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SOME RESULTS IN THE LOCATION OF
ZEROS OF POLYNOMIALS

ZALMAN RUBINSTEIN

Three out of the four theorems proved in this paper deal
with the location of the zeros of a polynomial P(z) whose
zeros zit i — 1, 2, , n satisfy the conditions \zι\ ^ 1, and
Σ?=i s? = 0 for p = 1, 2, , I. One of those estimates is

Pf'{z) P'(z)
P'{z) P(z)

l + l
I I + l — 1)

for \z I > 1.
The fourth result is of a different nature. It refines, in

particular, a theorem due to Enestrδm and Kakeya. It is
shown that no zero of the polynomial h(z) — Σ/c=o ̂ kZk lies in
the disk

z — + 1 '* + D
where β = max|Z|=i | h'(z) l/max^^i | h(z) |, and max|2|=i | h(z) \ =
\Ke*°)\.

We generalize and strengthen certain well-known results due to
Biernacki [1], Dieudonne [3 ? 5], and Kakeya [8].

We use repeatedly a recent result due to Walsh which is a gener-
alized form of an earlier theorem of his [10]. It concerns the case
in which all the zeros of a polynomial lie within a certain distance of
their centroid.

THEOREM 1. Let h(z) = ^l=obkz
k(bk complex),

max I h'(z) |
β=

max I h(z) \
11

max,β|=11 h(z) \ - \ h(eiθ) |, and let Cβ be the disc | z - βe~iθ/(β + 1) | <
II(β + 1), then no zero of h lies in Cβ.

Proof. Consider the function F(z) = e-ίφh(zeίθ)/m, where h(eίθ) =
meiφ. Then F satisfies the conditions, | F(z) | < 1 in 1 z ] < 1, F(l) = 1.
Let xn—> 1 as n-* oo, 0 < xn < 1, and let a = l im^^ [(1 - | F(xn) |)/(1 - xn)]m

Then a ^ \F'(l)\. It follows readily (see [2] p. 57) that

lim [(1 - I F{xn) |)/(1 - xn)] = F'(l) = ei[θ^hr{eiθ)jm = | h\eίθ) \/m .
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We apply now the following result due to Julia [2]: If a function /
is regular in the unit disc and \f(z) | < 1 for | z \ < 1, and there exists
a sequence of number zu , zn, such that limκ^«, zn = 1, limTC^ f(zn) =
1, l i π w [(1 - I f(z%) |)/(1 -\zn\)] = a then

(1) ll^mi^a^ll f α r l . K l .

In (1), set f(z) = F(z), a = | h'(eiθ) \/m. If F(z0) = 0 and | z 0 1 < 1, then
(1 — I z01

2)/| 1 — z01
2 ^ a, which is equivalent to e~ίθz0 g C α . Since oc ̂  β,

it follows t h a t C β c C f f ; hence e~ίθzoίCβ, which concludes the proof.

COROLLARY 1. Leth(z)=Σi=0bkz
k

fbk>0.
no zero is in the disc

Σ kbk

z — —
Σ Φ + l)δ*

1% particular, if bk is a strictly increasing sequence, then all the
zeros of h(z) lie in the complement of Cβ with respect to the unit
disc. This makes more precise the theorem of Enestrom and Kakeya
[8].

In a recent paper, Tchakaloff [9] (see also [7]) has proved that if
all the zeros of the polynomials

( 2 ) Pk(z) = a{k)zn + + a(

Q

k)(a{

n

k) > 0, k = 1, , m)

lie in the unit disc and if Ak > 0(k — 1, , m), then all the zeros of
the polynomial ΣΓ=i AkPk(z) lie in the disc | z \ ̂  1/sin (π/2n), and that
this is the best possible result. We prove a more precise result in
the case where there is more information about the zeros of Pk(z).

THEOREM 2. Let the polynomials Pk(z)(k = 1, , m) of the form
(2) have all their zeros zik(i = 1, , n; k — 1, , m) in the unit
disc and let Ak > 0(k = 1, , m). Suppose that Σ?=i3& = ° for

p = 1, , l(k — 1, , m). TΛew αίϊ the zeros of the polynomial
ΣE=i4feί*(sO ίίe m tfee disc | z \ S. (sinπ/2^)"1/(Z+1). For values of the
form n=(lJrl)r, the exact bound does not exceed (sin (ττ(

Proof. Without loss of generality we may assume that a{

u

k) = 1.
By a recent result due to Walsh [11] the polynomials Pk satisfy the
equality Pk(z) = (z — φk(z))n, where | <pk(z) \ < \ z \~ι for [ z | > 1. Let
ζ be a point outside the unit disc a t which the circle \z\ — \ζ\~ι



SOME RESULTS IN THE LOCATION OF ZEROS OF POLYNOMIALS 1393

s u b t e n d s a n a n g l e Ψ. On t h e circle \z\ — \Z\~ι t h e r e e x i s t s a point
α, s u c h t h a t 0 ^ a r g ((ζ — φk)/(ζ — a)) ̂  Ψ, a n d

(3) Σ4Λ(C) = (C-α)\

One deduces from equation (3) that

ζ — (X

0 if ¥ < Z- .
n

For Ψ — π/n, sin (π/2n) = | ζ | ~ u + 1 ) . This proves the first part of the
theorem. The example A, = A2 = 1, m = 2, P^g;) = (zι+1 + /^)r, P2(«) =
(zι+1 + /^)r, where ^ = i exp (iπ/2n), proves the second part of the
theorem, since in this case the polynomial P^z) + P2(z) has the zero

z —
—1/(2 + 1)

Dieudonne has proved [3], (for a different proof see [4]), that if the
polynomial P has all its zeros in the closed unit disc, then

( 4 ) P'(z) _ P"{z)
P{z) P\z)

for z I > 1 .

We give a short proof of (4), which at the same time yields a stronger
inequality in the case where the centroid of the zeros of P is at the
origin.

THEOREM 3. // all the zeros z{(i — 1, , n) of the polynomial
P(z) lie in the closed unit disc and if ΣΓ=i^? = 0(fc = 1, , I), then
for I z I > 1 the following sharp estimate holds

( 5 )
P"(z) P'(z) _ 1 _
P'(z) P(z) z

l + l

Inequality (5) holds also for I = 0, in which case the second condition
imposed on the z{ is to be omitted.

Proof. By a recent result due to Walsh [12], there exists a
function φ(z), | φ(z) \ < \z \~ι, such that for | z | > 1

( 6 ) 11P'(z) =

P(Z) Z - φ{z)

An estimate due to Goluzin [6], applied to φ yields the inequality

- 1
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for I z I > 1. Since by (6)

(8) P"(Z) __ P\z) _ 1 _ φ(z) ~ Zφ'jz)
P\Z) P(Z) Z z(z-φ(z))

is follows, using (7), that

1 Γ \Φ)\
\z I V\z I -P'(z) P(z) z

It remains to prove the inequality

,
φ(z) I I z r - 1 i z | -

a? i to* 1 - x2 < I + 1
i ; α - a; α2' - 1 α - a; ~ aι+1 - 1

for all 0 ^ a; ^ α~z, and a > 1.

If we denote the left hand side of (9) by /(a?), then f{a~ι) =
(ϊ + l )/ (α m — 1), and /'(a?) ^ 0 provided the function g(x) — an+1 — a +
iα*(#2 — 2αα; + 1) is nonnegative. Since g\x) ^ 0 it is enough to show
that h(a) = g(arι) is nonnegative. Indeed one verifies that h(l) = 0
and fe'(α) > 0 for all a > 1.

The particular case P(») = 2n — 1, i = n — 1, shows that the bound
(5) cannot, in general, be improved.

The result due to Dieudonne follows from (7) and (8).

Finally, we discuss a problem raised by Biernacki [1], which was
also treated by Dieudonne [5], namely that of determining a region
containing all but, possibly, one zero of the polynomial aP(z) + P'{z)
for all complex α. Each of the above authors has proved that if all
the zeros of P lie in the unit disc, then the concentric disc of radius
21/2 is the smallest concentric disc that has the above mentioned proporty
Assuming additional information about the zeros of P, we obtain a
smaller disc for all but possibly I + 1 zeros of the polynomial zιP(z) +
aP'{z).

THEOREM 4. If all the zeros z{(i — 1, •••, n) of the polynomial
P(z) lie in the closed unit disc and if Σ?=1Zt = 0(fc = 1, •••, ί), then
for all complex a at least n — 1 zeros of the polynomial zιP(z) + aPr(z)
lie in the disc \z\^ 21/(2(ί+1)).

Proof. Proceeding as in the proof of Theorem 3, we have

P'(z) zι _ n
P(z) a z — φ(z)
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satisfied by any zero of the polynomial zιP + aPr which exceeds 1 in
modulus. Set g(z) = z~ιφ(l/z), w = zι+1 and h(w) = g(z). Then | g{z) \ < 1
if I z I < 1 and

(10) g(z) = - i - + an
zL+

(11) h(w) = — + an .
w

If for some a the polynomial zιP + aP' has at most n — 2 zeros in
the disc \z\^ 21/(2(Z+1)), then equation (10) has at least I + 2 roots in
the disc \z\ < 2~1/(2(ί+1)), and hence equation (11) has at least two roots
in the disc | w | < 2~1/2. This was proved to be impossible in [5]

Theorem 4 is sharp for all I and n of the form n — 2k(l + 1), k —
1, 2, •••. The upper limit is attained by the zeros of the polynomial

P(z) = (z2l+2 - 2ll2zι+1 + i)»ιw+») .
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