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ON RELATIVE COIMMUNITY

T. G. MCLAUGHLIN

The paper relates tc questions raised by A. A, Muchnik
in a 1956 Doklady abstract, namely, whether a noncreative
r.e. set can be simple in a creative one, and whether a creative
r.e. set can be simple in a noncreative one. We furnish a
negative answer to the second question, and give a variety of
partial results having teo do with the first. Thus, we show
that no universal set can have immune relative complement
inside a noncreative r.e, set and that any r.e. set which is
hyperhypersimple in a creative set must itself be creative;
whereas, there exist three sets a, 8, 7, «a £ 8 S 7, such that
B is creative, « and y are nonuniversal, and both 38— « and
7 — B are hyperhyperimmune,

In addition, we answer two questicns of J. P. Cleave re-
garding the comparison of effectively inseparable (e.i.) and
““almost effectively inseparable’’ (almost e.i.) sequences of r.e.
sets, Thus: a sequence can be almost e.i. without being e.i.;
and an almost e.i. sequence of disjoint r.e. sets may have a
noncreative union.

1. In [7], Muchnik formulated (in slightly different language)
the following two problems: given two r.e. sets 4, Y, with 4 & Y and
2 — 4 immune, can we have

(1) 4 creative and X mesoic?

(2) 4 mesoic and Y creative?

In the present paper, we consider these questions relative to not-
necessarily-r.e. universal sets; and we make two or three applications
of our results to matters considered in [7] and [1]. We are indebted
to J. P. Cleave for providing us with a draft copy of [1], which has
since been supplanted by a (forthcoming) joint paper of Cleave and
C. E. M. Yates. (For an abstract of the Cleave-Yates paper, see [2].)

2. Definitions and preliminary lemmas. Basic terminology is
essentially as in [3]. Notational departures from [3]: we use ‘W’
in place of ‘w,’, ‘¢’, in place of ‘0’ for the null set, ‘U’ for union,
‘N’ for intersection, and ‘—’ instead of a prime symbol for comple-
mentation. A set 4 of natural numbers is said to be immune just in
cage 4 is infinite and, for all ¢, if W, < 4 then W, is finite. If 4,
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Y are sets of numbers such that 4 £ ¥ and 2 — 4 is immune, we say
that 4 is coimmune in 3. (In case 4 = W;, ¥ = W,, for some 7 and
k, we say instead that 4 is simple in X.) Similarly, if 4 S 3 and
2 — 4 is hyperhyperimmune, we say that 4 is cohyperhyperimmune
in Y, or that 4 is hyperhypersimple in X, in case both 4 and X are
r.e. (For definition and discussion of the notion of hyperhyperimmunity,
the reader may consult [9] or [10]; the existence of hyperhypersimple
sets is known from [5].)

LEMMA 1. There exists a set of mumbers, «, such that both «
and its complement, &, are hyperhyperimmune.

Proof. This follows from the definition of hyperhyperimmunity
([10]) by a straightforward diagonal argument, since there are only
countably many recursive sequences of pairwisedisjoint nonempty finite
sets.

The terms ‘creative’, ‘productive’ ‘contraproductive’ ‘mesoic’ and
‘simple’, as applied to number sets, have their customary significance
(see [3]). A mesoic set 4 is said to be pseudosimple just in case, for
some number j, W; S 4 and 4 U W; is simple. We will make use of
the (more or less) standard notations ‘<,_,” and ‘<, .’ for the rela-
tions of (recursive) many-one and one-to-one reducibility, respectively.
By a universal set is meant a set 4 of numbers such that W; <, 4

for all j (or, equivalently as it happens, W; <,_, 4 for all j).

Lemma 2. (11, Chapter 5, Proposition 2 and Theorem 6],
noting that g and t can be one-to-one tm the cited Theorem 6; see
also [4, Proposition 1.12]). 4 s universal if and only if 4 is
productive.

Let an infinite set 4 be given. Suppose there is a partial recursive
function p such that, for all 7, if W; & 4 then j is in the domain of
p and (Vi) (t€ W;=p(j) >1). Then (and only then), we say that
4 is strongly effectively immune. An r.e. set with a strongly
effectively immune complement is called strongly effectively simple.
An example of a strongly effectively simple set: the simple-but-not-
hypersimple set of Post [9]. The following fact is easy to establish,
using a trick due to Myhill ([4]):

LEMMA 3. If 4 is strongly effectively tmmune, then there is a
recursive function, r, such that (V;)(W; S 4= (Vi) (t € W; = r(J)
> 1)).

In [1] and [6], it has been noted that Friedberg’s procedure ([5])
for decomposing a nonrecursive r.e. set into two nonrecursive, r.e.,
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disjoint subsets can be extended to provide K(r.e.) components, for any
K such that 2 = K=< W, in such a way that, in the case K =W,
the components are presented in a recursive sequence (i.e., in a
sequence indexed by a recursive function). In [1], extending an
important observation of Yates, Cleave shows that if decomposition of
a nonrecursive r.e. set Y into K r.e. components 2 =< K =< W,) is car-
ried out according to this extension of Friedkerg’s construction, then
any two of the resulting components are recursively inseparable in a
remarkably strong sense: namely, if W, is any one of the components,
then, for arbitrary k, W, & W,;= W, — Y is r.e.

In general, suppose {W,}.er i8 an indexing of the set of components
in a K-component decomposition of the nonrecursive r.e. set X into
r.e. subsets (2 = K = W), where R is understood to ke r.e. in case
K =%, Then, we shall say that the decomposition in question is a
CFY(K)-decomposition just in case, for any such index set R, re R
= V) (W; € W,— W; — 3 is r.e.).

Suppose that, in fact, there is a partial recursive function p such
that re R= (v;) (W, & W, = p(r, j) is defined and W, ;, = (W; — 3)
U (a finite subset of X). We shall, under these circumstances, say
that the CFY(K)-decomposition of ¥ whose components are given by
the set {W.},er is a strong CFY(K)-decomgosition of X.

The fundamental observation of Cleave and Yates is then just
this:

LeMMA 4. Let X be a nonrecursive r.e. set, and suppose 2 <
K=Y, Then 3 admits a strong CFY(K)-decomposition.

The next two lemmas express simple but useful properties of
CFY(K)-decompositions.

LEMMA 5. Let 3 be an r.e., nonrecursive set, and W; a com-

ponent in o CFY(K)-decomposition of 3. Then W; s not simple in
any t.e. set. *

Proof. Suppose, to the contrary, that W; & W,, where W, — W;
is immune. The union of the components other than W; is an r.e.
set, say W.; hence, since W, — W, is immune and W; N W, = ¢, we
have W, N W, = a finite set. Therefore, W, — (W, N W,) is r.e.,
includes W;, and misses W, (and hence misses each of the components
going to make up W,). Thus, (W, — (W,.Nn W,)) — W; must be an
r.e. set. But here is an absurdity, since (W, —(W,N W,) — W;
must be immune. The lemma follows.

LEMMA 6. Let 4 be either a creative set or a nonpseudosimple
mesoic set. Let 4, 4, be the components in a CFY(2)-decomposition
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of 4. Then, at least one of 4,, 4, has the property of being neither
pseudostmple nor many-one reducible to a simple set.

Proof. Let 3, Y, be pseudosimple mesoic sets. Suppose X, U 3,
is neither simple nor recursive. Let 3}, X} be r.e. sets such that
ey, ey, and I, U3, 3, U 3, are simple. Now, (2, U X)) N
(2, U X)) is simple, and is a subset of (5, U 2, U (21N 2. Hence,
since Y, U %, is not recursive, (X, U 3, U (3, N Y} is infinite and so
Z,uX)uin2) is simple. Therefore X, U Y, is pseudosimple.
Thus, we see that either 4, or 4, must be nonpseudosimple. It is an
evident feature of CFY(K)-decompositions that the components are
pairwise recursively inseparable; and from this it follows that neither
4, nor 4, can be many-one reducible to a simple set. The lemma fol-
lows. (We will see later, in Theorem 6, that 4,, 4, must be mesoic
when 4 is creative, as well as when 4 is noncreative.)

Recall that W, W, are termed ¢ffectively inseparable just in case
W.,N W; =¢ and there is a partial recursive function p such that,
for all ¥ and m, if W, W,, W, W,, and W, N W, = ¢, then
p(k, m) is defined and lies outside W, U W,. In [1], Cleave considers
the following two sequential variations on this concept:

Let {W..,} be a recursive sequence (i.e., the indexing funection 7
is recursive) of pairwise-disjoint, nonrecursive r.e. sets. {W,.} is e.t.
(Cleave) just in case, for ¢ = 7, there is a partial recursive function
P;; such that, if W,, & W,, W,;,, & W,, and W, N W, = ¢, then
P; i(k, m) exists and lies outside W, U W,, U (U, W,.,). Again, Cleave
calls (W,,} almost e.t. just in case, whenever ¢ # 7, there is a partial
recursive funetion p,; such that, if W,,& W, W.,S W,, and
W.n W, = ¢, then p,;(k, m) is defined and W, 4.m Is an infinite
recursive set whose intersection with W, U W, U (U, W,.,) is finite,
Cleave shows, in [1], that the CFY(,)-decomposition of the creative
set {x |xe W,} given by the extended Friedberg construction presents
an almost e.i. sequence; his argument, in fact, is “valid for any strong
CFY(%,)-decomposition of a creative set'. He then asks:

(1) Do there exist almost e.i., non-e.i. sequences?

(2) Must the union of the terms of an almost e.i. sequence be
creative?

In §3 we shall provide pleasantly straight-forward proofs that the
answers to these two questions are, respectively, “yes” and “no”.

One other concept, of Muchnik’s ([7]), will receive a little of our
attention in §3: the notion of “sets-of-a-pair in an r.e. set”. We

IThis proof of Cleave’s, showing that any strong CFY(3o)-decomposition of a
creative set presents an almost e.i. sequence, will, presumably, appear in the paper
corresponding to [2].
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rephrase Muchnik’s original definition as follows: Disjoint r.e. sets
4y, 4, are said to be sets-of-a-pair in the r.e. set X just in case 4, U
4, &%, ¥ — (4, U 4,) is infinite, Y is indeed r.e., and, for all 7 and
for 7 =0,1, 4, S W, S Y= [(W,; — 4; is finite) or (W, N 4,_; # $)].
We shall say that an r.e. set 4 is SOPRE just in case there exist
two other r.e. sets, 2, and %, such that 4, X, are sets-of-a-pair in
the r.e. set X,.

REMARK. It is not hard to show that any creative set is SOFRE.

In Theorem 9 we will put forward an additional bit of information on
SOPREness.

One further lemma will prove handy in § 3.

LEMMA 7. The question whether a mesoic set can be cotmmune
m o universal set reduces to the question whether a mesoic set can
be simple in a creative set.

Proof. Suppose 4 is universal, Y mesoic, and XY is coimmune in
4. Let 2, 2, be an effectively inseparable pair of disjoint creative
sets. Since 4 is universal, there is a one-to-one recursive function f
such that f(X) < 4, f(3,) < 4. Now, f(2), f(2,) are themselves ef-
fectively inseparable ([11, Chapter 5, Proposttion 4]). Hence, since
Y S f(3), the sets f(2) U 3, f(3,) are effectively inseparable. There-
fore, f(2)) U X is creative. Hence (f(2) U2} — Y must be infinite;
and so 2 is simple in the creative set (X)) U 2, proving the lemma.

3. Theorems.

THEOREM 1. A universal set canmot be coimmune n a mesoic
set.

Proof. Suppose that 4 is universal, ¥ mesoic, 4 S 2%, and ¥ — 4
is immune. Let 2%, Y, be disjoint, effectively inseparable r.e. sets.
Let f be a one-to-one recursive function reducing X, to 4. Then
f(3,) € 4; hence, since ¥ — 4 is immune, f(3,) N Y must be finite.
Therefore, 3 — (f(2,) N %) = 2, is a mesoic superset of f(¥,) which is
disjoint from f(%,). But f(&)), f(¥, are effectively inseparable; and
so also X, f(¥,) are effectively inseparable. But this is impossible,
since %, is mesoic. The theorem follows.

THEOREM 2. If 4 is a universal set, them there are two non-
untversal sets ¥, and X, such that X, is cohyperhyperimmune tn 4
and 4 is cohyperhyperimmune in X,.

Proof. Applying Lemma 1, let 4, be a hyperhyperimmune set
whose complement is likewise hyperhyperimmune. Since both a univer-
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sal set and its complement have infinite r.e. subsets, the sets 4 N 4,,
4N 4, must be infinite and therefore immune (indeed, hyperhyper-
immune); and we have, clearly, %, = 4 N 4, cohyperhyperimmune in
4 cohyperhyperimmune in X, = 4 U (4 N 4,). It remains to see that
S, ¥, are not productive. Now, 3, = 4, N 4 cannot be productive,
since it is immune. If 3, were productive, it would be contraproductive
(Myhill); hence, since a contraproductive set has a nonimmune comple-
ment, 3, is not productive, and the proof is complete.

THEOREM 3. (i) A pseudosimple set cannot be coimmune in o
universal set.

(ii) If 4 is a mesoic set such that 4 <,_2 for some simple set
X, then 4 cannot be coimmune in o universal set.

(iii) There are mesoic sets 4, neither pseudosimple nor many-
one reducible to a simple set, such that 4 is mot coimmune in any
universal set.

Proof. It follows from Lemma 7 that we need only prove (i),
(ii), and (iii) with ‘universal’ replaced by ‘creative’. Then (i) becomes
evident, since a simple set cannot have a creative superset; (ii) is an
eagy consequence of the (easily proved) Theorem 5 of [7] together
with the fact that any creative set is recursively inseparable from
some r.e. subset of its complement; and (iii) results at once from
Lemmas 5 and 6.

THEOREM 4. If an r.e. set 4 ts hyperhypersimple wn X, where
Y 18 creative, then 4 must also be creative.

Proof. It was pointed out by Yates, in [12], that an r.e. set 4,
with infinite complement, is hyperhypersimple if and only if there is
no recursive sequence {W,.}, of pairwise-disjoint r.e. sets (finite or
infinite), such that W,; N 4+ ¢ holds for all 4. It readily follows
from consideration of inverse images of r.e. sets under one-to-one
recursive functions that, for r.e. sets 4 and Y, 4 is hyperhypersimple
in ¥ if and only if 4 & %, ¥ — 4 is infinite, and there is no recursive
sequence {W,.} of pairwise-disjoint r.e. subsets (finite or infinite) of
S such that (Vi) (W,, N (2 — 4) # ¢). Now, it follows straight-
forwardly from Myhill’s isomorphism theorem ([8]) that if X is creative,
then there is a recursive sequence {W, .} of pairwise-disjoint creative
sets such that ¥ = U, W,,. Let {W,;} be such a sequence, relative
to the given creative set 2; and suppose 4 is an r.e. set hyperhyper-
simple in ¥. It follows that there is at least one 4 such that W, N
(2 — 4) = ¢; ie., Woyy E 4. But then 4 is the disjoint union of the
r.e. sets W,, and 4 N (U W.;); and hence, since W, is creative,
4 is creative.
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THEOREM 5. If an r.e. set 4 is strongly effectively stmple in 2,
where X 1s creative, then 4 must also be creative.

Proof. Applying Lemma 3, Let s be a recursive function such
that, for all numbers 7, W, S 3 — 4= (V2) (xe W,=s() > x). (Itis
not really essential to our purposes to have a total function s, but
the proof is just a bit less cumbersome if we do.) Now, there exist
a recursive function 7, and a strictly tncreasing recursive function
g, such that, forall4, W,,, = W, N Y and W,,, = W, — {z |z < sr(®)}.
Let p be productive for Y: by results of Myhill, we may assume p to
be strictly increasing and recursive. Let & be a 2-place recursive
function such that W, ; = W, and h(3, j) > 7, for all 2 and j. Then,
the function p* defined by p*(x) = p(h(z, sr(x))) is productive for ¥,
and has the property that p*(%) > sr(?), for all 2. Since p* and q are
strictly increasing, then, we see that p*q(¢) > sr(3), for all +. We
now claim, and the reader will easily check, that the function p*q is
productive for 4. This completes the proof.

THEOREM 6. FEach component of a CFY(K)-decomposition of a
creative set, 2 < K < W,, 1s mesoic.

Proof. Suppose, to the contrary, that X is a component in a
CFY(K)-decomposition of a creative set 4, and that X is creative.
Now, it is easily verified that if f is a one-to-one recursive function
generating ¥, and Y, is a hyperhypersimple (strongly effectively simple)
set, then f(2)) is hyperhypersimple (strongly effectively simple) in Y.
Hence, by Theorem 4 or Theorem 5, f(Z)) is creative. It follows from
the Myhill isomorphism theorem that X itself is simple in a creative
set (consider a recursive permutation mapping f(2,) onto X). But, by
Lemma 5, ¥ cannot be simple in any r.e. set; and from this contradic-
tion, the theorem follows.

THEOREM 7. Let {W,,} be a recursive sequencing of the com-
ponents of a strong CFY(W,)-decomposition of X, ¥ a creative set.
Then, the sequence {W,} ts almost e.t. but not e.i.

Proof. W,s, W.y, -+ is an almost e.l. sequence by the result
of Cleave ([1]) cited in §2. It is clear that if W.,,, W,y, ++ were
an e.. sequence, then, for ¢ # 7, the terms W,,, W,y would be
effectively inseparable. But hence, W,,, W,y would be creative;
whereas, by Theorem 6, they must be mesoic. From this contradiction
in the subjunctive mood, we conclude to Theorem 7.

THEOREM 8. The union of the terms of an almost e.i. recursive
sequence of pairwise-disjoint r.e. sets need mnot be creative. Indeed:
1f X is a creative set, them Y is the disjoint wunion of two mesoic
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sets 4., 4,, each of which s the union of the terms of such a
sequence.

Proof. Again, let {W,} be a recursive indexing of the components
of a strong CFY(K)-decomposition of X, so that the sequence W,q,
W.., -+ is almost e.i. Now, it is easy to see that each of the sub-
sequences Wr(o)’ Wr(2)9 Wr(4)’ ) Wr(l)y Wr(s)’ Wr(5)r -+ is likewise
almost e.i. Since {W,.} is a CFY(¥,)-decomposition of X, the pair of
sets U.i Weiy, Uz Wei) are the components of a CF'Y(2)-decomposition
of Y. Hence, by Theorem 6, each of U.; W.u), Uux: W,y is mesoic,
and the theorem is proved. .

THEOREM 9. Suppose 4,, 4, are sets-of-a-pair wn the r.e. set 3.
If 4, ©s creative, then 3 s creative. On the other hand, if X is
creative, there exist two mesoic sets 4,, 4, such that 4, 4, are sets-
of-a-pair in 3.

Proof. For the first assertion: if 4, is ecreative, so is 4, U 4,. But
4, U 4, is simple in Y. Hence, by Theorem 1, 3 must be creative.
For the second assertion: Let X’ be any r.e. set which is simple in
Y, and let 4,, 4, be the components of any CF'Y(2)-decomposition of
X', It is then easily checked that 4,, 4, are sets-of-a-pair in X; and,
by Theorem 6, 4, and 4, must be mesoic.

REMARK. The first assertion of Theorem 9 extends and completes
Theorem 8 of [7].

Notice that, in the proof of the second part of Theorem 9, we
proceeded in such a way that at least one of 4,, 4, must be non-
pseudosimple; this follows from Theorem 3(7) and Lemma 6. It is not
hard to insure that both 4,, 4,, be nonpseudosimple mesoic sets. For
choose 2’ to be a creative set, and apply the following general result.

THEOREM 10. Let 3 be a creative set, and 4,, 4, two mesoic sets
(not mnecessarily disjoint) such that 4, U 4,=2. Then neither 4,
nor 4, can be pseudosimple.

Proof. Suppose, to the contrary, that (say) 4, is pseudosimple:
let 7 be a number such that W, < 4,, 4, U W; = 4, is simple. Let f
be a one-to-one recursive function generating 4,. Now, creative sets
intersect simple sets creatively ([3, Theorem T2.6(2)]); so, X N 4, =
4, U (4, N 4;) = a creative set. Again, as is easy to verify, mesoic
sets intersect simple sets mesoically; thus, 4, N 4,is mesoic. Hence,
by [3, Theorem T2.6(2)] and the fact that removal of any recursive
subset from a creative set leaves a creative residue, we see that 4, N
W; is mesoic. Now, (X N 4;) = a creative set. This follows from
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13, Theorem T2.6(1)] and the (easily verified) fact that if ~(J) is
productive,  a 1-to-one recursive function, then also 4 is productive.
But /712 N 4,) = f4) U f(4,n W;). Furthermore, f~(4) is re-
cursive, since its complement is f~(W;). Hence, /(4. N W;) must be
creative. But therefore, since f is one-to-one recursive, ff (4, N
W,) = 4, N W; = a creative set: contradiction. The theorem follows.

REMARK. Theorem 10 can also be proved with the word ‘pseudo-
simple’ replaced by the words ‘many-one reducible to a simple set’;
however, the latter result does not interest us here.

The following two assertions, related to Theorem 3, may also be
proven: (i) a mesoic set 4 which is many-one reducible to a pseudosimple
set cannot be coimmune in a universal set; and (ii) if 4 is r.e. and is
coimmune in a creative set, then 4 is almost effectively inseparable
from some creative set.
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