

Proof. If $(a, b) \in F$ then $I(a, b) \cap (X - R) = 0$. By Lemma 1, there are open sets U and V with $a \in U$ and $b \in V$ such that for each $a' \in U$ and $b' \in V$ it follows that $I(a', b') \subset R$, and hence $(U \times V) \cap F = 0$. Therefore, F is closed.

2. Koch's theorem for quasi ordered spaces. The crux of our proof is embodied in the following theorem.

Theorem. Let $X = (X, \Gamma)$ be a compact, continuously quasi

ordered space and let W be an open subset of X. If

- (i) $E(x, \Gamma)$ is totally disconnected for each $x \in X$,
- (ii) W has no local Γ -minima, then X admits a minimal quasi order which has a closed graph and satisfies (i) and (ii). Moreover, this minimal quasi order is a partial order.

Proof. Let $\{\Gamma_{\alpha}\}$ be a maximal nest of quasi orders on X such that each Γ_{α} has a closed graph and satisfies (i) and (ii), and let $\Gamma = \bigcap \{\Gamma_{\alpha}\}$. Clearly (X, Γ) is a continuously quasi ordered space and $E(x, \Gamma)$ is totally disconnected. We will show that W has no local Γ -minima.

Let $x \in W$ and let U be a neighborhood of x; since W is open and $E(x, \Gamma)$ is totally disconnected, we may assume that $U \subset W$ and that $E(x, \Gamma) \cap U$ is closed. Since X is normal there exist open sets V and R such that

$$E(x, \Gamma) \cap U \subset V \subset \bar{V} \subset U$$
,
 $X - U \subset R \subset \bar{R} \subset X - \bar{V}$.

For each α , the compact set $L(x, \Gamma_{\alpha}) \cap \overline{V}$ has a Γ_{α} -minimal element which we denote x_{α} . And since W has no local Γ_{α} -minimal there exists

$$y_{\alpha} \in (X - \bar{R}) \cap L(x_{\alpha}, \Gamma_{\alpha}) - E(x_{\alpha}, \Gamma_{\alpha})$$
.

It follows that

$$y_{\alpha} \in L(x, \Gamma_{\alpha}) - \bar{R} \cup \bar{V}$$

so that the sets $L(x, \Gamma_{\alpha}) - R \cup V$ are compact, nonempty and nested. Consequently there exists

$$y \in L(x, \Gamma) - R \cup V$$

and it is clear that $y \notin E(x, \Gamma)$. That is, W has no local Γ -minima.

Now suppose that Γ is not a partial order; then there exists a nondegenerate set $E(x, \Gamma)$. Since $E(x, \Gamma)$ is compact and totally disconnected, there exist nonempty, closed and disjoint sets A and B whose union is $E(x, \Gamma)$. Since X is normal there exist disjoint open sets P and Q such that $A \subset P$ and $B \subset Q$. Let

$$F = \{(a, b) : I(a, b) - P \cup Q \neq 0\}$$
.

By Lemma 2, F is a closed subset of $X \times X$ and hence

$$\Delta = \Gamma - ((P \times Q) - F)$$

is also closed. Since P and Q are disjoint, Δ is a reflexive relation on X.

We claim that Δ is a quasi order. For suppose $p \Delta q$ and $q \Delta r$ but $(p, r) \in (X \times X) - \Delta$. Now $(p, r) \in \Gamma$ so that $(p, r) \in (P \times Q) - F$ and hence $q \in P$ or $q \in Q$. If $q \in P$ then, since $r \in Q$ and $(q, r) \in \Delta$ we infer that $(q, r) \in F$ and thus $I(q, r) - P \cup Q \neq 0$. But $I(q, r) \subset I(p, r)$ and hence $I(p, r) - P \cup Q \neq 0$, contrary to the fact that $(p, r) \in (P \times Q) - F$. A similar contradiction ensues if $q \in Q$, and thus Δ is a quasi order.

Since $\Delta \subset \Gamma$ it is obvious that each set $E(x, \Delta)$ is totally disconnected. Now suppose $z \in W$ and that O is a neighborhood of z, $O \subset W$. If $z \in W - Q$ then

$$L(z, \Delta) = L(z, \Gamma)$$

and hence there exists

$$y \in O \cap L(z, \Delta) - E(z, \Delta)$$
.

And if $z \in Q$, the fact that W has no local Γ -minima insures the existence of

$$y \in O \cap Q \cap L(z, \Gamma) - E(z, \Gamma)$$
.

But $y \notin P$ implies $y \in L(z, \Delta)$, so that in any event W has no local Δ -minima.

Finally we note that Δ contradicts the minimality of Γ , for if $a \in A$ and $b \in B$ then $(a, b) \in \Gamma - \Delta$. Therefore Γ is a partial order.

COROLLARY 1. Let X be a compact, continuously quasi ordered space and let W be an open subset of X. If conditions (i) and (ii) of the theorem are satisfied, then each point of W is the supremum of an order arc which meets X-W.

Proof. By the preceding theorem we may assume that the quasi order is a partial order. Thus Koch's theorem for partially ordered spaces applies.

An element 0 of the quasi ordered space X is a zero of X provided

$$0 = E(0) = \bigcap \{L(x) : x \in X\}$$
.

COROLLARY 2. If X is a compact, continuously quasi ordered space with zero, if each set E(x) is totally disconnected and if each set L(x) is connected, then X is arcwise connected.

Proof. Let $W = X - \{0\}$; the connectedness of the sets L(x) guarantees that W has no local minima and therefore each point of W lies in arc containing 0.

Following Koch we say that a subset C of the quasi ordered space X is biconnected if C is connected and if each of the sets $E(x) \cap C$ is

connected.

COROLLARY 3. Let X be a compact, continuously quasi ordered space and suppose there exists $a \in X$ such that

$$E(a) = \bigcap \{L(x) : x \in X\}$$
.

If X - E(a) has no local minima then each element of X can be joined to E(a) by a biconnected chain.

Proof. Let Z denote the compact, continuously partially ordered space which is obtained when E(x) is identified with a point, for each $x \in X$. Let $\phi(X) = Z$ be the canonical quotient map and let

$$X \xrightarrow{m} Y \xrightarrow{l} Z$$

be the monotone-light factorization of ϕ . It is easy to see that Y inherits a quasi order from Z which has a closed graph and is such that E(y) is totally disconnected, for each $y \in Y$. Moreover, Y-m(E(a)) has no local minima and hence, by the theorem, there are order arcs joining points of Y to m(E(a)). Since m is monotone, the corollary follows at once.

REFERENCES

- 1. R. J. Koch, Arcs in partially ordered spaces, Pacific J. Math. 9 (1959), 723-728.
- 2. ——, Connected chains in quasi ordered spaces, Fund. Math. 56 (1965), 245-249.
- 3. L. E. Ward, Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. 5 (1954), 144-161.
- 4. ——, Concerning Koch's theorem on the existence of arcs, Pacific J. Math. 15 (1965), 347-355.

University of Oregon