SOME TOPOLOGICAL PROPERTIES OF CERTAIN SPACES OF DIFFERENTIABLE HOMEOMORPHISMS OF DISKS AND SPHERES

Jack M. Robertson

Let $D_{n}=\left\{x \in E_{n}:|x| \leqq 1\right\}$, and $S^{n}=\left\{x \in E_{n+1}:|x|=1\right\}$. We denote by H_{n} the space of C^{∞} homeomorphisms of D_{n} onto itself leaving a neighborhood of the boundary fixed. Let K_{n} be the space of C^{∞} orientation preserving homeomorphisms of S^{n} onto itself. It is not required that maps in the two spaces have differentiable inverses. In both space the C^{k} topology is used.

The purpose of this paper is to establish the following two theorems:

Theorem 1. H_{n} is contractible to a point for any n.
Theorem 2. K_{n} is arcwise connected for any n.
Notation. $\quad f(x)=\left(f_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots, f_{n}\left(x_{1}, \cdots, x_{n}\right)\right)$ where $x=$ $\left(x_{1}, \cdots, x_{n}\right)$, or simply $f(x)$ will denote mappings of E_{n} into E_{n}. The shorter form will be used where the meaning is clear.

The topological analog of Theorem 1 is established by a mapping described by Alexander (1923) [1]. Smale (1959) [4] proved the corresponding result for $n=2$ in the space of diffeomorphisms on D_{n} leaving a neighborhood of the boundary fixed. Kneser (1926)[3] proved that the space of all orientation preserving homeomorphisms of S^{2} onto S^{2} has the rotation group as a deformation retract, while Smale gave the corresponding result for the space of orientation preserving diffeomorphisms on S^{2} in the paper referred to above. Fisher's work (1960) [2] gives the analog of Theorem 2 in the topological case for $n=3$.
II. Proof of Theorem 1. Let $m(v)$ be a mapping on I (the unit interval $[0,1]$) with the following properties:
(a) $m(v) \in C^{\infty}$;
(b) $m^{\prime}(v)>0$ on $\left(0, \frac{3}{4}\right)$;
(c) $m(v)=1$ on $\left(\frac{3}{4}, 1\right]$;
(d) $m(v)=e^{-(1 / r)}$ on $\left(0, \frac{1}{4}\right)$;

[^0](e) $m(0)=0$.

Now define $k(v, t)=\left\{\begin{array}{lc}1-\left(1-e^{-(1 / t)+1}\right) & (1-m(v)) t \neq 0, \\ m(v) & t=0,\end{array}\right.$ on $I \times I$. We see that:
($\left.a^{\prime}\right) \quad k(v, t) \in C^{\infty}$ on $I \times I$;
($\left.\mathrm{b}^{\prime}\right) k(v, t)$ is monotonic in v for each $t \in I$;
(c') $k(v, t)=1$ for $v \geqq \frac{3}{4}$ for all $t \in I$;
(d') $k(v, 1)=1$ for all $v \in I$;
($\left.\mathrm{e}^{\prime}\right) \quad k(v, 0)=m(v)$;
($\left.\mathrm{f}^{\prime}\right) \quad 0 \leqq k(v, t) \leqq 1$ on $I \times I$.
The mapping

$$
\begin{equation*}
x \rightarrow k\left(|x|^{2}, t\right) x \tag{1}
\end{equation*}
$$

is in H_{n} for each t. At $t=1$ the mapping is the identity, while at $t=0$ the mapping has all partial derivatives of all orders zero at the origin.

The mapping given by Alexander was defined as follows:

$$
f_{t}(x)=\left\{\begin{array}{l}
t f\left(\frac{x}{t}\right), t \neq 0\left(f \text { extended to be the identity outside } D_{n}\right) \\
x, t=0
\end{array}\right.
$$

In the C^{k} topology the mapping of $H_{n} \times I \rightarrow H_{n}$ defined by $(f, t) \rightarrow f_{t}$ (the Alexander map) will not be continuous for $k \geqq 1$. In general, $\lim _{t \rightarrow 0} f_{t} \neq f_{0}$ because at the origin the derivatives of f_{t} do not converge to the derivatives of the identity mapping. However, by composing the Alexander mapping with (1), we obtain the mapping required in Theorem 1. Thus define

$$
h: H_{n} \times I \rightarrow H_{n}
$$

by

$$
h(f, t)=k f_{t}
$$

where

$$
k f_{t}(x)=k\left(\left|f_{t}(x)\right|^{2}, t\right) f_{t}(x)
$$

In particular $h(f, 1)=f$ for all $f \in H_{n}$, while $h(f, 0)$ is the mapping given by (1). Because of the form of map (1) at the origin, all derivatives of all orders of $k f_{t}$ approach zero there and the problem mentioned above is removed. The argument that h is continuous is tedious but straightforward.
III. Local straightening of mappings in \boldsymbol{E}_{n}. The proof of Theorem 2 requires some local straightening procedures for maps in E_{n} which we now give. For this purpose let L be the space of C^{∞} orientation preserving homeomorphisms mapping $U_{r}=\left\{x \in E_{n}:|x| \leqq r\right\}$ into E_{n}, leaving the origin fixed and topologized by the C^{k} topology. We will use $J(f)_{p}$ to represent the Jacobian matrix of f evaluated at $p \in U_{r}$, and $\left|J(f)_{p}\right|$ the corresponding determinant.

Lemma 1. Suppose $f \in L$ with $J(f)_{p}=\left(a_{i j}\right), p$ the origin and $\left(a_{i j}\right)$ nonsingular. Then there is a path $f_{t} \in L$ from f to g, where g agrees with f in a neighborhood of the boundary of U_{r} and is the linear map with Jacobian $\left(\alpha_{i j}\right)$ in a neighborhood of the origin. Also for all t, f_{t} agrees with f in a neighborhood of the boundary of U_{r}.

Proof. Let $\sigma(v)$ be a mapping on $[0, \infty)$ with the following properties:
(a) $\sigma(v) \in C^{\infty}$;
(b) $\sigma(v)=1$ on $[0, \alpha), \alpha>0$;
(c) $\sigma(v)=0$ for $v \geqq 1$;
(d) $\sigma^{\prime}(v) \leqq 0$ for $v \in[0, \infty)$.

We see that $\left|\sigma^{\prime}(v)\right|<M$ for some M. Let $c<r$ be chosen so that for $x \in U_{c}$,
(i) $\left|a_{i j}-\frac{\partial f_{i}\left(x_{1}, \cdots, x_{n}\right)}{\partial x_{j}}\right|\langle\varepsilon, \varepsilon\rangle 0 ; i=1, \cdots, n ; j=1,2, \cdots, n$.

Then for $x \in U_{c}$,
(ii) $\left|a_{i 1} x_{1}+\cdots+a_{i n} x_{n}-f_{i}\left(x_{1}, \cdots, x_{n}\right)\right|<n \varepsilon c$ for $i=1,2, \cdots, n$. Now define

$$
\begin{aligned}
f_{t}\left(x_{1}, \cdots, x_{n}\right) & =\left(f_{1}\left(x_{1}, \cdots, x_{n}\right)\right. \\
& +t \sigma\left(\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{c^{2}}\right)\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}\right. \\
& \left.-f_{1}\left(x_{1}, \cdots, x_{n}\right)\right), \cdots, f_{n}\left(x_{1}, \cdots, x_{n}\right) \\
& +t \sigma\left(\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{c^{2}}\right)\left(a_{n 1} x_{1}+\cdots+a_{n n} x_{n}\right. \\
& \left.\left.-f_{n}\left(x_{1}, \cdots, x_{n}\right)\right)\right)
\end{aligned}
$$

At $t=0, f_{t}=f$; at $t=1, f_{t}$ is linear with Jacobian $\left(\alpha_{i j}\right)$ inside a neighborhood of the origin; for all t, f_{t} agrees with f outside U_{c}. The element in the (i, j) th position of $J\left(f_{t}\right)$ differs from $a_{i j}$ by at most

$$
\left|\alpha_{i j}-\frac{\partial f_{i}\left(x_{1}, \cdots, x_{n}\right)}{\partial x_{j}}\right|
$$

$$
\begin{aligned}
& +\left|\frac{2 x_{j} t}{c^{2}} \sigma^{\prime}\left(\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{c^{2}}\right)\left(\alpha_{i 1} x_{1}+\cdots+\alpha_{i n} x_{n}-f_{i}\left(x_{1}, \cdots, x_{n}\right)\right)\right| \\
& +\left|t \sigma\left(\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{c^{2}}\right)\left(a_{i j}-\frac{\partial f_{i}\left(x_{1}, \cdots, x_{n}\right)}{\partial x_{j}}\right)\right|
\end{aligned}
$$

On $U_{c},\left|x_{j}\right| \leqq c$ so that the expression is bounded by $\varepsilon+(2 / c) M n \varepsilon c+$ $\varepsilon=(2+2 M n) \varepsilon$. Hence by choosing ε sufficiently small, $\left|J\left(f_{t}\right)\right|$ will remain positive on U_{c} for all t so that f_{t} will be a homeomorphism on U_{r}. Continuity of the path f_{t} in L is immediate from the definition of f_{t}.

Lemma 2. Let $f\left(x_{1}, \cdots, x_{n}\right)=\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}, a_{22} x_{2}+\cdots+a_{2 n} x_{n}, \cdots\right.$, $\left.a_{n n} x_{n}\right) \in L$ with $a_{11} \cdots a_{n n}>0$. Then there is a path $f_{t} \in L$ such that $a \leqq t \leqq b, f_{t}\left(x_{1}, \cdots, x_{n}\right)=f\left(x_{1}, \cdots, x_{n}\right)$ at $t=a, f_{t}\left(x_{1}, \cdots, x_{n}\right)=\left(a_{11} x_{1}, \cdots\right.$, $a_{n n} x_{n}$) in a neighborhood of the origin at $t=b$, and $f_{t}\left(x_{1}, \cdots, x_{n}\right)=$ $f\left(x_{1}, \cdots, x_{n}\right)$ in a neighborhood of the boundary of U_{r} for each t.

Proof. We construct the path in $n-1$ arcs as follows. Choose a positive c_{1} less than r. Let $k_{1}>1$ be sufficiently large so that whenever

$$
x_{1}^{2}+k_{1}^{2} x_{2}^{2}+\cdots+k_{1}^{2} x_{n}^{2} \leqq c_{1}^{2},
$$

we have $\left|x_{i}\right|<\varepsilon, i=2,3, \cdots, n$
Now define

$$
\begin{aligned}
f_{t}\left(x_{1}, \cdots, x_{n}\right)= & \left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}-t \sigma\left(\frac{x_{1}^{2}+k_{1}^{2} x_{2}^{2}+\cdots+k_{1}^{2} x_{n}^{2}}{c_{1}^{2}}\right) .\right. \\
& \left.\left(a_{12} x_{2}+\cdots+a_{2 n} x_{n}\right), a_{22} x_{2}+\cdots+a_{2 n} x_{n}, \cdots, a_{n n} x_{n}\right)
\end{aligned}
$$

Then $f_{t}=f$ when $t=0$ and f_{t} at $t=1$ is the mapping

$$
\left(a_{11} x_{1}, a_{22} x_{2}+\cdots+a_{2 n} x_{n}, \cdots, a_{n n} x_{n}\right)
$$

in a neighborhood of the origin. For each $t, f_{t}=f$ outside

$$
x_{1}^{2}+k_{1}^{2} x_{2}^{2}+\cdots+k_{1}^{2} x_{n}^{2}=c_{1}^{2}
$$

so that $f_{t}=f$ outside $U_{c_{1}}$. Also $J\left(f_{t}\right)$ in the $(1,1)$ position differs from a_{11} by

$$
\left|t \frac{2 x_{1}}{c_{1}^{2}} \sigma^{\prime}\left(\frac{x_{1}^{2}+k_{1}^{2} x_{2}^{2}+\cdots+k_{1}^{2} x_{n}^{2}}{c_{1}^{2}}\right)\left(a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right)\right| .
$$

This expression is zero outside the ellipsoid $x_{1}^{2}+k_{1}^{2} x_{2}^{2}+\cdots+k_{1}^{2} x_{n}^{2}=c_{1}^{2}$. Inside this, $\left|x_{1}\right|<c_{1}$ so if $\left|a_{i j}\right|<M_{1}, j=2, \cdots, n$, and M is a bound on the derivative of $\sigma(v)$, the expression is at most $1 \cdot\left(2 / c_{1}\right) \cdot M(n-1)$. $M_{1} \cdot \varepsilon$. This expression is small whenever ε is small (nothing that ε
can be chosen independent of $\left.c_{1}\right)$. Thus by choosing ε small, $\left|J\left(f_{t}\right)\right|$ will remain positive inside the ellipsoid and f_{t} will be a homeomorphism for each t.

Thus we assume $f \in L$ and for $c_{i}>0$ with $|x| \leqq c_{i}<r$ the mapping is given by

$$
\begin{aligned}
& \left(a_{11} x_{1}, \cdots, a_{i-1, i-1} x_{i-1}, a_{i i} x_{i}+a_{i, i+1} x_{i+1}+\cdots+a_{i n} x_{n}\right. \\
& \left.a_{i+1, i+1} x_{i+1}+\cdots+a_{i+1, n} x_{n}, \cdots, a_{n n} x_{n}\right)
\end{aligned}
$$

Let $k_{i}>1$ be sufficiently large so that whenever $x_{1}^{2}+\cdots+x_{i}^{2}+$ $k_{i}^{2} x_{i+1}^{2}+\cdots+k_{i}^{2} x_{n}^{2} \leqq c_{i}^{2}$, it follows that $\left|x_{j}\right|<\varepsilon, j=i+1, \cdots, n$. Define for $x \in U_{r}$

$$
\begin{aligned}
& f_{t}\left(x_{1}, \cdots, x_{n}\right) \\
& \quad=\left(f_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots, f_{i-1}\left(x_{1}, \cdots, x_{n}\right), f_{i}\left(x_{1}, \cdots, x_{n}\right)\right. \\
& - \\
& \quad t \sigma\left(\frac{x_{1}^{2}+\cdots+x_{i}^{2}+k_{i}^{2} x_{i+1}^{2}+\cdots+k_{i}^{2} x_{n}^{2}}{c_{i}^{2}}\right)\left(\alpha_{i, i+1} x_{i+1}+\cdots+\alpha_{i n} x_{n}\right) \\
& \left.\quad f_{i+1}\left(x_{1}, \cdots, x_{n}\right), \cdots, f_{n}\left(x_{1}, \cdots, x_{n}\right)\right) .
\end{aligned}
$$

For the proper choice of ε, we can repeat the argument given above.
Lemma 3. Suppose $f\left(x_{1}, \cdots, x_{n}\right)=\left(a_{1} x_{1}, \cdots, a_{n} x_{n}\right) \in L, a_{i}>0$ for all i. There is a path f_{t} in L from f to a mapping which is the identity in a neighborhood of the origin, and $f_{t}=f$ for all t in a neighborhood of the boundary of U_{r}.

Proof. First, if $a>0$ let $p(x)$ be a function on $(-\infty, \infty)$ with: (a) $p(x) \in C^{\infty}$;
(b) $p^{\prime}(x)>0$ on $(-\infty, \infty)$;
(c) $p(x)=x$ in a neighborhood of the origin;
(d) $p(x)=a x$ outside $(-s+\alpha, s-\alpha), \alpha>0$.

We again construct the arc in segments. Choose $s_{1}<r$ and define

$$
\begin{aligned}
& f_{t}\left(x_{1}, \cdots, x_{n}\right) \\
& \quad=\left(a_{1} x_{1}+t \sigma\left(\frac{x_{2}^{2}+\cdots+x_{n}^{2}}{s_{1}^{2}}\right)\left(p_{1}\left(x_{1}\right)-a_{1} x_{1}\right), a_{2} x_{2}, \cdots, a_{n} x_{n}\right)
\end{aligned}
$$

where σ is defined in Lemma 1 and $p_{1}\left(x_{1}\right)$ satisfies properties $(\alpha)-(\mathrm{d})$ above for $s=s_{1}$. At $t=0, f_{t}=f$; at $t=1$ in a neighborhood of the origin f_{t} is the mapping $\left(x_{1}, a_{2} x_{2}, \cdots, a_{n} x_{n}\right)$. Also for all $t \in I, f_{t}=f$ outside the cylinder $x_{2}^{2}+\cdots+x_{n}^{2} \leqq s_{1}^{2},-s_{1} \leqq x_{1} \leqq s_{1} . J\left(f_{t}\right)$ in the $(1,1)$ position is

$$
\left[1-t \sigma\left(\frac{x_{2}^{2}+\cdots+x_{n}^{2}}{s_{1}^{2}}\right)\right] a_{1}+t \sigma\left(\frac{x_{2}^{2}+\cdots+x_{n}^{2}}{s_{1}^{2}}\right) p_{1}^{\prime}\left(x_{1}\right),
$$

which is positive for all t on the cylinder given above. Hence f_{t} is a homeomorphism for each t.

Now there is an s_{2} with $0<s_{2}<s_{1}$ so that on the cylinder $x_{1}^{2}+x_{3}^{2}+\cdots+x_{n}^{2} \leqq s_{2}^{2},-s_{2} \leqq x_{2} \leqq s_{2}$ the mapping is given by $\left(x_{1} a_{2} x_{2}, \cdots, a_{n} x_{n}\right)$. On this cylinder define

$$
\begin{aligned}
f_{t}\left(x_{1}, \cdots, x_{n}\right)= & \left(x_{1}, a_{2} x_{2}+t \sigma\left(\frac{x_{1}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}}{s_{2}^{2}}\right)\right. \\
& \left.\times\left(p_{2}\left(x_{2}\right)-a_{2} x_{2}\right), a_{3} x_{3}, \cdots, a_{n} x_{n}\right)
\end{aligned}
$$

Here $p_{2}\left(x_{2}\right)$ satisfies conditions (a)-(d) given above with $s=s_{2}$ 。 Repeating the process we complete the desired path.
IV. Proof of Theorem 2. The proof now consists of fitting together properly the mappings already constructed.

Let $f \in K_{n}$. Then there is a point p on S^{n} so that f has nonsingular Jacobian at that point. Let $\left(0_{1}, P_{1}\right)$ be a coordinate neighborhood where $0_{1}=S^{n}-p_{1}\left(p_{1}\right.$ antipodal to $\left.p\right)$ and P_{1} an associated stereographic projection. Now there is a path $e_{t}, t \in I$, in the rotation group on S^{n} so that e_{0} is the identity map, $e_{1} f=g$ leaves p fixed and $P_{1}\left(e_{1} f\right) P_{1}^{-1}=P_{1} g P_{1}^{-1}$ has a triangular Jacobian with positive diagonal elements at the origin. Let C be a closed disk on S^{n} so that for some $r>0, U_{r} \subset P_{1}(C)$. Applying Lemmas $1-3$ there is a path $\left(P_{1} g P_{1}^{-1}\right)_{t}, t \in I$, in the space of mappings on U_{r} from $P_{1} g P_{1}^{-1}$ to a mapping which is the identity in a neighborhood of the origin. Furthermore, for all t, $\left(P_{1} g P_{1}^{-1}\right)_{t}$ agrees with $P_{1} g P_{1}^{-1}$ for all $x \in P_{1}(C)$ except on an interior set of U_{r}. Define $g_{t} \in K_{n}$ by

$$
g_{t}=\left\{\begin{array}{l}
P_{1}^{-1}\left(P_{1} g P_{1}^{-1}\right)_{t} P_{1} \text { on } C \\
g \text { outside } C
\end{array}\right.
$$

Then $g_{0}=g$ and g_{1} is the identity in a neighborhood of p.
Next let C_{1} and C_{2} be two closed sets covering S^{n} where C_{1} is a circular disk on S^{n} with p the center of the disk, and so that C_{1} is in an open set left pointwise fixed by g_{1}. We further assume $p \notin C_{2}$. Let $\left(0_{2}, P_{2}\right)$ be a coordinate neighborhood with $C_{2} \subset 0_{2}=S^{n}-p$ and P_{2} an associated stereographic projection. Then except for a trivial dilation $P_{2} g_{1} P_{2}^{-1}$ is an element of the space H_{n}. By Theorem 1 there is a path $\left(P_{2} g_{1} P_{2}^{-1}\right)_{t}$ from $P_{2} g_{1} P_{2}^{-1}$ to the identity map on $P_{2}\left(C_{2}\right)$. We now define $h_{t} \in K_{n}^{\prime}$ by

$$
h_{t}=\left\{\begin{array}{l}
P_{2}^{-1}\left(P_{2} g_{1} P_{2}^{-1}\right)_{t} P_{2} \text { on } C_{2} \\
g_{1} \text { outside } C_{2} .
\end{array}\right.
$$

The path from f to the identity map is now complete and Theorem 2 is established.

The spaces H_{n} and K_{n} are intermediate spaces to the topological spaces of Alexander and Kneser, and the diffeomorphism spaces treated by Smale. It is interesting to note that methods used in this paper are related to methods used in the larger nondifferentiable spaces and the smaller differomorphism spaces. Alexander's mapping is altered to give Theorem 1, while Theorem 2 parallels Smale's work.

References

1. J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A. 9(1923), 406-407.
2. G. M. Fisher, On the group of all homeomorphisms of a manifold, Trans, Amer. Math. Soc. 97(1960), 193-212.
3. H. Kneser, Die Dieformationssätze der einfach zusämmenhangenden Flächen, Math. Z. 25(1926), 362-372.
4. S. Smale, Diffeomorphisms on the 2-sphere, Proc. Amer. Math. Soc. 10(1959), 621626.

[^0]: Received September 16, 1964. The work in this paper was partially supported by Summer Fellowships for Graduate Teaching Assistants in the summers of 1963 and 1964. This paper represents the major results of a thesis submitted to the University of Utah for the Ph.D. degree in August 1964.

