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ON SUB-ALGEBRAS OF A C*ALGEBRA

J. R. RINGROSE

The following noncommutative extension of the Stone-
Weierstrass approximation theorem has been obtained by Glimm.

Theorem. Let & be a C*-algebra with identity I, and
let < be a C*-sub-algebra containing I. Suppose that <#
separates the pure state space of ./, Then <% = o/

In the present paper, we apply Glimm’s theorem to obtain
the following noncommutative generalisation of another result
of Stone,

Let .o/ be a C*-algebra with identity I and pure state
space . Z° Let <7 be a C*-sub-algebra of ./ and defne

A" ={f: fis apure state of .o/ and f(B) =0 (Be <#)},

& ={g,h): g,he P and g(B)=h(B) (Be &)},

FHm={A: Ac s f(AH=0 (fe 47) and g¢g(4) = h(4)
(g, h)e &)} .
Then &z = 577,

We will refer to this as Theorem 2 in the sequel. Glimm’s theorem
is to be found in [1]; Stone’s, in [3].

Once it is known that 52, is a C*-sub-algebra of .7, Theorem 2
is an almost immediate consequence of Glimm’s theorem (see § 4). It is
clear that 57 is a closed self-adjoint linear subspace of .97; accordingly,
most of this paper is devoted to proving that 27, is closed under
multiplication (see § 3).

We remark that, if . is commutative, then .&” consists exactly
of all homomorphism from .7 on to the complex plane C; so in this
case, it is immediate from its definition that 572, is a C*-sub-algebra.
However, this seems not to be obvious in the general case. Indeed,
for a general set _#~ of pure states of .~ and a general subset & of
P X P, the class

{A: Ae .o/ f(A) =0 (fe/7) and g(4) = 1(A) ((g, h) e £)}

need not be a sub-algebra of .o7; for example, let & consist of all
bounded linear operators on a Hilbert space H, let .+~ be void, and
let & consist of a single pair of vector states arising from orthogonal
unit vectors.

2. Notation. Throughout, &7 is a C*-algebra-by which we shall
mean a uniformly closed self-adjoint algebra of operators acting on a
(complex) Hilbert space H. We shall always assume that &7 contains
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the identity operator I on H. A state of .97 is a linear functional f
on . such that f(A*4) =0 (Ae &) and f(I) = 1. The set of all
states is convex and weak * compact; the Krein-Milman theorem ensures
the existence of extreme points, and these are called pure states. The
pure state space of o7, denoted by & (or () if &7 has to be
specified), is the weak * closure of the set of all pure states.

Given a state f of .97 there is a *-representation ¢, of & on a
Hilbert space H,, and a unit vector x; in H;, such that ¢(¥)x, is
dense in H,, and

f(A) = p(A)xy, %5) (Ae 7).

To within unitary equivalence, ¢, is unique. Furthermore, ¢, is
irreducible if and only if f is a pure state (see, for example, [2] 245,
265, 266). We shall always use the symbols ¢;, H;, ©, in the sense
just described.

3. Some lemmas. Throughout this section we shall assume that
# is a C*-sub-algebra of o7, and that Ie &#. We use the notations
introduced in the statement of Theorem 2; note that, since I¢ <&, .+~
is empty and

g, ={A: Ae ¥and g(4) = h(A) (g, h)e &)} .

For completeness, we give a proof of the following simple result.

LEMMA 1. (i) Let f e &? Se 7 and suppose that f(S*S)=1.
Define g(A) = f(S*AS) (Ae 7). Then ge 2.

(i) Let fe o xec Hy ||o]l =1, and define g(A) = {¢:(A)x, x)
(Ae 7). Then ge 7.

Proof. (i) Clearly g is a state. Suppose first that f is a pure
state, and let © = ¢(S)x;. Then for each Aec .o

(1) {pi(A)x, x) = {p;(S*AS)xs, w;) = f(S*AS) = g(4) .

With A =1 we obtain ||2|| =1; and since f is a pure state, ¢, is
irreducible, so ¢ )x is dense in H,;. This, with (1), implies that ¢,
and ¢, are unitarily equivalent. Thus ¢, is irreducible, so g is pure.

Now suppose only that fe &?. There is a net (f;) of pure states
which converges to f in the weak * topology. Since f;(S*S)— f(S*S) =
1, we may suppose that f;(S*S) > 0 for each ¢. Let k; = [£:(S*S)]™"?,
S; = kS, and define g;(4) = fi(SFAS,) (Ae 7). Then fi(SrS;,) =1,
and the argument of the preceding paragraph shows that g, is a pure
state. For each Ae .
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(Ay = JSTAS) | ngxAQ) — o(4) .
gy = T IS — S AS) = g(d)
Hence (g;) is a net of pure states which converges to ¢ in the weak *
topology, so ge &~.
(ii) Since ¢ )x; is dense in H;, we may choose S,€ & (n =
1,2, --+) such that

HeSxsll =1,  [[9S)xy — || —0.

Thus f(S;}S,) =1, and by part (i) of this lemma, we may define g, in
P by g.(4) = f(SFAS,) (Ae ). Then for each Ae ]

9.(A) = {9,(A)o(S,)ws, 0:(S,)ws) — {b(A)w, x> = g(A) .
Thus ge 2.

LEMMA 2. Let Te 57, Se #. Then S*TSe 57,.

Proof. Let (fy, fi)e & . Wehave to show that f,(S*TS) = fo,(S*TS).
Since S*Se <7, we have f.(S*S) = f,(S*S); and after multiplying S
by a suitable scalar, we may clearly suppose that f,(S*S) is either
0 or 1.

If £(S*S) =0, then S is in the left kernel of f; (# =1, 2), and
fl(S*TS) = fz(S*TS) = 0.

If £.(S*S) =1, define ¢,(4) = fi(S*AS) (Ae ). By Lemma 1
(i), g;€ &*. If Be &z, then S*BSe &7, so fi(S*BS) = f,(S*BS); that
is, g(B) = g«(B). Hence (g, g.) € &, and since T € 57, it follows that
9(T) = g«T); that is, fi(S*TS) = f,(S*TS). This completes the proof.

LemMA 3. Let Teoz, and R, Se &#. Then R*TSe o7,.

Proof. This follows from Lemma 2 since

AR*TS = (R + S)*T(R + S) — (R — S)*T(R — S)
— (R + iS)* T(R + i8S) + (R — iS)* T(R — 3S) .

LEMMA 4. Let fe & and let M be a closed subspace of H; which
18 tnvariant under ¢,(<Z). Then M is a invariant under ¢(S7.).

Proof. Suppose that the lemma is false. Then we may choose
Te sz, and we M such that ¢(T)wg M. Let y=(I— E)p«(T)x,
where E is the projection from H; on to M. Given ¢ in [0, 27), define
Y, = « + exp (it)y, 2, = ky,, where

b=+ Tyl = [yl .
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Thus z,€ Hy, ||2.]| =1, and by Lemma 1 (ii) we may define g,€ & by
9(A) = <p:(A)z;, 2,y (Aec ). Since ¢,(%) leaves both M and H; © M
invariant, it follows that for each Be <7,

9:(B) = kX9 B)(x + €*y), © + e*y)
= K'[K$,(B)x, x> + {2AB)y, ¥)] ,

which is independent of ¢. Hence, for each s, ¢ in [0, 27), we have
(95, 9:) €& . Since Te 57, it follows that ¢,(T) = ¢.(T); so g,(T) is
independent of ¢e€ [0, 27). However,

9(T) = kXgAT)(® + e'y), © + e"y)
:p + qeit _|_ ,},.e—it ,
where p, g, r are independent of ¢ and

r=ks(T)x, yp =k [y =+ 0.
Thus ¢,(T) is not independent of te |0, 27), and we have obtained a
contradiction. This proves the lemma.

LEMMA 5. 57, 4s a C*-sub-algebra of .

Proof. Suppose that (g, h)e &. Let M, be the closed subspace
of H, which is generated by ¢, )x,. It follows from Lemma 4 that
M, is invariant under ¢,(5#%). When T e 277, we shall write ¢,(T) | M,
for the operator (from M, into M,) obtained by restricting ¢,(T") to M,.
Similar notations will be used with % in place of g¢.

Given Te 54, and R, Se <7, we have (Lemma 3) R*TSc 57,.
Since (g, h)e &, it follows that g(R*TS) = h(R*TS), or equivalently
that

(2) <¢g( T)¢g(s)xgv ¢g(R)xg> - <¢h(T)¢h(S)xh7 ¢h(R)xh> .

By taking T = I, we deduce the existence of a unitary operator U
from M, on to M, such that

(3) Uy (S)z, = ¢1(S)x,, (Se z).
Equation (2) then implies that
9Ty, wy = <Lgu(T)Uv, Uw)y  (Te 52%)

for all v, we ¢,(Z)x,, hence for all v, we M,. The last equation is
equivalent to

(4) ¢(T) | M, = U*[¢(T) | MU  (Te#5) .
Now suppose that T, T,e 52,. Given (g, h)e &, construct U as
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above. Since ¢,(T;) leaves M, invariant (¢ = 1, 2), so does ¢,(7,T,), and
$(T\Ty) | My = [¢o(Ty) | M,1[$,(T) | M,] 5

similar considerations apply with 2 in place of ¢g. From (4), with
T =1T, T, we deduce that

¢9(T1T2) | Mg = U*[éh(TlTQ) Mh]U .
Since ©,€ M, and Uz, = x,, the last equation implies that

AT, Ty, @) = {ou(T Ty, %) ;

that is, ¢(T.T.) = w(T,T,). This holds whenever (g,h)e &, so0
T.T,e 57.

We have now shown that 57, admits multiplication; since 57 is
clearly a closed self-adjoint linear subspace of .97, the lemma is proved.

4. Proof of Theorem 2. We shall use the notations introduced
in the statement of Theorem 2. It is immediate from the definition
of 57, that &z C 57.

We first consider the case in which I e <, so that the theory
developed in § 3 applies to show that 57, is a C*-algebra. We remark
that each element f of the pure state space 7 (57,) can be extended
to an element f of <#(.%). For there is a net (f;) of pure states of
#, converging to f in the weak * topology. KEach f; can be extended
to a pure state f; of .o (see, for example, [2] 304). Since 7 (.7) is
compact, the net (f;) has at least one weak * limit point f € & (%),
and f is an extension of f.

Suppose that <&Z # 52,. Then by Glimm’s theorem there exist
distinet g, h € &2 (57) such that g(B) = h(B) (Be <#). We may extend
g, b to elements, §, & respectively of &7 (.o7). Clearly (g, h)e &. Thus,
by the definition of 57,, §(T) = W(T) whenever Te 57, ; that is,
g = h, contrary to hypothesis. This proves Theorem 2 for the case in
which Te <Z.

If I¢ <z, let <& = <&+ CI be the C*-algebra generated by I,
Z (C denotes the complex field). With an obvious modification of the
notation introduced in Theorem 2, it is clear that _#7(<Z) is empty and
that & () = &(F). Thus 57, C 57, ; since Ie &7, the first part
of this proof shows that <& = 572, » 80 ZZ5 € .

Now let f be the pure state of <z, defined by f(M + B) =\
(e C, Be &Z), and let g be any extension of f to a pure state of .o~
Clearly ge .+"(<#). Hence g(57.,) = (0), and

57, S BN g™H0) = f(0);
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that is, 57, € &. The reverse inclusion has already been noted, so
B = 5.
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