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FUNCTIONS WHICH OPERATE ON
CHARACTERISTIC FUNCTIONS

A L A N G. KONHEIM AND B E N J A M I N W E I S S

Let G be a locally compact abelian group and B+(G) the
family of continuous, complex-valued non-negative definite
functions on Gβ Set

A complex-valued function defined on the open unit disk is
said to operate on {B+(G), B+(G)} if feB+(G) implies
F(f)eB+(G), similarly for {Φ(G),Φ(G)}. Recently C. S. Herz
has given a proof of a conjecture of W. Rudin that F operates
on {B+(G),B+(G)} if and only if

(*) F(z) = Σ c*nZmzn, cmn ^ 0, I z I < 1 .
m,n

for a certain class of G. We shall show by independent methods
that F operates on Φ(RX) if F is given by (*) for | z \ £ 1 and
F(T) — 1. This answers a question posed by E. Lukacs and
provides in addition an alternate proof of Herz's theorem.

Let SI, 33 denote two familes of functions α, b: X —> Y. A function
F: Z £ Y —> Y is said to operate on (31, S3) provided that for each ae 21
with range (a) g Z w e have F(a) e 33. If 21 = S3 we say simply that
F operates on 21 β Recently there has been considerable interest in
determining, for particular families (31, 33) the class of functions which
operate.

If 21 is the family of complex-valued 2ττ-periodic functions on Rι

which have absolutely convergent Fourier series

21 = jα : a(θ) - Σ ^eikθ with Σ I ak I <

then a classic result of N. Wiener [10] states that l/αe2I provided
that a{θ) Φ 0 (0 ^ θ < 2τr). P. Levy [3] generalized Wiener's theorem
by proving that analytic functions operate on 2ί.

If 2ί is the family of all non-negative-definite matrices (aifj) with
— 1 < ait3 < 1 then I. J. Schoenberg [8] proved that any continuous
function F which operates on 21, F: (aί}j) —> (F(ai}j)) must be of the form

F(x) = Σ cnx
n

71 = 0
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1280 ALAN G. KONHEIM AND BENJAMIN WEISS

The theorem of Wiener-Levy can be obtained in a more general
setting. Let G be a locally compact abelian group and G its dual
group, i.e. the set of continuous homomorphisms of G into the
multiplicative group of complex numbers of modulus one, endowed
with the weak topology. For μ a complex-valued, regular measure on
G with finite total variation we define its Fourier-Stieltjes transform by

μ(β) = \ χ(χ)μ(dx) (x e (?)

and denote by B{G) the family of such transforms. Then

THEOREM. Real entire functions operate on B(G) (see [7] for
definition).

In particular by taking G — Z (the group of integers) we obtain
the Wiener-Levy theorem.

A few years ago a converse to this theorem was obtained by
H. Helson, J. P. Kahane, Y. Katznelson and W. Rudin [1]. They
proved that if F operates on B(G) then F is a real-entire function.

In probability theory the elements of B(G) which are of most direct
interest are those μ which arise from nonnegative measures μ, i.e.
according to Bochner's theorem the μ which are nonnegative-definite
on G. Let B+(G) denote this family. Rudin has conjectured [6] that
the functions which operate on (B?(Z), B+(Z)Y must have the form

F(z) = Σ cn,mznzm .
n,m = 0

Recently C. S. Herz [2] published a proof of Rudin's conjecture for
(Bt(G)9 B+(G)) under certain restrictions on G. His proof consists of (1)
showing that if F, defined on the unit disk, operates on {Bt (G), B+(G))
then F operates on (Bΐ(Γ0), B+(Γ0)) where Γo is the discrete multiplicative
group of complex numbers of modulus one, and (2) characterizing the
functions which operate on (B{(Γ0), B+(Γ0)).

Lukacs posed in [5] the question of determining the class of
functions which operate on the set of characteric functions Φ{Rι),
where Φ(G) = {fe JS+(G):/(O) = 1} .

We shall answer here the question posed by Lukacs, directly and
by quite independent methods. This will actually yield an alternate
proof of Herz's more general result by making use of some of his
preliminary propositions. In § 1 we state the main theorem and outline
the proof. The details occupy us in § 2-§ 4. In § 5 we show how to
obtain the more general result.

Z= the additive group of integers with discrete topology, Bf(G) =
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1* Statement of the main theorem and outline of the proof •

THEOREM 1. If F operates on Φ(Rι) then F is given by

with X;,m,0 cm,n = 1.

Assuming that F is continuous it is first shown that F operates
on BtiR1). It then follows that

F(reiΘ)= Σ ak(r) exv (ikO)

(0 S r ^ 1) where ak(r) ^ 0 (fc = 0, ± 1 , ± 2 , •). Having obtained this
representation we prove that not only is ak(r) nonnegative, but also
absolutely monotonic. Thus

( 1 ) F(reiΘ) = Σ Σ α fcιnr exp (ikO)

with αfc,n ^ 0. On the other hand, if the theorem is to be true, then

F(reiθ) = Σ I Σ cn,mrn+m\ exp (ikθ).

In order to pass from (1) to (*) ak(r) must actually be of the form

ak(r) = rm Σ KnT2n

with bktn ^ 0. To prove that the exponents of r in ak(r) increase by
two can be done directly (Lemma 5). To prove that ak(r) = O(rUc{)
(near r = 0) we introduce the more general representation of F

F{rx exp (ίxj) + r2 exp (ΐλ3ί) + + rΛ exp (iλnt))

= f Σ^ ^ , ^ . . . , ^ 1 , n, , rn) exp | i Σ &iVJ

where (rx, r2, •••,rw) varies in a suitable cube of Rn. The vanishing
of ak(r) to the correct order is then deduced from the simple observation
that akίtk2t...tkn(rlf r29 , rn) = Oίr^a rn) if all k,- Φ 0 (Lemma 4).

Finally we turn to the question of continuity. Since F(Φ) is a
continuous function for every φeΦ(Rι), the natural approach would be
to prove directly that zn —> z0 implies F(zn) —> F(z0) by constructing a
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ch.f. φ together with a bounded sequence {tn} such that Φ(tn) — zn.
2

However, as the referee has observed it suffices to prove a slightly
weaker interpolation property; namely that some ψ e Φ(R1) exists which
interpolates, on a bounded sequence, some subsequence of the {zn}. His
lemma and proof are given in § 4.

2* Several lemmata* In this section we assume that F is
continuous on Δ = {z: \ z | ^ 1} and operates on Φ(RL).

LEMMA 1. If p e BUR1) then F(p) e Bt

Proof. It suffices by Cramey's criterion [5, p. 65] to show that

\A\AF(p(t - u)) exp (ix(t - u))dtdu ^ 0
Jo Jo

for all real x and A > 0. If the lemma were false there would exist
therefore and Ao > 0 and x0 such that

(2 ) [Λθ[Λ°F(p(t - u)) exp (ixQ(t - u))dtdu = -d < 03 .
Jo Jo

The function

pε(t) =
( l - p ( 0 ) ) f l -

0

if 111 g ε

if ί I > e

is in BtiR1) for every ε > 0, [5, p. 70] and thus ψs = ps + peB+(R1).
It is, in fact, in ^(i?1) since ^ε(0) = 1. Because F operates on Φ(Rλ).

( 3 ) [Aθ[A°F(Φs(t - u)) exp (ixo(t - n))dtdu ^ 0 .
Jo Jo

On the other hand

I \ °{F(p(t — uj) — F(φε(t — u))} exp(ixo(ί — u))dtdu
I Jo Jo

= ( ({F(p(t - u)) - F{φz{t - u))} exp (ixQ(t - u))dtdn

G2 = {(«, u): 0 ^ t S Ao, 0 ^ u ^ Ao, 11 - u I ̂  e}

since | F(«) | ^ 1 on Δ. If we take ε < d/AA0 then (3) contradicts (2).
Let n be a positive integer and 2ττ, λx, λ2, Xn be rationally

independent real numbers. For each vector m — (mu m2, , mn) with
2 We were not able to deduce this strong interpolation property for Φ{RX) and

this necessitated a somewhat round about argument in the original version of this
paper.

3 That the integral in (2) is real follows from the easily verified identity F(z) = F(z).
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integral components and each vector r = (r19 r2, , rn) with 0 g
Ti < 1/n (1 ^ i ^ n) we formally define am(r) by

(4 ) am{r) = limit -L- Γ F ( Σ n exp (i\kt)) exp { - i ί Σ m*λJ dί .

LEMMA 2. T%β ίίmίέ m (4) exists and is independent of
\, λ2, , λΛ (provided that 2π, X19 λ2, , Xn are rationally independent
real numbers).

Proof. Combining Lemma 1 with the observation that

we see

and hence the limit in (4) exists [5, p. 43],

The Kronecker-Weyl theorem [9] next shows that

. 27Γ / Jo Jo Jo

( 5 )
x exp —% 2

and hence am(r) is independent of the particular {λ,,} chosen.
A function / defined on the cube 0 ^ x{ < a (1 :§ i ^ n) is called

absolutely monotonic function if

throughout the cube for j 1 9 j 2 , , j n = 0,1, 2, Just as in the case
of one variable, an absolutely monotonic function admits a power series
expansion with nonnegative coefficients.

LEMMA 3. The pointwise limit of absolutely monotonic functions
is absolutely monotonic.

Proof. For n = 1 the lemma is well known. We then proceed
by induction to n + 1. Suppose

limit fk(r19 r2, , rn+ί) = /(r^ r2, . , rn+1) .

For fixed r19 r2, , rw we have
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o

n, r3, , rn+1) = Σ ^ - ( n , r2, , r J n + 1 —> /(rx, r2, , rn+1)
.7=0

and hence

, rn+1) = Σ α;(^i> ^ , rn)r'n+
7=0

with

a>i(ru r*9 , Ό = limit α^.X^, r2, , r n) .

Since ak>j(ru r2, , rΛ) is an absolutely monotonic function the induction
hypothesis implies a3{ru r2, , rn) is likewise so and lemma is proved.

LEMMA 4. In the cube 0 ^ r { < 1/n (1 ^ i ^ n)
(4i) αm(r) is α^ absolutely monotonic function

( 6 ) » » = Σ ailtiy...in(m)r£r$ - - - ri*

and
(4ii) IfπiiΦO for every i(l ^ i ^ n) then cxiviv...lin(m) = 0 if

iό — 0 for some j (1 S 3 ^ n).

Proof. 1. Generalizing a result of Rudin [6, p. 618] we will show

that if / is continuous in the cube 0 ^ xt < a (1 ^ i ^ w) and satisfies

\ I /(«i + &! cos ^ , α2 + δ2 cos 6*2, , an + bn cos ^w)

o Jo Jo

X Π cos jkθkdθk ^ 0
k = l

for all integers j u j 2 , , j n — 0,1, 2, whenever 0 ^ 6y ̂  α, , αy + 6̂  < α,
then / is absolutely monotonic in the cube 0 ^ Xι < a (1 ^ i ^ n).

2. To see that am(r) satisfies (7) (with a — 1/n) we observe that

I = (——) I α j ^ + bλ cos θί9 , an + bn cos 5n)
V 2TΓ / Jo Jo Jo

n

x Π cos jkθkdθk

k = l

/ 1 \ w p2τr r 2τr f27Γ
= ( - ^ ~ ' " \ αm(^i + bι C°S ίi, ,α f t + 6ft COS θn)

V 2TΓ / Jo Jo Jo

x exp — i Σ ifĉ fe dθ1dβ2 d#TO

since the integrand in / is an even function of each of the {θk}. Next,
the integral representation of am(r) and the Kronecker-Weyl theorem
yields
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( ^ \ n Γ2πΓ2π Γ2π

2π) Jo Jo Jo

x F({ax + δx cos 0i) exp (ίφ,) + + (an + bn cos θn) exp (iψn))
n

x exp —i Σ (Jk@k + mfĉ fe) ^0iβ *β dθndφ1 dφn .

A final application of the Kronecker-Weyl theorem shows

\ (ak + bk cos ζkt) exp (ίλ^ί)
I = limit ~ Γ

x exp —ί Σ
k=ι

+
and this limit is nonnegative because

Σ (αfc + bk cos ζfc ) exp (iλfc ) e B+ίB1) ,

Lemma 1 and [5, p. 43].
3. Suppose first that / satisfies (7) and is of class C°\ To show

that

( 8 ) f(xly x2, ^ 0

in the cube 0 ^ x{ < a (1 ^ i ^ n) we let N — j \ + j 2 + + j n and
write, by Taylor's theorem,

f(aλ + δi cos 0i, , αn + δw cos 0Λ)
iV 1

(9) =Σyi-6i

(ΛΓ
! 0080, +6.008 g.

Multiply (9) by Πϊ=i ^osjkθk dθk and integrate from 0 to 2π. Set b{ ~
b < min .̂ ak and let δ J 0 to obtain (8).

4. If / is a priori only continuous, we proceed as follows: let
g-.R'-tR1 satisfy

( i ) geC~
(ii) g(t) > 0 if 0 < t < 1; #(£) = 0 otherwise

(iii) ΓffWdί = 1.
Jo

If / satisfies (7), then so does

JoJo Jo

X n)

4 The numbers 2 ,̂ ̂ i, , λn, ζi, , ζn are taken to be rationally independent real
numbers.
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on the cube 0 ^ x{ < a — d (1 ^ i ^ n). Now /δ e C°° and the argument
in 3. applies to show that /δ is absolutely monotonic. But /δ —•/
(pointwise) in the cube O ^ ϋ ^ α f l ^ i ^ w ) and Lemma 3 permits
us to complete the proof of 4(i).

5. If mk Φ 0 (1 ^ k S n) then from (5) we see

αm(0, r2, , rΛ) = am(ru 0, r8, , r n ) =

- αm(n, r2, , TV.!, 0) = 0

and this yields (4)ii.

LEMMA 5. If

1 Γ2ίΓ

αΛ(r) = — \ F(r exp (iφ)) exp (—ikφ) dφ
(10) 2 π Jo

fc = 0, ± 1 , ± 2 , •••

then

and
oo

5(ii) αfc(r) = Σ akj^j — 1 ^ ^ ^ 1

oo

akj ^ 0 Σ αfc,i ^ °°

1Σ ak,23τ2j if k is an even integer

Σ αfc 23+ιr2ί+1 if k is a n °dd integer .Σ
0

Proof. For 5(i) note

α ( r ) = ΓV(rexpΐ(0 + π))exp(-ikφ) dφ = (-l)fe

2ττ Jo

Proceeding as in the proof of Lemma 4, we show that

S 2τr

αfc(cos θ) exp — ii;^ dθ ^ 0
0

v = 0, ± 1 , ± 2 , •••

so that a^cos^eB+iR1). It follows from [4, p. 202] that

α f c(cos θ) = Σ &fc,j
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with

h,3 ^ 0 Σ bk,j < oo .

If T3 denotes the jth Tchebychev polynomial then

(11) ak(x) = Σ hjTi(x) - 1 ^ x ^ 1 .

But for 0 g x ^ 1, Lemma 4 yields the representation

co

j=o

with

α*,y ^ 0 Σ α*,i < ^

Using elementary properties of the Tchebychev polynomials and
the fact that the Fourier series of a C°° function may be differentiated
term-by-term, 5(i) and (11) imply that the equality

CO OO

J=0 * j-=0

extends to — 1 S % ̂  1, and this proves 5(ii).

3* Proof of Theorem 1 with hypothesis of continuity*
F(r exp (iφ)) is a continuous, periodic, nonnegative definite function.
We can therefore write

CO

(12) F(r exp (iφ)) — Σ ak(r) exp (ikφ)

with

ak(r) ^ 0 (k = 0, ± 1 , ±2, •) Σ %( r) = F(r)

In (12) we set z — r exp (iφ) and use Lemma 5 to conclude that

(13) F(z) = Σ ^ , , m ^ m + Σ (dn,mZnβm + entWz*/zm)

with

cw,w ^ 0(w, m = 0, 1,2, •••)

dn>m ^ 0 en,m ^ 0 ( B m ^ % < o o )

Σ cn,n + Σ «,m + en,m) = 1 .
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We will now show that dno,mQ = 0. Let 2π, Xίf , XnQ, X be rationally
independent real numbers and set

(14) z — r exp (iXt) + Σ rk exp (ίλfci)

in (13) where

0 5g r < 2/3 rk = r/2^0 (1 ^ & ̂  w0).

Let m = (m 0 ,1,1, , 1) and note by Lemma 4
nQ

(15) α m (r, rx, r2, , rWQ) = C m r r ! r 2 rnQ + o(rr,r2 rn)

= Cm(-i-) τ ^ + o(r^).
V 2^0 /

Examing the term za/zβ with ^ as in (14) we obtain

r exp (iXt) + Σ rk exp (iλfcί)

ί r exp (—iXt) + Σ rk exp (—iλfcί)

(16) = rα~β(exp (iλί) + - ί - Σ exp (iλfcί)V exp (i/8λί)

x Σ ^{-^— Σ exp(-ί(λ fc - X)t)Y (b = 1)

so that only the terms zaββ with β — m0 — j , a = nQ + j (0 ̂  j ^ m 0 — 1)
yield a contribution to &m(r, r19 r2, •••, rW Q). But with 2; as in (14)

limit J L Γ z«o+3βmo-i exp ( - i ( m o λ + λx + . + λn n)ί)dt
2 J 2 7

__ J 5 ./y*n0—mo+2j

with lλ,\^ 0 for i = 0. Thus (15) implies that dnQ,mQ = 0. A similar
argument shows enQymQ — 0 and the theorem is proved with the hypothesis
of continuity.

4* The continuity of F5. We begin with an interpolation lemma.

LEMMA 6. Let zn —> z0 (| zn \ < 1, n — 0,1, 2, •). There exists a
ch.f. φy a sequence (of real numbers) tk —> 1 and a sequence (of integers)
{nk} such that Φ(tk) — zn}c.

Proof. Let τn = 1 - (2/3)9-; then (9n/2)τn = (1/6) (mod 1) while
(9n+m/2)τn = (1/2) (mod 1) for m > 0. Hence

5 We wish to acknowledge our thanks to the referee for the statement and proof
of Lemma 6.
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cos ?L§nτn = ΫA., cos HL9n+mτn = 0 (ra > 0)
Δ Δ Δ

and cos (τr/2)9w = 0β Let {ηn} be a sequence of positive numbers such
that

I 2θ I + Σ Vn < 1 .
71=1

We define inductively a sequence {φn} of positive-definite functions
as follows; let

Φ0(t) = \zo\ e i (arg0o)ί .

Assume that φ0, φlf , φp have been defined such that Φj(l) = 0 for
j > 0. Choose integers mp+1 and np+1 such that

P + l

and define

V

{-V np + l
^ Vv-vx

" 2

ΦP+1(t) = 2r p

where ε̂ î and λp+1 are chosen such that

Ψp+i(τmp+1) = «»p+1 - Σ Φi(τmp+1)

We shall assume that the sequence {mj is strictly increasing. If we
set tk = τmfc and

ί(t) = Σ Φi(t) + eA(t)

where Δ(x) = max (0, 1 — 2 | x\) and ε > 0 is such t h a t 0(0) = 1 then
Φ(tk) = znk (k = 1, 2, .) and φ e Φ(&).

LEMMA 7. F is continuous in the open unit disk {z:\z\ < 1}.

Proof. Suppose not; then there would exist a zQ9 | z01 < 1 and a
sequence {zj (| ^ | < 1) such that zn —> 2;0 and .F(3W) y4 ί 7 ^ ) . By passing
to a subsequence if necessary we can assume that {F(zn)} converges.
By Lemma 6 there is a ch.f. φ and a sequence (of real numbers) {tk}
with limit one such that φ(tk) — z%k. But then

F(z0) = F(φ(l)) = limit F(φ(tk)) - limit F(znj)

which is a contradiction.
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REMARK. For future reference let us note that Lemma 1 now
shows that F operates on Bt(Rι) U

LEMMA 8. F is continuous on - H x g l .

Proof. By observing that i*Xcos )e Φ{RX), we obtain, just as in
Lemma 5

F(x) = Σ P,Tn(x)
n = 0

where pn ^ 0 and

Σ Pn = 1

Since | Tn(x) | ^ 1 on — 1 ^ $ ^ 1, F is continuous there.

THEOREM 2. F is continuous on Δ.

Proof. As we have already remarked, F operates on BtiR1) U Φ{RX).
Now Lemmata 2-5 carry over mutatis mutandis to prove that

(20) F(z)=
n,m=0

where cn,m ^ 0. Setting z = x in (20) and using Lemma 8 we see that

limit Σ n Σ o Cn,™^ = TO = 1 .

But the {cn,m} are nonnegative and hence

s i Ί/itin

Thus our series in (20) extends to a continuous function on Δ. We
assert that F is equal to this extension. For let Φ e Φ{R1) tk —> t0 with
0 < I Φ(tk) I < 1> I Φ(Q l = l Then F(ψ) is a continuous function and
thus limit F(Φ(tk)) = F(φ(t0)). But

limit F(φ(tk)) - limit Σ cn,UΦ(tk)Y(Wk)ΓΣ
n,m,~Q

= Σ cntrn(φ(to)γ(φ(to)γ

and thus

= Σ
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5* Concluding remarks* In order to obtain the general theorem
we require two propositions due to Herz [2 p. 165, p. 167].

PROPOSITION lβ If a locally compact abelian group H has elements
of arbitrarily high order then every F which operates on (Bi(H), B+(H))
is continuous.

PROPOSITION 2. If a locally compact abelian group H has elements
of arbitrarily high order, then every F which operates on {Bt(H), B+(H))
operates on (Bf(Z), B+(Z)).

REMARKS. 1. In Propositions 1 and 2 it is assumed that F is
defined on {z: \ z | < 1}.

2. Proposition 1 does not include our Lemma 7 since we assume
merely that F operates on 0{R'), not on {Bt{Rι), B+iR1)).

THEOREM 2. If a locally compact abelian group H has elements
of arbitrarily high order, then F operates on {Bi(H), B+(H)) if and
only if

Σ cn,mz»zm , ( \ z \ < l )
n, m — 0

where cn,m ^ 0.

Proof. By Propositions 1 and 2 we may assume that H = Z and
that F is continuous. It suffices, by the proof of Theorem 1, to show
that F operates on (BΐiR1), B+iR1)). Suppose XeBtiR1) and set ψ =
F(k). Since φ is continuous all that must be verified is that φ is a
nonnegative-definite function. For any δ > 0, the sequence {λn — X(nd)}
is nonnegative definite and therefore by the hypothesis {φ(nd)} is a
nonnegative definite sequence for any δ > 0. Since φ is continuous

S AΐA
\ φ(u — v) exp (ix(u — v))dudv

o Jo
A/8

— limit 2 Φ((n ~~ wήδ) exp ixδ(n — m) δ2 .
δj.0 ra,m = l

But since {φ(nδ)} is a nonnegative-definite sequence for each δ > 0

AI8

2 φ((n — m)δ) exp ixδ(n — m) δ2 ^ 0
n, m = 1

and hence by Cramer's criterion φ is nonnegative definite.

We conclude with a few remarks.
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1. There is a formal relation between the result of [1] and our
Theorem 1. Every real-entire function F can be written in the form

F=(F1- F2) + i(F3 - F4)

where Fu F2, Fz and F, satisfy (*). On the other hand every βe B(G)
is of the form

where μl9 β2, β3 and β4 are in B+(G). A direct proof of our theorem
starting from this observation would be desirable.

2. The proof given here of Theorem 1 demonstrates in one stroke
that F is real-analytic in A and if it is expressed as a power series in
z and z it has nonnegative coefficients. If one could prove directly that
F operates on all Fourier transforms assuming values in A then proof
of the theorem could be completed in two steps:

(A) F is real-analytic [7, Chapter VI] and thus

F(z)= Σ cn,mz*z"
n,in=0

(B) cn,m ^ 0 (n, m — 0,1, 2, •) The second step is a consequence
of the explicit representation

cnιm = limit limit — ^ -^— Γ F(Σ rk exp (i\kt)

x exp (Σ V - i Σ K+

where the inner limit exists and is positive by virtue of Lemma 1 and
[5, p. 43] and the outer limit exists by (A) above.

3. For nondiscrete G with elements of arbitrarily high order one
can show by using the methods used in the proof of Theorem 1, that
F operates on Φ(G) if and only if F satisfies (*). If G is discrete this
needn't be the case, and F needn't even be continuous as, F(z) =
0(\Z\ < 1), =1(12 I = 1), which operates on Φ(Z) already shows. For
such discrete groups we don't know if it is true that F operates on
Φ(G) implies that F must operate on Bi(G). If it were true then at
least the structure of F for | z \ < 1 could be determined.
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