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ON SUB-ALGEBRAS OF A C*-ALGEBRA

J. R. RlNGROSE

The following noncommutative extension of the Stone-
Weierstrass approximation theorem has been obtained by Glimm.

Theorem. Let S/ be a C*-algebra with identity I, and
let έ%? be a C*-sub-algebra containing I. Suppose that &
separates the pure state space of jyί Then g§ = J^Γ

In the present paper, we apply Glimm's theorem to obtain
the following noncommutative generalisation of another result
of Stone.

Let St/ be a C*-algebra with identity I and pure state
space ^ Let g$ be a C*-sub-algebra of j^f, and defne

= {/: / is a pure state of J^ and f(B) = 0 (Be ^ ) } ,
= {(g,h): g,he^ and g(B) = KB) (B e &)} ,

^ = {A: AGJ^9 /(A) = 0 (fe^O and g(A) = fc(A)

((c/, ft) e if)} .
Then &

We will refer to this as Theorem 2 in the sequel. Glimm's theorem
is to be found in [1] Stone's, in [3].

Once it is known that Sίf^ is a C*-sub-algebra of J ^ Theorem 2
is an almost immediate consequence of Glimm's theorem (see § 4). It is
clear that £(f& is a closed self-adjoint linear subspace of s^\ accordingly,
most of this paper is devoted to proving that ^ S is closed under
multiplication (see § 3).

We remark that, if J ^ is commutative, then & consists exactly
of all homomorphism from S^f on to the complex plane C; so in this
case, it is immediate from its definition that 3£% is a C*-sub-algebra.
However, this seems not to be obvious in the general case. Indeed,
for a general set Λ* of pure states of S>f and a general subset g7 of
.£? x ^ , the class

{A: A e J ^ /(A) = 0 (/ e ^K) and g(A) = h(A) ((</, h)eξ?)}

need not be a sub-algebra of Sf\ for example, let Sf consist of all
bounded linear operators on a Hubert space H9 let ~4r be void, and
let if consist of a single pair of vector states arising from orthogonal
unit vectors.

2* Notation. Throughout, J ^ i s a C*-algebra-by which we shall
mean a uniformly closed self-adjoint algebra of operators acting on a
(complex) Hubert space H. We shall always assume that Sf contains
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the identity operator I on H. A state of S%? is a linear functional /
on j y such that /(A*A) ^ 0 ( A e j / ) and /(/) = 1. The set of all
states is convex and weak * compact the Krein-Milman theorem ensures
the existence of extreme points, and these are called pure states. The
pure state space of J ^ denoted by &* (or &(sf) if S%? has to be
specified), is the weak * closure of the set of all pure states.

Given a state / of J ^ there is a *-representation Φf of J ^ on a
Hubert space Hf, and a unit vector xf in Hf, such that Φf(S$f)xf is
dense in Hf, and

f(A) = <0/(A)αv, xf)

To within unitary equivalence, Φf is unique. Furthermore, φf is
irreducible if and only if / is a pure state (see, for example, [2] 245,
265, 266). We shall always use the symbols φf, Hf, xf in the sense
just described.

3* Some lemmas* Throughout this section we shall assume that
^ i s a C*-sub-algebra of J ^ and that Ie^?. We use the notations
introduced in the statement of Theorem 2 note that, since Ie £$y Λr

is empty and

= {A : A e J^and g(A) = h(A) ((g, h) e &)} .

For completeness, we give a proof of the following simple result.

LEMMA 1. (i) Let f e &>, Seszf and suppose that f(S*S) = 1.
Define g(A) = f(S*AS) (A e sf). Then ge^>.

(ii) Let / e ^ , xeHf, \\x\\ — 1, and define g(A) — ζψf(A)x9 a?>
(A e j&). Then g e &>.

Proof, (i) Clearly g is a state. Suppose first that / is a pure
state, and let x — φf(S)xf. Then for each A e

(1) <Φf(A)x, x) = <jfi,(S*AS)xf, xf> = f(S*AS) = g(A) .

With A — I we obtain \\x\\ — 1; and since / is a pure state, φf is
irreducible, so Φf(J^f)x is dense in Hf. This, with (1), implies that Φf

and Φg are unitarily equivalent. Thus Φg is irreducible, so g is pure.
Now suppose only that fe &. There is a net (ft) of pure states

which converges to / in the weak * topology. Since f{(S*S) —+f(S*S) =
1, we may suppose that /<(S*S) > 0 for each i. Let h, = [/i(S*S)]-1/2,
Si = kiS, and define gt(A) =fi(S*ASi) (Aej*). Then /.(S*^) - 1,
and the argument of the preceding paragraph shows that g{ is a pure
state. For each A e
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= g(A) .

Hence (g^) is a net of pure states which converges to g in the weak *
topology, so g e &.

(ii) Since Φf{Szf)xf is dense in Hf, we may choose Sn e jy (n =
1, 2, . . .) such that

\\Φf(S%)xf\\ = l 9 \\ΦASn)xf-x\\-+0.

Thus f(S*Sn) — 1, and by part (i) of this lemma, we may define gn in
&* by 9n(A) = f(S%ASn) (Ae Jtf). Then for each

gn(A) = iΦf{A)φf{Sn)xfi ΦASn)xf>-><φf(A)x, x) =

Thus flf G ^ β

LEMMA 2. Lβί Te<%%, S e ^ .

Proof. Let (/1? /2) e g7. We have to show that Λ(S* TS) - /2(S* TS).
Since S * S e ^ , we have f1(S*S)=f2(S*S); and after multiplying S
by a suitable scalar, we may clearly suppose that fί(S*S) is either
0 or 1.

If fi(S*S) = 0, then S is in the left kernel of fi (i = 1, 2), and

/1(S*ΓS)=/2(S*ΓiS) = 0.
If fi(S*S) = 1, define ^(A) - MS*AS) (Aejϊf). By Lemma 1

(i), ffie^. If ΰ e ^ , then S*5Se ^ , so A(S*BS) - f2(S*BS) that
is, #iCB) = #2CB). Hence (glf g2)€&, and since TG £(?&, it follows that
ft(Γ) = 9*(T) that is, US*TS) = /2(S*TS). This completes the proof.

LEMMA 3. Lei Te^% and R,Seέ^. Then R*TSe<%%.

Proof. This follows from Lemma 2 since

4 J?*ΓS = (R + iS)*Γ(i2 + S) - (iί - S)*T(i? - S)

- i(R + iS)*T(R + iS) + (Λ - iS)*T(R - iS) .

LEMMA 4. Let fe&* and let M be a closed subspace of Hf which
is invariant under Φf(έ%?). Then M is a invariant under

Proof. Suppose that the lemma is false. Then we may choose
Te<2έf^ and xeM such that Φf(T)xίM. Let y = (I - E)φf(T)x,

where E is the projection from Hf on to M. Given t in [0, 2ττ), define
yt = x + exp (it)y, zt = kyt, where
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Thus zt G Hf, \\zt\\ — 1, and by Lemma 1 (ii) we may define gt e &> by

gt{A) = <j>f{A)zt, zty (A e J^). Since Φf{&) leaves both M and HfQM
invariant, it follows that for each B e &,

gt(B) = kXΦf(B)(x + euy), x + e%>

, x)

which is independent of ί. Hence, for each s, t in [0, 2τr), we have
(α., flr*)e g7. Since Γ G &?*, it follows that grs(Γ) - gt(T) so ^(Γ) is
independent of te[0, 2π). However,

gt(T) = k\φf(T)(x + e

= p + qeu + re"

where p, q,r are independent of t and

Thus ^ί(Γ) is not independent of te[0,2π), and we have obtained a
contradiction. This proves the lemma.

LEMMA 5. <%% is a C*-sub-algebra of Sf.

Proof. Suppose that (g,h)e&. Let Mg be the closed subspace
of Hg which is generated by φg{^?)%g. It follows from Lemma 4 that
Mg is invariant under φg(<%%). When Te £g%, we shall write φg(T) \ Mg

for the operator (from Mg into Mg) obtained by restricting φg(T) to Mg.
Similar notations will be used with h in place of g.

Given Te£^ and R,Se<^, we have (Lemma 3) R*TSe£έ&.
Since {gyh)eW, it follows that g(R*TS) = h(R*TS), or equivalents
that

( 2 ) <Φa(T)φa(S)xa, φg(R)x9y = iφh{T)φh(S)xhJ φh(R)xh} .

By taking T — 7, we deduce the existence of a unitary operator Z7
from Mg on to ΛfΛ such that

(3) Uφg(S)xβ = φh(S)xh (S

Equation (2) then implies that

<φg(T)v9 w> = iφh{T)Uv, Uw> (Te

for all v, we φg(^?)xg, hence for all v, we Mg. The last equation is
equivalent to

( 4 ) φβ(T)\Mβ= U*[φh(T)\Mh]U (T

Now suppose that Tu T2e<3£%. Given (g,h)eξ?, construct U as
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above. Since φo{T^ leaves Mg invariant (i = 1, 2), so does ^(I^Tg), and

^(2\T2) I M, - [0,(70 I Mg][φg(T2) I j|f,]

similar considerations apply with h in place of g. From (4), with
T = T19 T2, we deduce that

M9 = U^h(TxT2) Mh]U.

Since xg e Mg and Uxg = a?A, the last equation implies that

that is, g{TxT2) = h(T1T^. This holds whenever (g,h)e%', so
1 i JL 2 t ; <^zΓgg<

We have now shown that ^ ^ admits multiplication since £έf^ is
clearly a closed self-adjoint linear subspace of s/9 the lemma is proved.

4* Proof of Theorem 2* We shall use the notations introduced
in the statement of Theorem 2. It is immediate from the definition
of Sίfa that & c ^g^.

We first consider the case in which I e ^ , so that the theory
developed in § 3 applies to show that 3^f^ is a (7*-algebra. We remark
that each element / of the pure state space & {3(?&) can be extended
to an element /of ^ ( J ^ ) . For there is a net (/J of pure states of
Sίf^, converging to / in the weak * topology. Each f{ can be extended
to a pure state Ji of J^(see, for example, [2] 304). Since &(s/) is
compact, the net (ft) has at least one weak * limit point f e^(s^),
and / is an extension of /.

Suppose that & Φ 3ίf&. Then by Glimm's theorem there exist
distinct g,he^(3!f&) such that g(B) = h(B) (Be &). We may extend
g, h to elements, g, h respectively of & (Jϊf). Clearly {g, h) e g7. Thus,
by the definition of 3έ%, g{T) = h{T) whenever Te£^^) that is,
g = h, contrary to hypothesis. This proves Theorem 2 for the case in
which IG &.

If I e &, let ^ = & + CI be the C*-algebra generated by I,
& (C denotes the complex field). With an obvious modification of the
notation introduced in Theorem 2, it is clear that ^ ^ ( ^ ) is empty and
that £T(^ί) = i f ( ^ ) . Thus ^έf^^^ί?^^ since le &19 the first part
of this proof shows that ^ = <&f%l9 so β£% c ^ .

Now let / be the pure state of ^ defined by f(Xl + B) = λ
(λe C, S G ̂ ) , and let ^ be any extension of / to a pure state of
Clearly geΛ^(^). Hence g(βe%) = (0), and
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that is, ^f^ c &. The reverse inclusion has already been noted, so
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