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NORM DECREASING HOMOMORPHISMS
OF GROUP ALGEBRAS

FREDERICK P. GREENLEAF

The homomorphisms ¢ of the group algebra L'(F') into the
algebra M(G) of measures, where F' and G are locally compact
groups, has been completely determined when both groups are
abelian by P. J. Cohen, and when G is compact and the
homomorphism is norm decreasing and order-preserving by
Glicksberg. In this paper the structure of norm decreasing
homomorphisms ¢ is determined for arbitrary locally compact
F and G. Asan application the special structure of all norm
decreasing monomorphisms is determined, along with the
rather elegant structure of all norm decreasing homomorphisms
mapping L'(F") onto L'(G).

The analysis is effected by finding all multiplicative sub-
groups of the unit ball of measures on a lecally compact
group for, as we show, each ¢ extends to a norm decreasing
homomorphism ¢ : M(F')—M(G), and is determined by the image
under ¢ of the group of point masses on (G, a multiplicative
subgroup of the unit ball in M(G).

This paper completes a study of norm decreasing homomorphisms
on group algebras initiated by Glicksberg in [4] and [5]. If G is a
locally compact group we will denote its group algebra by LYG) and
its convolution algebra of bounded regular Borel measures by M(G).
We present a complete structural analysis of the subgroups of the
unit ball in M(G), and a structure theory classifying all norm decreasing
homomorphisms ¢: L'(F') — M(G) where F' and G are locally compact
groups. As an application we determine the special structure of all
monomorphisms ¢ mapping LY(F') into M(G) and all norm decreasing
homomorphisms which map L'(F') onto LYG).

Let C(G) be the sup norm algebra of all continuous complex valued
functions on G which vanish at infinity, and recall that Cy(G)* = M(G).
If e M(G) its support s(x) is defined so that wxes(y) < for each
neighborhood U of « there is some € C(G), vanishing outside of U,
with {¢, ¥> # 0. Then s(x) is a Borel set. If I” is a subset in M(G)
we define supp (") = U{s(): #€I'}. The convolution of g, xe M(G)
is given as an element of Cy(G)* by defining

on, > = [ vetiape o

Received April 24, 1964 and in revised form August 1, 1964. This research was
carried out under an Air force grant (AFOSR-407-63).

1187



1188 FREDERICK P. GREENLEAF

for all e C(G). If M(G) is given the total variation norm it becomes
a Banach algebra under this multiplication.

We first show that if g, ve M(G) then

(1) [leeen]l =1l IIN = s(pexn) = (s()s(V)~

(2) [lpxn]l =gl [N =Tpen] = | pelx|N].

These facts were first pointed out, in somewhat less general form, by
Wendel [11] and Glicksberg [4]. These results suffice for the analysis
of the subgroups of the unit ball in M(G).

In order to determine the norm decreasing homomorphisms ¢: L'(F')—
M(G) we use an important observation that such a map always extends
to a norm decreasing homomorphism @: M(F') — M(G) which is con-
tinuous on norm bounded sets as a mapping of (M(F), (so)) into
(M(G), (0)). Here (o) is the usual weak * topology on M(G), and (so)
is the strong operator topology on M(F') gotten by letting M(F') act by
left convolution on the ideal L'(F') C M(F).

The author is greatly indebtted to the earlier work of Glicksberg
presented in [4], [5]. He is also pleased to acknowledge Professor
Glicksberg’s helpful commentary in private correspondence. It will be
clear to the reader familiar with [4] that the proof of the fundamental
relation || N || = || gl [IM|| = | N | = | || X ]| is a simple adaptation
of a Glicksberg theorem dealing with compact groups. The simpler
proof given here was suggested by Glicksberg.

1. Preliminaries. Throughout this paper we will find it con-
venient to write convergence of a net {x;} to a point « in a topological

space (X, 7) as x,-—(—r)—»x or m«@—x,», interchangeably. To avoid con-
fusion in discussing homomorphisms we will use the terms homomorphism
(epimorphism, monomorphism) for into (onto, 1:1) homomorphisms; we
reserve the term isomorphism for 1:1 onto homomorphisms.

Most measure theoretic notions are taken from Halmos [3], includ-
ing definition of Baire and Borel sets. In the following discussion let
B = B(G) (B, = B,(@)) be the collection of Borel (Baire) sets in G. If
a function f is defined on G and if H is a o-ring of sets in G, we say
that f is H measurable on all H sets of G if ¥,f is H measurable for
each set Ec H (), = characteristic function of E). It is clear that
B, meagurability on B, sets implies B measurability on B sets in G.

If e M(G) define its Baire contraction g’ by restricting its domain
of definition to be By{(G). A regular Borel measure is uniquely de-
termined by its Baire contraction (see [3], 54. D). If Ee¢ B(G) it must
be o-bounded, and hence there is a Baire set A D FE; this applies in
particular to s(¢) where pe M(G). If Ec B and f is B measurable on

G, we let S fdp denote the integral SG AsSdLe.
B
In applying the Fubini theorem, Borel functions have rather
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pathological properties when compared to those of Baire functions.
These difficulties arise from the fact that the product o-ring B, x B, =
B(G x G), while we only know B, Xx B,.C B X BC B(G x @) for the
corresponding Borel sets. If f is B, measurable on G and if A, Be B,,
then the function y¥,.x(s, t)f(st) is B, X B, measurable on G x G (hence
B x B measurable) and we can apply Fubini to the convolution-like
integral

) [, Laals DF 00 X M5, )

If f is B measurable, the best we can say is that y,.s(s, ¢)f(st) is
B(G x G) measurable, but this does not give the B X B measurability
required to make () well defined. To avoid these difficulties we will
rely on the following well known observations.

(R1) If f is bounded and B, measurable, and if FE, F'e B, then
Yaxr(s, ) f(st) is B,x B, meagurable on G x G.

(R2) If f is bounded and B, measurable, and if g, xe M(G), let
us choose any sets K, F'e B, such that £ Ds(¢), FDs(\). Then

SG F)dp(w) = SMXW (s, S (st)dpt X s, ¢) -

(R3) If pre M(G) there exists a unimodular function f, which is
B, measurable on B, sets in G, such that ¢ = f.|¢|. Thus if Fe B,

ME) = | 1:(6)dps) = | 16115 121 9) -

Notice that ¥(t) = Sa/r(st)dp(s) is in C(G) if veCyG), and all
Cy(G) functions are B, measurable on G, so the definition of convolution
is meaningful for g, A e M(G). Convolution is actually independent of
the order of iteration of the integrals used to define it, in fact the
above remarks show that

SG[SG“”(St)dF‘(S)]dW) = SaxngXF(s, )y (st)dpe x Ms, t)
= SG[Sgw(st)dx(t)]dp(s) ,

if E, F'e B, are such that EDs(y), FDs(\).

If G is a locally compact group and if Q € G we let &, =1{0,: v € @}
where 0, is the point mass at « for x€ G. Let co[X] be the convex
span of a set X< M(G) and if v is a vector space topology on M(G),
denote the (v)-closed convex span of X as co[X :v]. We will need the
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following lemmas about the (o) and (so) topologies on M(G) (see intro-
duction).

LeMma 111 If ;% 4 with || p)| < M < o in M(F), and
of I 18 right uniformly continuous and bounded on F, then we have

iy ¥ — ey P

Proof. Since + is uniformly continuous, there exists fe LF)
corresponding to ¢>0 such that || f|] =1 and Y(st) f(Eydt — P (s) | <e/M

for all se F.. Then we have |{g;*f, ¥ — <;j, vyl <e for jed and
likewise for g, so that |{g;, v> — {g, ¥)>| < 8¢ for j = j,.

LEMMA 1.1.2. If @ is a compact set vn locally compact group G,
and tf S s the circle group, then co|lS&,:s0] = colS,:0] =
{re M(@): ||¢r]| =1, s(r)CQ}, and on these sets the (o) and (so)
topologies coincide.

Proof. Clearly S&, is both (o) and (so) compact, thus from [2,
p. 511] we see that co[S &, : so] is compact in the (so) topology, as is
co[S &, :0]in the (o) topology. On the unit ball the identity j : (M(G), so)—
(M(G), 0) is continuous by 1.1.1, so co[S &, : so] is () compact and hence
must contain co[S&,:0]. Since @ is compact it is known that
co|SEg o]l ={pec MG :||p]| =1, s(vyCQ}. But peco[S,:s0]=
s(t)cQ and ||p|| =1, which gives the reverse containment. It is
obvious that the topologies are the same on these compact sets, once
they are known to coincide.

LEMMA 1.1.8. If G is a locally compact group, colS&s:so] is
the unit ball in M(G) 1f S s the circle group.

Proof. Let pe M(G), ||¢t|| =1, and let K, be compacta such that
K,..DoK, and U, K, os(t). Then g, = p| K,e M(G) is such that
e 1l =1, p,ecolS&x, :so], and ¢, 225 . Thus g is in the norm
closure of U7, co[S &, :so], which lies within co[.S &% : so].

LEMMA 1.1.4. On the unit ball in M(G), convolution ts a jointly
strong operator continuous operation.

Proof. TLet ;% 1t and n, 2%\ in the unit ball. If fe LY(G),
then because || ¢;|| = 1 for all jeJ we have || g;xN,*xf — pxnxf]|| <
g e f) — pryx (N )]+ I pax (v f) — s fL S [ M f — A f]| +
I 25 (W f) — (v f) || — 0.

LEMMA 1.1.5. If G is a locally compact group, the unit ball in
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LN G) c M(G) is (so) dense n the unit ball in M(G); in particular,
LYG) 1s (s0) demse in M(G).

Proof. Clearly there exists a left approximate identity {e;} of
norm one in LYG). If pe M(G) then prxe, e LNG) and || pxe; || < || pe|l;
furthermore, if fe L'(G) we have

s — (ere)« fll = [l ppxf — pr(esxf) || — 0.

2. Idempotent measures of norm one, If G iz a locally com-
pact group and K G is a compact subgroup, define m,e M(G) to be
the normalized Haar measure on K, so that

My, ) = SK Y (8)dm {s)

for v € Ci(G). Let K" be the set of all continuous unimodular multi-
plicative complex valued functions on K, and if 8¢ K" let Bm, denote
the Haar measure on K weighted with the function 8. Then Bmy is
an idempotent of norm one in M{(G); it is our purpose to show that
these are the only idempotent measures of norm one in M(G).

THEOREM 2.1.1. Let G be a locally compact group. Then if
t, N e M(G) are such that || pesn|| = || ]|-|| N || 5t follows that s(pts\) =
(s()s(\))~, the closure wm G of s(tt)s(\).

Proof. It is sufficient to consider the case ||g¢| = »|| = 1.
Clearly (s(z)s(\))~ Ds{¢exN). If this inclusion is proper we can find a
compact Baire set U which is such that (int U) N (s(p)s(\)~ # @,
while at the same time U N s(ux)\) = @. Let E, Fe B(G) be such
that B Ds(p), F Os(n), and define V = {(s, s7'u):ue U, sec B} C G x G}
notice that Ve B, x B, and is such that y,(s,¢) = y,(st) for se E,
te @, thus

S(MW P(st)dpt x \(s, t)

=0l itz x Ms, 1
= wlstvsnap < s, b
= |, @ @dmw) .

Given ¢ > 0, there is a function + € C(G) such that ||+ |l. =1 and
[{pe*n, v > 1 —e. If V is any Baire set in G x G, then
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1 e di<n ol = || Lonsls, Opet)dp x 1,1 |

_ SH (st)dp x M, t)l

P(st)dp X A, t)

S(EXF)\V

w(st)dp x A, t)‘ .

S(EXF)QV
For V as above, the right hand side of (x) consists of the single term

.., v i) <]

Gl x 6,0

(EXF)

=\ dlpicinv={ dlplx
EXF nv

(EXF)

:1—5 d sl % 0.
(EXF)NV

But from our definition of U it is clear that S dlp| x|n]=0>0,
(EXF)NV
and thus for all e > 0 we get 1 — ¢ <1 — 0, a contradiction.

THEOREM 2.1.2. If G is a locally compact group and ¢f ¢, n e M(G)
are measures such that || pxN|| = p¢ll-lIN]l, then [pxn| = |p]*x|N].

Proof. Again it suffices to consider the case || || = |[»]|| = 1. If
F D s(y¢) is a Baire set, it is o-bounded and from the Radon-Nikodym
theorem we know that there is a Baire measurable function f, on F'
such that #(&) = S Le(®) fu(x)d | ¢t | (x) for all Ee B(G) such that EC F.

clearly |fu(®)| =1 |p¢]-a.e. on F; we define a new function

Su@) if xe F and |fux)| =1

0u®) = {1 for all other ze G .

Then 0, is a unimodular function on G Baire measurable on Baire
sets in G.

We will show | #xM| = | ¢#]*|N]. Since these are positive measures,
both of norm one (since || gx\|| = || ¢£l|+]|n]| for any positive measures
!, M€ M(G)), our result must follow. If 4 Cy(G) and 4 = 0, then

Qe vy =], ;“—’f%—du*m)

LI o

= L[Sgwsw%’idwuw]«zm ®) .
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Now the last integral is positive and the integrand is a unimodular
multiple of +(st), so it must be less than or equal to

SG[SG“F(SMWl(S)]dlM(t) = =N, P .

The following lemma is given in Loynes [6] and Pym [8], and is also
a simple consequence of 2.1.1 and 2.1.2.

ProposiTION 2.1.3. If G is a locally compact group and if ¢ e M(G)
is a positive idempotent of norm one, then there is a compact subgroup
Kc G such that ¢ = mg.

We can.now prove the main assertion of this section.

THEOREM 2.1.4. If G is a locally compact group and pe M(G)
18 an idempotent of morm one, then there is a compact subgroup
Kc G and a function pc K" such that pt = 0myg.

Proof. Write ¢t = o|p¢| where o is a unimodular function on G,
Baire measurable on Baire sets in G. From 2.1.2 we see that | x| is
a positive idempotent of norm one, so that | ¢t| = my for some compact
subgroup K< G from 2.1.3.

Now p is a bounded Borel measurable function on K since B(K) =

{ENK:FEec B(G)}, so the function o » p(t) = S p(s7't)p(s)dm(s) is
K

continuous on K (we are taking % as the convolution of two functions

on K here). If e C(G) and if F'e B(G) is such that Fos(¢) = K,
we have

[ v(@o@) dmo) = <n 9> = sty
- S [g ¢ ”“St)P(t>dmx<t>]p(s)de(s)
= [ []. vt 0rdmty Joimats
= | Trels, 06D VO L, DX (s, D)
Clearly v(t)0(s)Xxxx(s, t) is B X B measurable and a slight modification

of R1 gives the B, X B, measurability of o(s™'t))zx»(s,t) on G X G.
Thus Fubini applies and we get

| Ziexls, OO0 t0dms x mals,
[, e@ets—tiamye p@ame
|, #00 « o®dma(t)

Il
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80 o is |t|-a.e. identical to a continuous function on K. Taking o to
be continuous on K, it is clear that (s,t) — p(st) is continuous on
K x K. But we can apply the argument of 2.1.2:

1= [[pxpl = SK[§K%%§;—§;—’dlyl<s>]d|m<t>

= 1, 200 s [omatt

which means that p is a multiplicative function on K.

3. Subgroups of the unit ball in a measure algebra. In this
section we consider a locally compact group G and let I” be a subgroup
in the unit ball of M(G). We will denote this unit ball by X, and
refer to the weak * topology on M(G) as the (o) topology. Given I
we denote H, = supp (I") = U{s(p): pre '},

LemmaA 3.1.1. Both H, and its closure in G are subgroups of G,
and if the unit of I" is denoted © (i = pmg for some compact subgroup
Kc G and some pe K"), then K is a nmormal subgroup of both H,
and its closure. Furthermore, if pel’ then s(p) s a single coset of
the group K in H,.

Proof. If pel’ then s(y) is a union of right (or of left) cosets
of K because ixp = pxi = p= (s(p)s(z))” = s(p)- K = K-s(pr) = s(t)
from 2.1.1. If pe I then s(p™) = s(p)~'. In fact, if xe s(p), yes(e™)
then 2y = ke (s(¢)s(ee™) = s(uxp™) =K, so that ' =yke s(t )K=
s(¢™"), and vice versa.

If g,es(p), g.€s(¢™') we have the relations

(%) K = s(t) = (s(#)s(r™))” D s(t)s(r™) 2 9:.K%9, © 9. Ky,
(x) K = s(1) = (s(p)s(pr™))” Ds(p)s(p™) D Kg.9.K D {g.9:} .

Thus s(#¢) is a single coset of K; otherwise we could find g,, g.< s(x)
with g, ¢ Kg,, and this would = ¢,9,7' ¢ K. But g, e s(¢1)™* = s(¢¢™") and
(xx¥) = g,9,7'€ K, a contradiction. We see now that all supports are
compact and hence s(zt)s(\) = s(pex\) for all g, ne I,

Clearly H, is a subgroup of G since s(z*)\) = s(¢)s(\) and s(p)~* =
s(#™); hence its closure is also a subgroup in G. We get normality
of K by considering ge H, and taking any pe ' such that ge s(p).
Then if we take g, =9, ¢. =g es(p™) in (x), we get K DgKg™.

The following theorem gives the structure of a subgroup I'; it
gives only a necessary condition on the structure of a collection of
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meagures I in the unit ball of M(G) in order that I" be a subgroup.
Necessary and sufficient conditions will be given later.

ProrosiTioN 3.1.2. If I" is a subgroup of = for locally compact
group G, let © = pmg be its unit and let H, =supp (). Then there
exists a subgroup 2c S x @, with the property

H,={9geG: (a,g)c 2 for some |a| =1},
such that I = {ad,x om. : («, g) € Q}.
REMARK. Here S is the circle group and S x G is the usual

product group. In 2.1.4 we have already shown that the unit is ¢ = pm,
where K is normal in H, and pe K".

Proof. Let p, be a unimodular function on G, Baire measurable
on Baire sets in G, such that g = p.|p| for pel'. If ges(y) we
have shown that s(#) = gK and we know that o, is determined | |-a.e.
on s(¢). But if s(¢) = gK, then |p| = 0d,xmg; in fact, we have
pxt = p, which = | g |x|¢| = |pt|*mx = | ], and this gives | ¢t| =0, xmy
gince || ¢#|| = 1. We first show that p, is | ¢|-a.e. identical to a con-
tinuous function on s(y), or equivalently that p,’(x) = p.(g%) is m-a.e.
equal to a continuous function on K. We have

|, v = _vpswimst
for 4 e C(G), while pt = ixp =
[, v =[] vGbosdns |aue
=[] wsotro@ougtidmc(s) lamt) .
For ge H,, the map 7, :s— gsg~ is an automorphism of K such that
Mme(T,B) = mg(E) for Borel sets £ C K; thus if we define 7 ,*B(s) =

B(gsg™) for se K, ge H, and Be K", then 7n,*8ec K" and the last
expression above is

=[] v(gstim, o(s)pugtyime(o) Jamctt
_ EE W) [SE T, p(s)p,ﬂ(s*lt)de(s)]de(t)
= vtz "0 * po1Bdmat)

where » gives the convolution of two functions on K rather than
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functions on G. Since 7,*0 and p,° are bounded and B(K) measurable
functions on K, their convolution on K is a continuous funection, and
the above equalities = p,* = 7,*0 * 0.% mg-a.e. on K,

Take each function o, to be continuous on s(z) for pgel’. Then
we have p0.(2)0\(¥) = pua(ry) for all (x,y)es(y) x s(») in G X G,
because

L= aleal =,

- st) [Ss()\) 'p_:)(iz_f;t()ﬂdlﬂ | (3)](“# [ @),

dpx )

and since the last integrand is continuous and unimodular. If se K
and ges(y) for e l”, then we have

pﬂg(s) = p#(gs) = pmi(gs) = pu(g)pi(s)
= pu(g)(s) = ¢,-0(s)

which means that 0. =¢,-0 on K where ¢, = p,(g9) is a scalar of
modulus one. Clearly ft = 0.(9)-(0,xpomg) if ges(p); ie. if ges(y),
then for some scalar a with |a| =1 we have p = ad,*omg.

Let 2 ={(a,9)e S X G: ad,xpmge I'}. We have shown that for
each ge H, we can find a scalar |a| = 1 such that (a, g)e 2, so we
only have to show that

(0,0, % oM i) % (X0, % OMg) = Q00 4, % M .

Since the left side is in I” we get (a.a,, g.9,) € 2, and this will give
the group property. But .0, xomge " and © = pmg is the unit of I;
hence

0, % M * (A0, % OMg) = Q0 * Aly % OMg = Q100 4 % OM g

as required. Clearly I' = {ad, x omy : («, g) € £}.

COROLLARY 3.1.3. If p#,ne Il we have s(¢t) = s(\) = 1 = ax for
some scalar a with |a| = 1.

Proof. If s(¢) = s(v) = gK then there are scalars a, 8 of unit
modulus such that g = ad,xpmg and N = BJ,* om.

COROLLARY 3.1.4. If Si={at: |a| =1} and +f I'NSi={i},
then for p,neI we have pt =\ whenever s(ft) = s(\).

ProposiTioN 3.1.5. If G is a locally compact group and I” is a
subgroup of X, let us write its unit as 4 = omy, where pe K", and
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let H, = supp (I'). Then K, = {xc K: o(z) = 1} is a compact subgroup
of G which is normal in both K and H,.

Proof. If pel and p, is the unimodular function, Baire measur-
able on Baire sets in G, such that ¢ = o, ||, then we know that p,
is a translate of o to s(#), and we also know that 0.(x)0\(¥) = Oual(®y)
for all xes(p), yes(n), from 3.1.2. Obviously K, is normal in K;
normality in H, is more troublesome.

If ye K,, x€ H,, then zyx—e K and if xes(y) we get

plxyr™) = pu()oy)or (@) = pux)-1- 0" (x™)
= Oup(@a™) = p(e) =1,
which = xyx—e K,.

ProprosITION 3.1.6. Let G be a locally compact group, let H, be
an arbitrary subgroup, let K D K, be a pair of compact subgroups of
G which lie within H, and are normal therein, and assume that pe K"
is a function such that K, = Ker p. Then we have omgxd,xpom, =

0,xomyg for all ge Hy— K is central in H, mod K, (i.e. K/K, is a
central subgroup of H,/K,).

Proof. If K is central in H, mod K, and 4 € C(G), then
Comexdysome, 4> = | [| [ | wisatio@pormc(s) |a1o, e |amae)
= | [], atrotdms(o |im) .

But sg = gs mod K,, so that sg = gsk for some ke K, and the last
expression becomes

I

[ [1, viasknosndmto)Jomto
11, v(astrotstrimts) [imaete

= SG Y (gs)o(s)dm (s) = {0,% oM, ¥ ,

since (omg)® = oM.
If, conversely, omy+0,%omg = 0,xpmg for all ge H,, we show
that K is central in H, mod K, as follows. Let

Lov;

Ip. —
Vi U, N K)

where {U;: je J} is a basis of compact symmetric neighborhoods of
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the unit in G, and make {v;: jeJ} a net of functions in L'(G) under
the obvious partial ordering. Then we have

S X7 (8)
mx(U;)
Xng(g s)
me(Uy)

1= p(e) o(s)dmc(s)

I

o(s)dmx(s)

I

¥ i(gs)0(s)dm(s)

K

e
|
[ vidlo,s omel = | dlomerd,pmel
|
|

Vi(sg)p()0(t) dme(s) |dm.c(t

Al
.

= [0, 2t otgsaypttrdme(o) amatt
:g S oS8 asgnottyim (s)]dm (t)
wL)e “me(T) A

But p is uniformly continuous on K and hence, given ¢ > 0 there is
an index j(¢) such that j > j(¢) in the partial ordering of J=
lot) — pt')| < e if tet'U;. Hence if j > j(€) we get: Av,(8t) # 0=
tes™'U;, which = |po(t) — o(s™) | < &. Some trivial computations then
show that the last integral is always within € of the following expression
if 7 > j(e).

|, oasg™)0(s™)dmae) = | _olgsg)p@dma(s)

But s — o(gsg™) is a function in K", and from the known orthogonality
of one dimensional representations of K, this integral can be nonzero
= 0(gsg™) = p(s) for all se K. This means that gs = sg mod K, for
all se K, ge H,.

COROLLARY 3.1.7. If G is a locally compact group and I' is a
subgroup of 3y, let Hy, = supp ("), and let us write the unit of I
as 1= pmg as in 2.1.4, where KCG s a compact subgroup and
poe K". Then if K, = Kerp, K must be central in H, mod K,.

Proof. From 3.1.5 we know that K, must be normal in H,.
Furthermore, ¢ ¢t = pt—0Mx*0,% 0Mx=0,% omg for all g e H, (see 3.1.2).

THEOREM 3.1.8. (Structure Theorem for Subgroups). Let G be
locally compact group and let I" be a subgroup of Xye with unit 1.
Then we have
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(1) H,= U{s(p): pel} is a subgroup of G.

(2) @ = pmg where KC G is a compact subgroup and pe K",

(3) K and K, = Ker p lie within H, and are normal in H,.

(4) K is central in H, mod K,.

(5) 2Q={(a,9)eS x G: ad,xpmge I} is a subgroup of S X G

with Hy={ge G: («, g)e 2 for some [a|=1}.

and we have I = {ad, xomg : (a, g) € 2}.

Conversely, let H, be a subgroup in G, let KC G be a compact
subgroup lying within H, and let pe K" be chosen such that

(1) K and K,= Ker p are both mormal 1n H,.

(2) K 1s central in H, mod K,.
and let Q be any subgroup of S X G with H,={geG: («, g)€ 2 for
some |a| =1}, Then I' = {ad,xomg: (&, g)e 2} is a subgroup of
ey with Hy= U{s(p): pel}, with i = omx as a unit, and with
Qc{a,9)e S X G: ad,«xomeec '} = Q-{(o(k), k) : ke K}.

Proof. The first part follows from 3.1.2, 3.1.5, and 3.1.7. Con-
versely, if K is central in H, mod K, = Ker 0 in a scheme of this sort
we must have omx0,%x omy = d,%xomg for all ge H,. This means that
I is a group, since the only difficulty in showing this lies in the
verification that /" is closed under convolution. It follows immediately
that H, = U{s(y): e '} and that 7,:(«, g) — @d,xomg is a homo-
morphism of 2 onto I” with kernel 2N {(o(k), k) : ke K}. Notice that
Qand 2'=Q-{(o(k), k): ke K} give rise to the same group of measures 7.

The classical example of a subgroup in %4 is a group of translates
of normalized Haar measure I = {0,xm,: ©€ Gy}, where QC G is a
compact subgroup, normal in the subgroup G,. Theorem 3.1.8 can be
stated in a form which shows that every subgroup /" C Y4 corresponds
to a subgroup of this type in 3y s« rather than ¥, .

Let 7w, e be the projection homomorphisms in S X G and let
QD Q, be subgroups in S X G satisfying the conditions

(1) 2, is a compact subgroup of S X G normal in £,

2) SN =(@1,e), so m;(x) N2, is a single point if xe 7w (Q,).
If we are given a compact subgroup KC G and a function pe K", we
define the mappings

Zo: S % G— M(G)
o5 1 CfG) — C(S x @)
o M(S X G) — M(G)

such that t,(a, g) = ad,* omy, Ty (@, g) = LT, g), ¥, and {T**pt, 4> =
e, T4y, Clearly t*4re C(S X G) since K is compact, and t**0,, =



1200 FREDERICK P. GREENLEAF

ad,xpmg for (a,g)eS x G. Furthermore, z**: (M(S X G), (0)) —
(M(G), (0)) is a linear map which is continuous on norm bounded sets

since pt; — pt in Zysxa, ¥ € CG) —

<T**ﬂi’ "1’> = <#i9 T*'S["> — <#7 T*“f,r> = <T**ﬁ, "»k> .
Also, 7** is a norm decreasing linear map.

Now take K = ms(2,), where 2 D2, satisfy (1) and (2) above, and
define the function p(k) on K such that (o(k), k)e 2, for each ke K.
It is clear that pe K" since £, is compact. Let us also define H, =
wo(2), K, = wa(2, N G). Then K, = Ker p and it is easily verified that
K, is normal in both H, and K, and that K is central in H, mod K|,
from conditions (1) and (2). Thus " = {@d,*xpomyx : (a, g)€ 2} is a sub-
group in 2, since 3.1.8 applies to the system of objects H,, K, K,, p.

The mapping 7**0 : (@, g) — ad,* 0my is a homomorphism on 2 since

TH*0tayag, gy09 = 010040, % Mg = 0, ¥ OM g% A0, % OM g

— ¥k ¥k
= T (ay, g*T**0tayg, gy »

From normality of £, in 2 it follows that '™ = {0,*xm, : v} is a
subgroup of Xy gxam.

LEmMMA 3.1.9. If Q29Q, satisfy conditions (1), (2) above, and if

I' ={ad,xomg: (a, g)e 2} then 7,: Q—I" is an epimorphism with
kernel Q,.

Proof. We have indicated that 7, is an epimorphism. If 7(«, g) =
omx, then ge K and we have ad,*pomg = ap(g)omz = pmg; hence
a = p(g) and («, g) = (0(g), g) with ge K, so (a, g) e 2, by definition of o.

THEOREM 3.1.10. Given subgroups 22 9,in S X G satisfying (1)
and (2) let K = my(2), define 0 = mgo(mg| Q)™ on K, and define
T** . M(S X G)— M(G) as above. Then pe K" (so 7, and t** are
well defined), I' ={ad,xpmg: (@, 9)e 2} and I = {0,%xmy: xe 2}
are subgroups n Zye and ygce Tespectively, and T** is an
tsomorphism between I~ and I'. Conversely, if I’ C Xy 18 o sub-
group with unit © = omg, 1t arises from a pair of subgroups 2D,
wn S X G which satisfy conditions (1) and (2) by means of the above

construction if we take 2 ={(a,9)e S X G: ad,xpmge I’} and 2, =
{la,9)e S X G: ad,« omg = pMg}.

Proof. To establish the first part we will show that **(0,%m,) =
%9, = t(x) for any xe 2; then from 3.1.9 it is clear that z** is an

isomorphism between 7"~ and I'. But 2, is compact, so there exists a

net {\;} in co[&,] with xj—w)—>m,,o; hence Bz*xj-—(a—)—)&*mgo and
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T**(0, %My ) & (0, % Nj)=T**(0,), as required. Conversely, if I"C 3
is a subgroup, and if 2 D2, are formed as indicated, then properties
(1) and (2) hold as a consequence of the following lemma, which will
be of interest later on. Once this is shown, it is easy to check (see
3.1.8) that 7x(2) = supp (), 7e(2) = K, and 0 = 7o (ms|2,)~" on K.
In the first part we showed that 7** must be an isomorphism of
{0,%my, : &€ 2} onto {ad,* omy : (@, g) € 2} and we know that I” coincides
with the latter subgroup of %, from 3.1.2.

LEMMA 3.1.11. Let G be a locally compact group and let I' C 2 6
be a subgroup with unit © = pmg. Form the pair of subgroups in
S xG:

Q={(a,9)eSx G: ad,xpmecl}D
2 ={a,9)e S X G: ad,xpmg = pmg} .

Then we have 2, = {(0(k), k) : ke K} and this ©s a compact subgroup
of S x G, normal in Q. If we define the map t,: (&, g) — ad,x oM
Jor (a,g)eS X G, then 7,: S X G— (M(G), (0)) is continuous and
To: Q— 1" is an epimorphism with kernel Q.

Proof. 1f z(a, g)=1 then g € K and we have ad xom=a-p(g)- omy.
Hence a = o(g) and («, g) = (0(g), g) with ge K. Since pec K", 2, is
a compact subgroup of S X G. Let H,=supp(['), K, = Ker p; from
3.1.8, K is central in H, mod K,, 50 0,%0Mg = 0Mmg*0,%pmg for
g€ H, (see 3.1.6). Thus 7, is a homomorphism on @ (that it is onto is
clear from 3.1.2) since

T,y 919:) = a1a26g1*592*(0m1<
= a1azagl*‘0mx*ag2*(0m1r = T, 91) % To(Xay Go)

if ¢, g.€ H,. Obviously Q, = Kerz,|2, so 2, is normal in 2. The
continuity of 7, is clear.

4, Norm decreasing homomorphisms on locally compact
groups. Let G be a locally compact group and consider on M(G) the
(o) and (so) topologies defined in § 1. Every norm decreasing homo-
morphism on LYG) extends naturally to a norm decreasing homomorphism
on M(G). To appreciate the usefulness of this extension theorem it
is helpful to recall 1.1.3.

THEOREM 4.1.1. Let F,G be locally compact groups and let
@ L(F)— M(G) be any morm decreasing homomorphism. Then ¢
extends uniquely to a norm decreasing homomorphism @ : M(F') — M(G)
which s continuous on norm bounded sets as a map of (M(F'), (so))
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wnto (M(G), (0)). If {e;: jed} is a left approximate identity of
norm one wn LYF') then the extension 1is given explicitly by the
Jformula

P(p) = lim {p(e;xp): jeJ}  all pe M(F),

where the limit ©s tn the (o) topology. A similar result holds for
right approximate identities.

Proof. Let B = @(L'(F')) and let A be the (o) closure of B in
M(G), so that A and B are subalgebras of M(G).

LEMMA 4.1.2. Let {ei': jeJ} be a left approximate tdentity of
norm one and let {e,”: ke K} be a right approximate identity of
norm one in LY(F). Then in M(G) the (o) limit points of the nets
{ple)} and {p(e,)} all coincide in a single idempotent ¢c M(G), so
we must have convergence

ple') — ¢

() —@_’ ¢
wn the (o) topology. If ¢ #+ 0 then ¢+ 0 and we have a = txa = a*¢
for all ae A.

Proof. Since || p(e;!) || = 1 there is at least one (¢) limit point

for this net, and for an appropriate subnet we get g)(e,-(p,l)—ﬂx.

Thus if fe L*(F') we have
(0)
Mepf <2 plesn’) x@f = Plein' *F) s o(f) .
Hence if {¢;: i€ I} is a net in B with g, = ¢(f;) and pi(;')»;z in A,
we have

X*#(ﬂx*ﬁizk*¢f'ﬁ:¢fi = #i—@"’#

so that Axa = a for all ae A. In particular we have x e A so Ax\ = A.
Similarly if v is a (¢) limit point of {p(e,”)} then v*y = v and axy = a
for all ac A.

If N, v are (0) limit points as above, we have \,v in A, which —
A = A%y = v; hence M = v and all limit points (left or right) coincide
in a single idempotent ¢ such that ¢xa =axc=a if ac A. If @ # 0,
clearly ¢+ 0.

The main step in our proof is to show that, if {f;: jedJ} is a
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norm bounded net in L'(¥’) which is (so) convergent to some pt e M(F'),
then the net {p(f;)} converges to a limit A, in the (o) topology, and
this limit depends only on p, rather than on the particular choice of
the net {f;}. This can be done for any g e M(F'), in view of 1.1.5.
First consider any fe LY(F') and notice that ||f;*f — pu=xf||—0,
which = || pfixpf — p(pxf)||— 0. Let » be any (o) limit point of
the norm bounded net {@(f;)}; there exists a convergent subnet

(a)
@(fiwy) — N. Then

D15 F) P2 o fry ) = @ Fico# Pf ~2o Nxp f

for all fe L'Y(F'), which means that o(uxf) = Ax@f for all fe L\(F).
Clearly A e A since each o(f;)€ B, and this means that

A= f\*("ﬂx*@(ekr) = p(t*e,) .
Thus we get
N = lim {p(xe,”) : ke K}

in the (o) topology, and this formula doesn’t depend on anything but
the choice of pe M(F'). Hence if f; &0, #, then X is the only possible
limit point of {p(f;)}, so if we take N, = lim {p(p*e,")}, we always
have of; BN N

Notice that if fe L'(F') we have || f*e,” — f]] — 0, which gives

<2 p(Fre) 2 ol f)

so that @f =\, for all fe LY(F). Now define ®(¢) = N, for pre M(F),
and verify the properties required. Clearly &(f) = @(f) for all fe L'(f),
so @ extends .

If (v) is a locally convex topology on M(F') we define the bounded
(v) topology (by) by taking as a basis of neighborhoods about zero
all sets X N'Y where X is a (v) neighborhood of zero, and Y is a fixed
norm neighborhood of zero. From the discussion above we know that
if pe M(F) and if W is a (o) neighborhood of zero in M(G), then
there is an open (bso) neighborhood V of zero in M(F') such that
(e + VYN LNF))cpp + W. Now let W' W be a (¢) neighborhood
of zero such that W' = — W’ and W’ + W’ C W, and let U be an open
(bso) neighborhood of zero in M(F') such that

P+ U)ynL(F)Cppe+ W'

If ey + U we can find a (bso) neighborhood U, of zero such that
(1) M+ U)NnLNF)CPr + W'
(2) v+ U, cp+U.
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Then we have @((M + Uy)NLAF)cCd(p+U)NLF))c pu+ W’
and @((A» + Uy N LY(F)) C x + W', which together imply that

PN+ W) N (Pre+ W)+ o

(see 1.1.5), which means that pxe pp + W. Hence p(pt + U)C pp+ W
as required for continuity.

Clearly |[Pp|l = sup{l|p(pxe) |} = [|pll for pe M(F), and if
#, n€ M(F) we have

— (@ _ — )

Ppn) <2 P(px (vxe, ) = Prxp(hxe,) —2o Ppxpr
since N*ek'(s—()))h Hence @ is a norm decreasing homomorphism.

ExampLE. In 4.1.1 we cannot replace the (so) topology with the

(o) topology in M(F'). Indeed, if Z = integers, S = circle, and if 8 is
some irrational number, then o(>7.,@,0, )= >, @,0.i=:p gives a
norm decreasing homomorphism ¢ : LYZ)— M(S). This map coincides
with its extension ®. The sequence {y¢, =0, : n=1,2...} is (0)
convergent to zero, while ¢(,) is not (o) convergent in M(S).

REMARK. The proof of 4.1.1 is also valid for any bounded homo-
morphism ¢ : L'(F)— M(G), which means that the structure of a
bounded homomorphism is determined once we know the structure of
the bounded group of measures @(%,); however, the structure of the
bounded subgroups in M(G) is generally not known unless G is abelian
or the subgroup lies within =, .

4.2. The structure of norm decreasing homomorphisms. If
@ extends the norm decreasing homomorphism ¢ : L'(F') — M(G), as in
4.1.1, then I = »( &) is a subgroup of the unit ball in M(G). Using
the continuity properties of @ demonstrated in 4.1.1 and our knowledge
of the structure of I" we can determine ¢ completely (see 1.1.3).

Let @ = pmg be the unit of I” and denote H, =supp (), Q=
(@, 9)e S x G:ad,«xom, e 't} D2 ={(a,9)e S X G: ad,x pmx = pmg},
and K,=Kerp. Let m: S X G— (S X G/2,), be the canonical map
onto the space of right cosets of 2, so 7 is a homomorphism when
restricted to S x H,, and let 7,: («, g) — ad,x omg for (a, g)e S X G.
Then define 6 : F— (2/2,) © (S X G/2,), to be § =mwozr, 0Pod, so that
0(x) = m(a, g) if and only if $(9,) = ad,*pmg in M(G). The mappings
involved are shown in the following (commutative) diagram.

SxGooE T
1

(S X G/2), D02, —— F
Figure 1
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ProposITION 4.2.1. The map 0 : F— 2/2, is an epimorphism and
is continuous as a mapping 6 : F— (S X G/2)..

Proof. Let x,x,¢ F and let («ay, g), (a,, g.)€ 2 be chosen such
that m(«a;, g;,) = 0(x;), and let («, g) € 2 be chosen such that w(«, g) =
0(xw,). Thus P(0,,) = @;0,,% om,. We have 0(x.2,) = 0x,-0x, if w(a,g) =
(e, g.)7m(x,, g,), which happens if (a,a,, g,9.) € (@, 9)2,. This follows since

C—Valaza(g"lglgz) *OMg = (aag“l * me) * (6(1591 * O ) * (azagz * me)
= P0s10)) 7 PO, ) x P(D,,) = M

We want to show 0: F— (S x G/2,), is continuous. Because @od
and 7 are continuous it suffices to show that 7,: SX G — N = 7(S X G)
is an open map when N has the restricted (o) topology. Let («;,g9,)e Sx G
and let U x V be a product of open sets in S, G with «a,¢ U, g,c V.
It suffices to show that z,(U x V) is always a (o) neighborhood of
(@, go) in N. If this set fails to be a neighborhood there is a net
{(@;, g} such that sty = t(a, ;) = 60,0, % OMg ~2s @,d, % pm, while
pi€7t(U X V). We can assume g; € g, WK for some compact neighbor-
hood W of g,, and, by taking subnets, we get g, — g, € ¢.K, a; — a, € S.

If we let g;* = g,(9.7'90), then g;* — g,. Let a;* = a;0(g9,7'g,); this
makes sense because g,0,7'€ K. Then we have

T@i*, 95%) = A0y ok OMg = X0(g:7'G0)0y % 0510 * OM i

(o)
= ajﬁgj*pmx = To(@j, 95) — A0, % Mg .

Since g,;* — g, we must have a,;* — «, and «,* is eventually in U; hence
Tla;*, 9;%) = tlay, g;) is eventually in z,(U x V), a contradiction.

Let t*y(a, g) = {ad,* pmg, ¥y for ¢ € C(G). Then 7%y € Ci(SXG)
since K is compact, and in fact 7* is constant on right cosets of 2,
in S X G since 2, = {(o(k), k) : ke K}. If ¥ e Cy(S x G) and is constant
on right cosets of 2, let us identify it with a function

T e C((S x G/2y),) .

This function vanishes at infinity since £, is compact. We can give an
integral representation for norm decreasing homomorphisms as follows.

THEOREM 4.2.2. Let F, G be locally compact groups and let
@i LNF)— M(G) be a nonzero norm decreasing homomorphism with
extension @ to M(F'), as in 4.1.1. Denote

(1) I'=9p(&%)

(2) ¢ = pmg the unit of I

(3) 2={a,9)eS xXG: ad,xpmge '}
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(4) 2 ={a,9)eS X G: ad,xomg = 1}.
Define the maps
To: S X G— T
% C(@) — C(S x G)
m*c* . C(@) — C((S x G/%,),)
0. F—> Q/8Q,

as indicated above. Then we have the representation
() P, vp =, (TT*y) 0 0)
Sfor all pe M(F) and € C(G).

REMARK. Since 0: F'— 2/2, is a continuous homomorphism and
w*t*p e C((S X G/2Q,),), it follows that (z*r*¢)od is a uniformly con-
tinuous and bounded function on F. Thus the right hand side of (%)
is uniquely determined. We will want to make use of 1.1.1 in the
following discussion.

s

Proof. We have {P(0,), ¥) = {0¢, T*T*y) = {0, (T*T*yr)0 0> if
xeF. If pe M(F) is of norm one then there exists a net {0;: je J}
in the convex span of the extreme points of X, such that ||o;[|=1

and aj-(io)—>p (see 1.1.3). If we write o, = 3, MJ, )0, (finite sum),
we can apply 1.1.1. to get ~

Pty Y ——LP(03), ¥ = XN (7, ®XP(0,), ¥
= 2\ M7, X0, (T*c*4r) 0 6)
= {0j, (T*T*P) 0 0> — L, (W T*ypo ) .

Thus {Pp, ¥p =, (T*T*p)o ).

As a converse we have the following theorem which classifies all
norm decreasing homomorphisms.

THEOREM 4.2.3. Let F,G be locally compact groups and let I”
be a subgroup of Sy With unit 1 = pmg and with

Q={(a,9)eS X G: ad,xpmgel},

2, ={(a,9)e S x G: ad,xpmy =1}, Then if 0: F— 2/2,1s any con-
tinuous epimorphism (2/92, is given the restricted topology from
(S X G/2,),), the relation

(*) pte, vy =ty (WT*y) 0 0
for pe M(F), 4e€C(G) defines a morm decreasing homomorphism
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@ : (M(F), (s0)) — (M(G), (¢)) which ts continuous on norm bounded
sets, and we have P(&,) = I,

REMARK. If @ has the above continuity properties it is clear that
@ is obtained, as in 4.1.1, by extending the norm decreasing homo-
morphism & | L)(F').

Proof. From 3.1.11 we see that 2, is a compact subgroup of
S x G which is normal in 2, so 2/2Q, is well defined. We have also
noted that t*y(«, g) = {ap,*xpmg, ¥ is in C(S X G) and

w*t*a € Cl(S X G/20).)

S0 (T*r*4r)ol is bounded and uniformly continuous on F. Hence (x)
is always well defined.

Clearly @ : (M(F'), (so)) — (M(G), (0)) is a norm decreasing linear
map, and continuity on norm bounded sets follows from 1.1.1. Now
P(0,) = ad,xpmy, for all (a,g)en0(x), s0 Hoo = (t,enmw")ol; thus,
P(&p) =1 and @ is a continuous homomorphism of (&%, (s0)) into
(M(G), (0)). Convolution is a jointly (so) continuous operation in X,
80 @ is a norm decreasing homomorphism of M(F') in view of the
density theorems 1.1.3, 1.1.4.

A norm decreasing homomorphism ¢ : LYF')— M(G) is order pre-
serving if ¢ = 0= () = 0. From the continuity properties given in
4.1.1 and the structure theorem 3.1.8 it follows that ¢ is order
preserving « @( &) is a group of translates of Haar measure
{0,xmqe: xe Gy}, where QCG is a compact subgroup, normal in the
subgroup G,. Every norm decreasing homomorphism ¢ is closely related
to an order preserving norm decreasing homomorphism of L'(F') into
M(S x G).

If 250, are two subgroups in S x G satis{ying conditions (1) and
(2) in the discussion following 3.1.8, define the maps 7, ---, 7** as
indicated there.

THEOREM 4.2.4. If @: (M(F), (s0)) — (M(G), (6)) s a morm de-
creasing homomorphism, continuous on norm bounded sets, and if
I' = (&) has unit © = pmg, then the subgroups

Q={(a,9)e SxG:ad,xpmre '} D2 ={(a,g9) € SXG: ad,*pmx = oM}

satisfy conditions (1) and (2) of 3.1.9 and we can factor @ = t**o@
where @ s some order preserving norm decreasing homomorphism
of M(F) into M(S x G). Here @ maps &5 to the group of measures
{0,xmg,: xcQ} and v** 4s a homomorphism on the range of @.
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Conversely, +f @ . M(F)— M(S X G) 1s any order preserving norm
decreasing homomorphism, let Q = supp (I(&y)) DO, = s(0(,)). If
2, Q, satisfy conditions (1), (2) m 3.1.9, then @ = t** o @ : (M(F),(s0)) —
(M(G), (0)) s & norm decreasing homomorphism, continuous on norm
bounded sets.

Proof. Let 220, satisfy (1) and (2) of 3.1.9 and define M, to
be the subspace of measures in M(S X G) whose intersection with
Yisxe 18 0[S &, :0]. We assert that

(¥x) M, is a subalgebra in M(S X G), t**(0,xmy) = 7**(9,) = T,(x)

for xe Q, and 7** is a norm decreasing homomorphism on M,.
Clearly M, = {¢:s(¢) C 2}, and is a subalgebra. We have already shown
(in discussing 3.1.10) that m, e M, and 7**(0,*m,) = 7%*(0,) = 7()
for all xe 2. Thus ** is multiplicative on S&,, and since convolu-
tion is separately (o) continuous we can show that c**(0,*pu) =
c(3,) k(1) for pre My, me 3. Then if A;—2 \ for ||\ || = 1, where
Aj € colSZ,] we use the same idea once more to get

Ok 1) <2 T E (g ) = T T (pr) — D TR TR ()

80 T**| M, is a homomorphism.

Now @ maps S&, into M, and if e M(F'), || p|| = 1, there exists
a net {¢;}CcolS&y] such that ;zj(s—o)>;z. This means @yjj—@»@y
while @p;e 3 ygxey N My, so @ue M, and @ maps M(F') into M,. Thus
7**@ is well defined and is a norm decreasing homomorphism with the
desired continuity properties (z** is (¢) continuous on M(S X G)).

Conversely, let @ be given; then £, 2, defined above satisfy (1)
and (2), as shown in 3.1.11. The homomorphism 0 : F'— Q/2,, associated
with @ as in 4.2.2, is continuous, 80 §*4 = o0 is uniformly continuous
and bounded (UCB) on F and we can consider the dual maps.

0% 1 C(S x G/Qy),) — UCB(F)
0%+ M(F) —> M((S % G/2y),) .

For ¢ C(S x G) define w*r€ C((S x G/2,),) by lifting the function
w*p(x) = | Y(wt)dm, () (constant on right cosets of 2,) over to the
coset space (S X G/2,),. The desired map @ is given by

Py, vy = {0 *p, Wy = {pt, (T*ap)o 0

for e Cy(S X G). It is easy to verify that @(0,) = 0, *m,, for all
(«, g) € m'0(x); therefore, as indicated in 3.1.10, we have {t**@(d,), ¥v) =

<T**(3(a,g)*mﬂo)’ "rlf> = <T**(3(a,g))r "»h\> - <a6g*pml{, "P‘> = <9—7(5m)’1[f> fOl'
all xe F. Thus  =7**@ on S&,. But from 1.1.1 we see that @
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defined above is continuous on norm bounded sets mapping from the
(so) to the (o) topology; clearly, then ¢**@: (M(F"), (s0)) — (M(G), (o))
is continuous on norm bounded sets. Now @ and 7**@ both enjoy
this continuity property and coincide on S &; from 1.1.3 it follows
that they coincide on all of M(F'), and this is the desired factorization
of @.

5. Examples and applications. In 5.1 we analyze the special
structure of norm decreasing monomorphisms ¢ : LY(F') — M(G) between
locally compact groups F' and G; then in §5.2 we give the structure
of all norm decreasing homomorphisms ¢ which map L'(F) onto L'(G).
Maps in the latter class have very simple structure.

5.1, Norm decreasing moncmorphisms. Let us denote & =
S&y=1{ad,: |a| =1, ve F} and &, = &, throughout this discussion.

LemmA 5.1.1. If ¢: LNF)— M(G) is ¢ norm decreasing mono-
morphism, and if @ is tts ewtemsion to M(F) as in 4.1.1, then ¢ s
a monomorphism of M(F') into M(G). Furthermore o(F,) N Si = {i},
where © = $(0,), and p =N\ n P(F,) whenever s() = s(\).

Proof. If p,ne M(F) have pp = @n =& and ¢ #= A, then there
is some fe L'(F') such that psf 7= M+ f while p(pxf) = p(Axf) = Exf,
a contradiction. Hence @(%,) N St = {1} and the last property follows
from 3.1.4.

We propose to study the structure of all norm decreasing homo-
morphisms ¢ whose extensions @ have the special property 17, N Si = {3},
where [y, = §(F,) and ¢ = »(d,) is the unit in [',. This discussion
will apply to norm decreasing monomorphisms as a particular case.
Hereafter we will denote I" = @(& ), Iy = §(F#,) (writing the unit of
these groups as ¢ = pomg), H, = supp ({"), and

Q2={a,9)eS X G: adg,xpmgel}.

Let 7w : G— (G/K), be the canonical map onto the right coset space,
so w: H,— H/K is the corresponding canonical homomorphism. Let
Y# Va De the topologies on F, G and, if v is a group topology on G,
let v/ denote the quotient space topology on (G/K), (notice v/mr = w(v)).
The restriction of 7, to a subset NG is v |N. We will speak
interchangeably of a topology v and the collection of open sets it
specifies.

The following lemma holds for all locally compact groups; notation
is chosen so its meaning in the present context is clear.
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LEMMA 5.1.2. Let F, G be locally compact groups and consider
any system of subgroups Kc H,C G with K a compact subgroup in
G which 1is normal in H,. Let w: G— (G/K), be the canonical map
onto the right coset space. If {: F— (H,/K, 7¢/T) 18 a continuous
epimorphism then {(vy) and w'ol(v;) are topologies in H/K and H,
respectively; moreover, if v is the common refinement in H, of
(Ye| Hy) and 7w 'ol(vy) then (H,, v) s a locally compact topological
group, v/t =L(vz), and {: F— (HJ/K,v/T) is an open, continuous
eptmorphism.

REMARK. Unless K is trivial, 77'o{(vz) will not be a Hausdorff
topology, but in all other respects (homogeneity, joint continuity of
multiplication, ete.) it is like a group topology.

Proof. The topology axioms for w'o{(v,) follow if we can verify
them for {(v;). Only the finite intersection property is nontrivial. If
V., Vievy let U; = V,;-Ker{ and notice that { () N U; # @ implies
that {(x)c U;. Thus

LVINLV) =U)NLT,) =x2: T'@NU,+ 0, 1 =1,2}
= C(UI n Uz)e C(’YF) .

Now (H,,v) is a Hausdorff space and the collection of sets Z =
{UNV:U=WNH, Wevs V=rn'l(X), Xev,} is a base for 7.
If UNVeZ then (UN V)= U"'N Ve %, so the inverse mapping
is bicontinuous. It is quite easy to verify that v is homogeneous, in
the sense that v = {&#U: Ue~} for any x € H,, so joint continuity of
multiplication will only be proved at the identity ec H. If ¢ lies
within UNVe % there exist U,ev:| H, and V,€ 77 'o{(7;), which
contain e, such that Uc U and V7*cC V; hence (U,NVy) X (U,NV,)
is an open neighborhood of (e, ¢) in (H,, ¥) X (H,, ¥) which maps into
U NV under the product mapping.

Clearly v D7 to{(v,), so that v/m = w(v) DworL(7vz)) = &(Vz). For
the converse inclusion, we first make a few simple assertions:

(1) If Ac H, is a union of K-cosets and if B is any subset of
H,, then (AN B)-K= AN (B-K);

(2) If A,c H, for indices e I, then (Uae;A2) K = Urer(4.-K).
Now a typical element in v has the form X = U.e;4: NB. where
A, =rn'o{(U,) for some U,c7;, and B, =V, N H, for some V,€ .
Evidently A, = A,-K and B,-K = n'o(nB,), so we get

m(X) = n(X-K) = m(Uaes(Aa N Bo)- K)
= T(Uwerde N (B,+ K))
= T(UaemCUU.) N 77'7(B.))
= Ueel(U.) N 7(B.) -

()
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But continuity of { implies that {(vz) D (7¢/ | H,/K) and it is easily
verified that the latter collection of sets is just w(ve| H,); hence the
last term in (%) is in &(v,), giving n(v) C {(vz). Clearly v/m = {(v,) =
{: F—(H,/K, v/r) is an open mapping; so (H,/K, v/7) is topologically
isomorphic to the locally compact quotient group F/Ker (£). To see
the local compactness of (H,, v), notice that Kc H, is v compact
because v| K = v¢| K. A result due to Mackey gives local compactness
(see Montgomery-Zippen [7], p. 52).

If e F write s(x) = s(@(d,)), a coset of K in H,. The map { =

wos: F— ((G/K),,Ys/7t) carries F onto H,/K, is a homomorphism (see
2.1.1), and is continuous since @; — 2 =0, LN S P(0,,) — P(d,) =

wos(x;) —mwos(w). If pe 'y and g€ s(y), then we can write pt = o, | pt| =
0.(0,%mg) and we can take p, to be a unique continuous function on
the coset s(y)c H,. Assigning p, in this manner for each pe I, we
have 0,..(st) = p.(s)oA(t) for se s(y), tes(\), as indicated in the proof
of 3.1.2. Define p on all of H, such that o(z) = p.(x) if x e s(p), el
this is unambiguous since s(¢) = s(\) = ¢ =\ (we assume 1", N St = {i},
so 3.1.4 applies).

Consider the group topology v on H, constructed as in 5.1.2 for
the epimorphism { = wos: F— (Hy/K, 74/7).

ProprosiTION 5.1.3. (H,, 7) is a locally compact Hausdorff group
and pe(H, 7).

Proof. Clearly p is a unimodular multiplicative function on H,
which is continuous on cosets of K (see proof of 3.1.2). The topological
group properties of (H,, v) were verified in 5.1.2. Given ¢ > 0 we can
find a v, neighborhood V of the unit in G such that | o(g,) — p(g.)| < ¢
for all g, g,€ H, with g, = ¢, mod X and g,"'¢g,€ V. This is clear since
0.°(8) = p.(g9s) = ap(s) for some || = 1, whenever se K, ges(p), pel’
(see proof of 3.1.2), and we know p is uniformly continuous on K.

Let ge H,; then g,€ s(x,) for some x,€ F, and if U is a compact
v neighborhood of x,, N =s(U) is a neighborhood of g, in (H,, 7).
N is compact since continuity of wos: F— (H/K, v/n) = mwos(U) is

compact, and since K is a v compact subgroup in H,. If p fails to be

v continuous at g, we can find a net {g;}C N such that gj—(r—)»go

while o(g;) — 8B # B, = 0(g9,). For each index j there exists an xz;€ U
such that g¢g;e s(x;); we can assume that the net {x;} is v, convergent

to some @, U, which will — pt; = $(3,,) ~2> $(3.) = . But this
= () = g,.K = s(t), since g; LN Goy SO o, = 1, = @(d,,). Recall that
;= 0(0,,xmyg) and pt, = p(9, *mg) from the definition of p.

If v+eC(G) has sup norm one and {f, > # 0, then ¥(s) =
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S«p(ts)p(t)dmx(t) is in C(®), ||¥]l.<1, and ¥(s) = ap(s) for all
se ¢g,K, where a = {g, > (a constant = 0). Furthermore,

Il

[] #ts)o@dms |owdio,, «mae)

oy ) S
g[S“P(tS)p(tS)de(t)]d[ago *me](8)
|

Il

I

(@) 0(@)d[m g % 0y * M ](2)
= | v@po@dls,, xml(w) = o > -

If ¢ >0 we can insure that |¥(g;s) — ¥(g,s)| < e for all se K and
J = J. since gjﬁf)» gs, and this means that a = {y,, ¥ «—;, ¥ =
S!Vpd[Bg j*mK] = Sllf(gjs),o(g,-s)de(s). The last integral is eventually
within ¢ of

| 7@s)otass)amxe) = @ | Taao(g:s)dms)
= a | pladp(e)dmls) — as.E .
Since this is true for all ¢ > 0, and 8, = B, we have a contradiction.

COROLLARY 5.1.4. If Fis a compact group and ¢ : L'(F)— M(G)
18 a norm decreasing monomorphism, then in 5.1.2 I' = () s a (0)
compact subgroup of >y, Hy = supp (I") is a compact subgroup in
G, and v =vg| H, in H,. Thus if o is defined as above, o€ (H,, Yq)".

Proof. Clearly [I" is compact; H, is then <, compact since
(H/K, vg/7) is compact (recall wos: F'— (H,/K, v4/7) is a continuous
epimorphism). By definition of v the map zmos: F— (H /K, v/r) is
continuous and we know that K c H, is v compact; thus H, is ¥ compact
as well as vy compact. Since v is finer than 74, these must be equivalent
topologies on H,.

Consider the following maps between measure algebras.

(1) Let H, G be locally compact groups and let 7: H— G be a
continuous monomorphism. Define j**: (M(H), (s0)) — (M(G), (¢)) such
that {5** ¢, ¥> = g, yog) for 4 e C(G).

(2) Let H be a locally compact group and let pe H". Define
A, (M(H), (s0) — (M(H), (s0)) such that AJz) = op, so <A, ¥ =
L, 0.

(3) Let F, H be locally compact groups, let K be a compact
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normal subgroup in H, and let {: F'— (H/K, v4/7) be an open con-
tinuous epimorphism, where 7 : H — H/K is the canonical homomorphism.
Then define @ : (M(F'),(s0))—(M(H), (so0)) such that @y, >={pt,(w* )5,
where the function 7*y(x) = | Y(at)dmg(t), constant on cosets of K,

is considered as a function in Cy(H/K).

We assert that the maps in (1) --- (3) are all norm decreasing
homomorphisms, continuous on norm bounded sets with respect to the
topologies indicated. Since (A,x)*f = o(p*0f), this assertion is clear
for (2), and follows easily from 1.1.1 for (1), because 4o 7 is uniformly
continuous and bounded on H; we momentarily put off verification of
(8). Once this assertion has been checked we can prove the following
structure theorem.

THEOREM 5.1.5. If we are given groups and maps as in (1) -« - (3)
them the map @ = j**oA, 0@ : (M(F), (s0)) — (M(G), (0)) s a norm
decreasing homomorphism, continuous on morm bounded sets, with
the special property that I'yN St = {z}, where [y = §(F,) and i1el”
is its unit. Conversely, let ¢ . L{F)— M(G) be a norm decreasing
homomorphism whose extension @ (as described im 4.1.1) has the
special property 'y N St = {1}, where ['y = P(F,) and © = pmx s its
unit. If H, = supp ("), then we get o = j** o A,o@ by taking groups
H=(H,7>K=(K,v) and maps {=moes: F— (H/K,v/n), j=
id: (Hy,v) — (G, Ye), where pe (H,, v)" is the unique function on H,,
continuous on cosets of K, with the property p = p|p| for all pel’,.

REMARK. In the first part, @ is clearly the extension of ¢ =
@ | L}(F). Furthermore, the unit of /" will be 1 = pm and supp(!") = H,
when H and K are regarded as subgroups in G. In the second part
the v topology in H, is defined as in 5.1.2.

Proof. In the first part consider H and K as subgroups of G (with
new group topologies) and j as the identity injecting H into G; H
has a topology finer than 7| H, but since j is continuous, it is a
homeomorphism on compacta and on cosets of K in particular. If
xe F it is easy to verify that @(d,) = p(0,*my) for any ge T ol(x).
From this it is clear that /” has unit 2 = pm,, and that ', N St = {z}.

Conversely let ¢ : L'(F') — M(G) be given. If we take H = (H,,7),
K= (K,v) and let { =7mos, 7 =1d: (H,,7)— (G, vs), we see that H
is a locally compact group and that {: F— (H,/K, v/m) is an open,
continuous homomorphism (5.1.2); thus, the maps 7**, A,, @ are well
defined. We know o€ (H,, 7v)" from 5.1.3.

If w¢ F then |$(0,) | = d,*my for any g € s(x) and (9,) = 0(0,* M)
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by definition of p. It is a simple matter to verify that
id** 0 4,00(3,) = 0(0, % M)

for any ges(z), so that @ = td**oA,0® on &, Since the maps on
each side of this identity are continuous on norm bounded sets, as
maps of (M(F), (s0)) into (M(G), (0)), we get » = 1d**oA,0@ on all
“of M(F) from 1.1.3.

COROLLARY 5.1.6. A norm decreasing homomorphism ¢ : L'(F)—
M(G) is a monomorphism <« 1its extension has the structure @ =
1d**o A, 0@, as tn 5.1.5, where the map { = wos which induces @ is
an tsomorphism of F onto H/K.

Proof. If ¢ is a monomorphism, so is @ | F (see 5.1.1); now 5.1.5
applies and it is clear that { = wos is an isomorphism, as required
for (=). Notice that the maps A, and ¢d** are always monomorphisms
in (2) and (3) above. Conversely, in (3) we have @ = 7** o {**, where
Ly ) =gty oy and (¥, oy = (g, T4 define maps

M(F) =55 M(H,K, ~/7) = M(H,, ) .

Since { = wos: F— (H,/K, v/7) is a topological isomorphism if { is
1:1, £** is a monomorphism. It is easy to verify that 7*(C(H,, 7))
is sup norm dense in C(H,/K, v/7); hence 7w** is always a monomorphism.

In the following paragraphs we digress to study the map defined
in (3) and prove the assertions about it which were used to prove
5.1.5. Then in 5.2, we will use these observations to study the
structure of special norm decreasing homomorphisms.

THEOREM 5.1.7. Let F and H be locally compact groups, let KC H
be a compact normal subgroup, and let {: FF— H/K be an open,
continuous epimorphism. Then the map @ : (M(F'), (so0))— (M(H), (s0)),
defined such that {@pu, > =y, (T*y)ol>, 1s a morm decreasing
homomorphism, continuous on mnorm bounded sets, if we identify
() = S«/r(wt)dmx(t) (constant on cosets of K) with a function in

C(H/K) for each e Cy(H).
Proof. Consider the maps shown in Figure 2,

(M(F), (s0)) —— (M(H), (s0))

ldh ln:**
(M(F|Fy), (s0)) —% (M(H/K), (s0))
Figure 2
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where F|, = Ker (), <@,y > =y, romyy (w,: F— F/F, is the canonical
homomorphism), {@,xt, > =y, prolom,™"), and where {m**p, > =
{p, w*p>. Clearly @, is bicontinuous with respect to the topologies in
Figure 2. Continuity of @ follows from the lemmas below, since we
can verify by direct computation that @ = 7**c@,0®@, on M(F').

LEMMA 5.1.8. Let Q be a locally compact group with Q,CQ «
closed, normal subgroup, and let w,: Q@ — Q/Q, be the canonical homo-
morphism. Define @ : (M(Q), (s0)) — (M(Q/Q.), (s0)) such that (@, =
pypomyy for e CyQ/Q). Then @ is a morm decreasing homo-
morphism, continuous on norm bounded sets.

Proof. It is easy to verify that @ is a norm decreasing homo-
morphism. We assert that @(M(Q)) = M(Q/Q,), and in fact @2, ) =
Yireps from this it will follow that &(LYQ)) is a two sided ideal in
M(Q/Q,) since LYQ) is a two sided ideal in M(Q). If X, =
{e:llpll =1, s(pyc X} for X Q, we will show that &(3) =X, .
for all compacta K C Q; since 7, is open, this means that every /¢ with
compact support in M(Q/Q,) is the @-image of some pe M(Q) with
|2l = [In]]. Clearly @(Xg) C 2, x, and K compact = the map

?: (Zg, (0)) — (MQ/Q0), (9))

is continuous, in fact if {1t} C Sx with ;2 s and if fe C(Q) has
f =1 on K, then for any ¥ € C(Q/Q,) we get (Dt;, > = {pj, romw,y =
{iy F-(romo)y — e, frlpom)y = {@pt, 4rp. Now Xy is precisely the
(0)-closed convex span of {ad, : |a| =1, xe K}, so @(Xy) is (0)-compact;
since @(d,) = 0., we have @(Xy) Dco{wi.,: |a| =1, xe K}, which
gives the converse inclusion.

Now if v e M{Q/Q,) there are measures \, with compact support
such that ||», — M| — 0 and || M| = || M) + 3520 | M — N, || (restrict
M\ to increasingly large compacta). Then there exist p,€ M(Q) with
@(#1) =N, [l = In [l and @(z4, 1) = (Vi — M), ”/%-HH =[N — Nl
for n = 1; hence g = >,7,p, converges in M(Q), |||l =1|\|, and
@(1r) = )\ as required.

Next we show @(LY(Q))C LY(Q/Q,); in fact, if ¢ = @f and x e Q/Q,,
then given ¢ > 0 and gecm,'(x) we can find a compact neighborhood
V of g with ||0,xf — f|| < ¢ for all he V. Thus ||@(6,)x0f — @f| =
[| 0% — ptl| < e for yem,V. Since m, is open and continuous, this
means ¢ = @f e LY(Q/Q,) (see Rudin [9], p. 230; the abelian hypothesis
used there is superfluous). To prove 5.1.8 it is now sufficient to show
that @(L(Q)) is norm dense in LY(Q/Q,). To prove density, let {e;} € LYQ)
be a left approximate identity such that e¢; > 0, ||e;|] =1, and s(e;)
are compacta which are eventually within any fixed neighborhood of
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the unit in Q. Then s(@¢;) are compacta shrinking to the unit in Q/Q,.
But {@e;, +>—r(e) for all ¥ € C(Q/Q,), hence De; ), 0,and || Pe; || £ 1;
these facts together imply that lim {|| @e; ||} = 1. Since @¢; = 0 (clear),
{@¢;} © LY(Q/Q,) is an approximate identity for LY(Q/Q,). Since @(LYQ))
is an ideal in M(Q/Q,), norm density of @(LYQ)) in LYQ/Q,) follows.

LEMMA 5.1.9. If Q 1s a locally compact group, KC Q a compact
normal subgroup with canonical homomorphism 7w: Q — Q/K, define
7% 1 (M@Q/K), (0)) — (M(Q), (s0)) such that {x**pe, o = {pt, T4
where THy(x) = Sa}r(xt)dmx(t) (constant on cosets of K) is regarded

as a function tn Cy(Q/K). Then m** 4s a norm decreasing homo-
morphism, continuous on morm bounded sets.

Proof. Normality of K in Q= hxMg = Mexh = mexh*xmg for
all he LY(Q). Define ¢: M(Q) — M(Q/K) such that (&u, v> = g, o).
It is a simple matter to verify that (1) 7**&(p) = p*xmg for all
re M@), and (2) &x**(p) = o for all re M(Q/K). One can also verify
by direct computation that 7**p = (7**p)xmg for pre M(Q/K). From
(1) we see that 7**(M(Q/K)) = M(Q)xmg, so that 7#**(LY(Q/K)) is
closed under right or left multiplication by elements of M(Q)*mg.
Finally, z**(LYQ/K)) c LXQ); for if ¢ > 0 and € @, and if fe LY(Q/K),
we can find a neighborhood V of 7(x) with |/0,f — f|] < ¢ whenever
e V. Thus, if W is a neighborhood of 2 such that #(W)CV, we
have || 0, (T**f) — T**f|| = 1| £(0,) * E§(m**f) — E@**f) || = || 0. xf — FlI <e
for all ye W. Thus wn**fe LY(Q) (again see Rudin [9], p. 230). If
{e;} is a norm one approximate identity in L'(Q/K), then ej~(s—o)»58
and it is easy to show that ﬂ**ej&mx = **(0,) from 1.1.1. We
can arrange that the supports s(m**e;) shrink to s(myg) = K, a compact
set; thus we get mw**¢; —(i?)—>mx by applying 1.1.2. Since 7**(LYQ/K))
is closed under right multiplication by elements of mxM(Q) = M(Q)*Mm g,
we get (for any he LYQ)) || (m**e;)xMrxh — MgxMgxh || — 0, which
= **(LY{Q/K)) is norm dense in mgx LYQ).

Consider z2; ™% 4 in M(Q/K) with ||| = 1; if he LXQ) then
(T**p)xh = (**pu;)xmexh. But we can approximate mgxh in norm
by some n**f(fe LYQ/K)) and we know that (7**u;)x(7**f) =
T (g F) T (T )+ ().

5.2. Norm decreasing homomorphisms which map L'(F') to
LYG). Suppose @ actually maps L'(F') onto LYG), then the structure
of @ is exceedingly simple. First recall that if ¢ is a norm decreasing
isomorphism of L'(F') onto L*@) it is actually an isometry; furthermore,
an isometric isomorphism has the special structure



NORM DECREASING HOMOMORPHISMS OF GROUP ALGEBRAS 1217

Cof, ¥y = | oos(rros(@is@)

where s: F'— (G is any topological isomorphism and oeG", as was
first proved by Wendel [10], [11]. Although the structure theorem
5.1.4 could be used as the basis for a direct proof of these results,
it only gives conditions on the structure of ¢ which are necessary
(but not sufficient) if we are to have @(L'(F)) = LY(G). To identify
these norm decreasing isomorphisms (or isometries) precisely we would
have to retrace some of Wendel’s analysis rather than do this we use
‘Wendel’s analysis as a starting point.

THEOREM 5.2.1. Let ¢: LF)— LXG) be a morm decreasing
epimorphism. Then there exists a closed normal subgroup F,cC F,
an tsometric tsomorphism A: LNF/F)— LNG), and Be F" with
Ker BC Fy, such that ¢ = Ao(n*Ag), where Ay(y) = By, and the
canonical homomorphism w: F— F|F, gives {m*(pt), ) = {p, yom)
Jor +re C(F/Fy).

Proof. First notice that, if s(x) = s(#(9,)), then s: F—G is a
continuous homomorphism; in fact, $(0,) = pmx for compact subgroup
KcG and pe K", and if he L(G) we can write & = @f for some
fe L(F). Thus hxpomg = @(f)*®(0,) = ¢f = h, which is impossible
for all k unless K = {e}, s0 » maps &y into &yw. For continuity
of s see remarks preceding 5.1.3. Hence I, = {xe F': s(x) = ¢ in G}
is a closed normal subgroup in F. If we define B(z) = ae S = #(0,) =
Aly,, the continuity properties of @ (see 4.1.1) insure that Be F’;
thus Ag: pt— B is an isometric automorphism of M(F'). The map
w*: M(F)— M(F/F,) has been discussed in 5.1.8; we assert that z*
has the following properties (which will be verified at the end of this
proof):

(1) =*LY(F)= L(F/F,), and

(2) ll7*(w |l = inf{lz£ + n |l : neKer (@),
the quotient norm in M(F')/Ker (7*).

Clearly pte Ker (% Ap) = {m* Au(), 4> = S By (ze)dma) = 0 for
all e C(F/F,); it is not hard to show tha€ reKerp =<{pp, o> =
SF {P(0,), podp(x) = gF B(x) {04m), ¥ dp(x) = 0 for o€ C(G). The non-
trivial first equality here can be seen from 4.2.2, or directly by looking

at the action of @ on finite sums of point masses and using the (so)
continuity of . We assert that Ker @ D Ker (1*4;), so

A= po(n*dg)™ 1 M(F/F) — M(G)

is a well defined homomorphism.
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LEMMA 5.2.2. If {f;} is a met of bounded functions in C(F')
with M = sup{|| fille} < o= and f; — f uniformly on compacte, then

(39—, £ for all. e M(F).

Proof. As usual, for bounded fe C(F') we define {y¢t, f> =y, Axf)
where E'e B(F) and E Ds(y¢). For K compact in F' we obviously have
{p| K), fiy— (| K), f) and for suitably chosen compacta K, s(y)
we have | ¢t — (| K,) || — 0; hence g1, f;> — <pt, £

Each function ¥ (x) = {J,.,, ¥ is continuous, bounded, and constant
on cosets of F, in F, if e Cy(G). But any bounded fe C(F') which
is constant on cosets of F, can be approximated uniformly on compacta
by a uniformly bounded net of functions selected from {how: h e Cy(F/F,)};
in fact, if K F is compact so is 7K, and if U is a relatively compact
open neighborhood of 7K, we can find continuous % such that h=1
on 7K, h = 0 outside U and 0 =<k < 1. Then f-(hox) coincides with
h,omw on F, where h(x) = h(z)-f(x~(x))e C(F/F,); we have howr = f
on K and || hom||le = || f]|l. as desired. Taking ¥ as the uniform on

compacta limit of uniformly bounded net {h;o7w} we get

ppy ¥y = B, Ty = lim (B, hyomd} = lim {(a* Ap(pe), hid} = 0

if peKer (n*A4p), so Ker @ DKer (7*A4,).
Now || 4]| £ 1 since (2) insures that

|7 As() || = inf {ll gt + n || : me Ker (*4y)
= inf {|| ¢ + n||: neKer @}
zinf{||pp + on|l = [ ppll} = [|ppl

forpe € M(F'). Since w*: (M(F), (s0)) — (M(F'|F,), (so0)) is continuous on
norm bounded sets (see 5.1.8), (7*)™* is open on Xy, relative to the
(so) topologies; hence A : (M(F/Fy), (so)) — (M(G), (¢)) is continuous on
norm bounded sets. From (1) we see that 4 maps L'(F/F,) onto LY(G),
so A on M(F/F,) coincides with the extension A from L'(F/F}) discussed
in 4.1.1. Furthermore,

N &pir) = PO (m*Ag)™( Sriry) = <ﬁ{%5x weFy = {0,,: x€ F},

80 M &ppy) N S{0,} = {0,} in &y and the analysis of 5.1 applies; i.e.
we can write 4 = j**oA,o(*: M(F/F,)— M(G) as in 5.1.5. In our
present context some of these maps are trivial since 4(d,) = 0,10
for e F/F;,; indeed, p and K are trivial, j is the injection of H =
{s(®): xe F'} into G, and {: F/F,— H is given by {(x) = s(4(d,)) =
s(m(x)). But F,=Kers=Kerw in F, so { is an isomorphism of
F/F, onto H; hence, as indicated in 5.1.6, 4 must be a monomorphism
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on M(F/F;). Thus 4 is a norm decreasing isomorphism between L'(F/F})
and LYG), and Wendel’s analysis applies to 4.

In proving 5.1.8 we showed that #*(M(F')) = M(F/F,) and that
(X wm) = Suwrirg. The latter identity proves assertion (2) above.
Furthermore, we showed 7*(L'(F')) c L\(F/F,) is norm dense, and that
a right approximate identity {e;} of norm one in LYF') is mapped to
the same sort of approximate identity {7*¢;} in L\(F/F,). Let fe L (F/F,),
say with [|f|| =1, and let e M(F') be chosen with || ¢|| =1, n*p = f;
then 7*(pxe;) = (T*p)*(m*e;) = fx(w¥e;) Mf and pxe;e L'(F) with
l|pxeill = |zl =1 f|l. Hence we see 7*(Spp) is norm dense in
Snprg. We can find g, € L'(F') with ||g,|| =1 and ||n*g, — f|| = 1/2.
Since w*g, — fe L'(F/F,), there exists g, L'(F) with || ¢.|| = 1/2 and
l|m*g, — (f — m*¢g.) || < (1/2)*. By continuing this selection we get g, € L*(F)
with [[g, || = (1/2)*"" and [[7*g, — (f — 2= 7*g) || < (1/2)*. Thus g =
S g, converges in L'(F') and n*g = >\>., n*g, = f, proving assertion
(1) above.
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