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REPRESENTATIONS OF LATTICE-ORDERED
GROUPS HAVING A BASIS

JUSTIN T. LLOYD

A convex ^-subgroup C of a lattice-ordered group G is said
to be a prime subgroup provided the collection L{C) of left
cosets of G by C is totally-ordered by the relation: xC ^ yC
if and only if there exists ceC such that xc ^y. A collec-
tion C of prime subgroups of G is called a representation for
G if Π C contains no proper ί-ideal of G. A representation C
is said to be irreducible if the intersection of any proper sub-
collection of C does contain a proper Z-ideal of G. C is a
minimal representation if each element of C is a minimal
prime subgroup. A representation C is *-irreducible if Π C =
{1} while Π ( C - {C}) Φ {1} for every CeC. In this paper it
is shown that an Z-group with a basis admits a minimal irre-
ducible representation and that such a representation can be
chosen in essentially only one way. In particular, an Z-group
with a normal basis has a unique minimal irreducible repre-
sentation. In addition, two properties equivalent to the ex-
istence of a basis are derived; namely the existence of a re-
presentation C such that each element of C has a nontrivial
polar and the existence of a ^-irreducible representation.

For a linearly-ordered set L, let P(L) denote the collection of all
order-preserving permutations of L. P(L) is a group under the oper-

ation of composition of functions, and is an i-group if / e P(L) is

defined to be positive provided f(x) ^ x f or all x e L. C. Holland [2]

has related an arbitrary Z-group G to ^-groups of the form P(L) in

the following way: Letting C be a prime subgroup of G, the collec-

tion L(C) of left cosets of G by C is totally-ordered (by the relation men-

tioned above) and the map g —> g where g(xC) = gxC for all xC e L(C)

is an i-homomorphism from G into P(L(C)). This map is called the

natural ί-homomorphism. If C = {Ĉ  | i e 1} is a represention for G

and if d{ denotes the natural i-homomorphism of G into P(L(Ci)), then

the large cardinal product Π of the δ^G) contains an ί-isomorphic copy

of G as an i-subgroup and subdirect product. (This ^-isomorphism is

defined by g—> ( , d^g), •••)•) It is for this reason that C is called

a representation. The main result of [2] is that every i-group has a

representation. If C = {C; | i e 1} is a representation for G and if each
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Ci is an ί-ideal of G, then C is called a realization of G. In this
case, each δ^G) is a totally-ordered group and G is ί-isomorphic to an
Z-subgroup and subdirect product of a cardinal product of o-groups.
If C is an irreducible representation consisting of Z-ideals, then C is
called an irreducible realization.

2* Minimal irreducible representations of Z-groups with basis*
An element s of an Z-group G is basic provided s > l and {xeG\l^x^s}
is totally-ordered by the order relation in G. A basic element s of G
is normal if s and g~ιsg are comparable {g~ιsg ̂  s or s > #~~1s#) for
all g e G. For x e G, the absolute value of # is defined by | α? | = x V a?"1.
Two elements x and y oί G are said to be disjoint if | a? | Λ 11/1 = 1.
A subset S of G is a basis for G if S is a maximal set of pairwise
disjoint elements and each element of S is basic. A basis S is normal
if each element of S is normal.

P. Lorenzen [4] has shown that an £-group G has a realization if
and only if no positive element of G is disjoint from one of its con-
jugates. P. Jaffard [3] has proven that an abelian i-group has an
irreducible realization if and only if it has a basis. F. Sik [5] gener-
alized this result by showing that for an i-group G, the possession of
a normal basis is equivalent to the existence of an irreducible realiza-
tion of G. Using this result along with Lorenzen's, it is easily seen
that an i-group G with a basis has a realization if and only if it has
a normal basis.

It will now be shown that an Z-group G with a basis has a minimal
irreducible representation which can be chosen in essentially only one
way. The construction depends upon those prime subgroups of G hav-
ing nontrivial polars and not upon the choice of a basis. It will be
shown further that the concept of a minimal irreducible representation
is a direct generalization of the concept of an irreducible realization.

LEMMA 2.1. (P. Conrad, unpublished) A convex l-subgroup C of
an l-group G is prime if and only if the conditions a,beG and
a Λ b = 1 imply aeC or beC.

For an element x of an ί-group G, let D(x) = {yeG\\x\ Λ\y\ = 1}.

For a subset B of G, let D{B) = f\D(x) (xeB). Since each D{x) is

a convex i-subgroup of G, D(B) is also a convex J-subgroup of G.

LEMMA 2.2. Let C be a prime subgroup of the l-group G where
D{C) φ {1}. Let seD(C), s > 1. Then s is basic, C = D(s) and C is
minimal prime. Conversely, if s is basic, then D(s) is a prime sub-
group of G and seDD(s).
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Proof. Let s ^ x ^ 1 and s ^ y ^ l . Then x(x A y)~\ y(x A y)~ι e

D(C) and a?(a; Λ y)~x A y(x A y)~x = 1. It follows from Lemma 2.1 that
α(α Λ y)~' e C Π D(C) or y(x A y)~ι eC f] D(C) and so x(x A y)~ι = 1 or
y(x A yY1 — 1. Thus y ^ x or x ^ y and so s is basic. Since s ί C ,
Lemma 2.1 implies that 2?(s) S C and since s e D(C) it is immediate
that C S D(s). Thus C = D(s). Since D(s) is contained in any prime
subgroup which does not contain s9 it is clear that C is minimal.

Suppose s is basic and let a,beG be such that a A b = 1. If
α, b £ JD(S), then s ^ α Λ O l and s ^ 6 Λ s > 1. Since s is basic,
α Λ s ^ ό Λ s or 6 Λ s > α Λ So In either case it follows that a A b A s > 1,
contradicting the assumption that a A b = 1. Thus a A b = 1 implies
that aeD(s) or beD(s) and so Z)(s) is prime by Lemma 2.1. It is
clear that seDD(s).

LEMMA 2.3. Let C1 and C2 be distinct prime subgroups of the
l-group G. Then jD(d) Π D(C2) = {1}.

Proof. If A d ) Π D(C2) ^ {!}, let seDiCJ Π 2?(C2) where β > 1.
By Lemma 2.2., Cλ = D(s) — C2; and this contradicts the supposition
that d ^ C2.

THEOREM 2.1. Let C be the collection of all prime subgroups C
of the l-group G such that D(C) Φ {1}. For each C e C", let s(C) e D(C)
where s(C) > 1. Then the following are equivalent:

(a) {s(C) I C e C'} is a basis for G.

(b) Π C ' = {1}.
(c) Cr is a representation for G.

In case any of these conditions hold, a subset C of C" is an irre-

ducible representation if and only if C contains exactly one group

from each conjugate class in CO

Proof. Suppose that (a) holds and let xeG where x > 1. Then
there exists C e C" such that x A s(C) > 1. By Lemma 2.2., D(s(C)) = C
and so xίC Thus f\Cf = {!}. (b) implies (c) by definition. If (c)
holds and if 1 < x e G, then there exists g e G and C e C such that
g~xxg^C. Thus xigGg"1 while gCg~ιeCr. It follows from Lemma
2.1. that x A sigCg-1) > 1. Therefore {s(C) \ Ce C'} is a basis for G.

It is clear that an irreducible representation cannot contain distinct
conjugate subgroups. Suppose then that C contains exactly one group
from each conjugate class in C\ Let 1 < xe G and let C e C ' b e such
that x A s(C) > 1. There exists geG such that g~ιCgeC and since
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x $ C it follows that g~xxg ? Π ^ . Thus Π C contains no proper Z-ideal

of G and so C is a representation of G. If E is a proper subcollection

of C, let C e C be such that no conjugate of C is in E. If there

exists CxeE and # e G such that g^sifygg CΊ, then s(C) g gCxg~ι while

gCγg~ιeC. The only element of C" not containing s(C) is C and so

gCλg~ι — C contradicting the supposition that no conjugate of C is in

E. Thus Π E does contain a proper Z-ideal and so C is an irreducible

representation of G.

COROLLARY 2.1. If S is a basis of the l-group G, then {D(s) \se S}

is the set Gf of all prime subgroups C of G which satisfy D(C) Φ {1}.

Proof. By Lemma 2.2. {D(s) \ se S} g C". Thus Γ\C' = {1} and
so it follows from the Theorem that {D(s) \ se S} — C.

COROLLARY 2.2. Every l-group with a basis admits a minimal
irreducible representation.

COROLLARY 2.3. An l-group G has a representation C such that
D(C) Φ {1} for each CeC if and only if G has a basis.

The above results show one way in which a minimal irreducible
representation can be chosen for an i-group with a basis. The fol-
lowing shows that this is the only way in which such a representation
can be chosen.

THEOREM 2.2. If an l-group G has a basis S and if C is a
minimal irreducible represntation for G9 then C g C = {D(s) \ s e S}.
Thus C contains exactly one group from each conjugate class in Cf.

Proof. Let CeC. Then Π (C — {Q) contains a proper ί-ideal
N of G. (For the purpose of the following argument, let N — G in
case C has only one element.) Let 1 < ge N and choose se S such
that 1 < g Λ s ^ s. Then g Λ s is basic and since 1 < g A s ^ g,
h~~ι(g Λ s)he N for all he G. Since Π C does not contain an ί-ideal of
G, there exists keG such that k~\g A s)kg C. Moreover, k~\g A s)k
is basic. Since C is prime, it follows that D(k^(g A s)k S C. The
minimality of C implies that D(k~\g A s)k) = C. It follows from Corol-
lary 2.1. that C e C.

It is easily seen that a basic element s is normal if and only if
D(s) is an ί-ideal. The following is then immediate.
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COROLLARY 2.4. An l-group with a normal basis has a unique
"minimal irreducible representation C and each element of C is an
l-ideal. Thus C is an irreducible realization.

THEOREM 2.3. A representation C of an l-group G is ^-irreducible
if and only if G has a basis S and C = {D(s) \ se S}.

Proof. If G has a basis S and if C = {D(s) \ se S}, it is clear
that C is a *-irreducible representation of G.

Suppose then that C is a *-irreducible representation and let C"
denote the collection of prime subgroups C of G such that D(C) Φ {1}.
Let CλeC and let 1 < g e f| (C - {C,}). If K^heC, then g f\hef\C
and so g A h = 1. Thus D(Cύ Φ {1} and s o C g C . It follows that
f| Cr = {1} and therefore by Theorem 2.1. that {s(C) \ Ce C'} is a basis
for G. By Corollary 2.1., C = {D(s(C)) \ CeC}o Since the intersection
of any proper subcollection of C is nontrivial, it follows that C = C'.

COROLLARY 2.5. (F. Sik [5]) An l-group G has a normal basis
if and only if it has an irreducible realization.

Proof. If G has a normal basis S then C" = {D(s) \ se S} is an
irreducible realization.

If C is an irreducible realization of G, then C is a *-irreducible
representation of G. It follows from the Theorem that G has a basis
S and C = {D(s) \ se S}. Thus each D(s) is an Hdeal of G and so S
is a normal basis for G.
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