SOME AVERAGES OF CHARACTER SUMS

H. Walum

Let χ and ψ be nonprincipal characters $\bmod p$. Let f be a polynomial $\bmod p$ and let a_{1}, \cdots, a_{p} be complex constants. We will assume $a_{j}=a_{k}$ for $j \equiv k(p)$, and thus have a_{n} defined for all n. Define

$$
\begin{equation*}
S=\sum_{r} a_{r} \chi(f(r)) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{n}(c)=\sum_{r} \psi(r) \chi\left(r^{n}-c\right) \tag{2}
\end{equation*}
$$

where the variables of summation run through a complete system of residues $\bmod p$.

The averages in question are

$$
\begin{equation*}
A_{1}=\sum_{a=1}^{p-1}\left|J_{n}(a)\right|^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}=\Sigma|S|^{2} \tag{4}
\end{equation*}
$$

where the sum in (4) is over the coefficients mod p of certain fixed powers of the variables in f. Exact formulae for A_{1} will be obtained in all cases, and for A_{2} in an extensive class of cases.

Specifically, the following theorems are true.
Theorem I. Let $f(r)=y r^{m_{1}}+x r^{m_{2}}+g(r)$ and assume ($m_{2}-m_{1}$, $p-1)=1$. Let the sum in (4) be over all x and $y \bmod p$. If g has a nonzero constant term and neither m_{1} nor m_{2} is zero, then

$$
\begin{equation*}
A_{2}=p(p-1) \sum_{r=1}^{p-1}\left|a_{r}\right|^{2}+p^{2}\left|a_{0}\right|^{2} \tag{5}
\end{equation*}
$$

Otherwise,

$$
\begin{equation*}
A_{2}=p(p-1) \sum_{r=1}^{p-1}\left|a_{r}\right|^{2} \tag{6}
\end{equation*}
$$

Theorem II. Let $d=(n, p-1), \psi(t)=e^{2 \pi i(r \operatorname{ind}(t) / s)}$, where, naturally, $s \mid(p-1),(r, s)=1$ and $g^{\operatorname{ind}(t)} \equiv t(p)$ for g a primitive root $\bmod p$. If $d s \nmid(p-1)$, then $A_{1}=0$. If $d s \mid(p-1)$ and $\psi \chi^{n}$ is nonprincipal, then $A_{1}=p(p-1) d$. If $d s \mid(p-1)$ and $\psi \chi^{n}$ is principal, then $A_{1}=$ $p(p-1)(d-1)-(p-1)$.

The following is an immediate consequence of the first theorem.

[^0]Theorem III. Let f be as in Theorem I, and assume $\left|a_{r}\right|=1$, $r=1, \cdots, p$. Then there exist x_{0}, y_{0}, x_{1} and y_{1} depending on χ, such that the S, as in (1), for x_{0} and y_{0} satisfies $|S|<\sqrt{p}$ and the S, for x_{1} and y_{1}, satisfies $\sqrt{(p-2)}<|S|$.

Proof of Theorem II. Our principal device is the fact that a function which is periodic $\bmod p$ has a unique expansion by means of the characters $\bmod p[2]$. That is if $h(r)=h(s)$ for $r \equiv s(p)$, then for $n \not \equiv 0(p)$

$$
\begin{equation*}
h(n)=\sum_{\theta} b_{\theta} \theta(n), \tag{7}
\end{equation*}
$$

where θ runs through the characters $\bmod p . b_{\theta}$ is given by

$$
\begin{equation*}
(p-1) b_{\theta}=\sum_{r} h(r) \bar{\theta}(r) \tag{8}
\end{equation*}
$$

Regarding $J_{n}(c)$ as a periodic function $\bmod p$ of c, and expanding $J_{n}(c)$ in the form (7), we obtain, by standard methods,

$$
\begin{equation*}
J_{n}(c)=\sum_{\rho^{n}=\psi_{\chi^{n}}^{n}} \pi(\bar{\rho}, \chi) \rho(c) \tag{9}
\end{equation*}
$$

where $\pi(\alpha, \beta)$ is a Jacobi sum [1]

$$
\begin{equation*}
\pi(\alpha, \beta)=\sum_{r} \alpha(r) \beta(1-r) \tag{10}
\end{equation*}
$$

The sum in (9) is over all characters ρ which satisfy the indicated condition.

The expansion (7) has a Parseval identity

$$
\begin{equation*}
\sum_{t=1}^{p-1}|h(t)|^{2}=(p-1) \sum_{\theta}\left|a_{\theta}\right|^{2} . \tag{11}
\end{equation*}
$$

Thus we can evaluate A_{1} by means of (11) and (9) when we know the value of $|\pi(\alpha, \beta)|^{2}$. Now [1] $|\pi(\alpha, \beta)|^{2}=p$ when $\alpha \neq \varepsilon, \beta \neq \varepsilon$ and $\alpha \beta \neq \varepsilon$, where ε is the principal character. If $\alpha=\varepsilon$ or $\beta=\varepsilon$, then $|\pi(\alpha, \beta)|^{2}=1$. If $\alpha \beta=\varepsilon$ with $\alpha \neq \varepsilon$ or $\beta \neq \varepsilon$, then $|\pi(\alpha, \beta)|^{2}=p$. By hypothesis, χ is nonprincipal. Thus $|\pi(\bar{\rho}, \chi)|^{2}$ is p unless $\bar{\rho}=\varepsilon$ or $\bar{\rho} \chi=\varepsilon$. If $\bar{\rho}=\varepsilon$, then $\bar{\rho}=\varepsilon$ and $\psi \chi^{n}$ is principal. If $\bar{\rho} \chi=\varepsilon$, then $\rho=\chi$ and $\rho^{n}=\psi \chi^{n}$ implies $\psi=\varepsilon$ which is excluded by hypothesis. Let N be the number of solutions of $\rho^{n}=\psi \chi^{n}$. If $\psi \chi^{n}$ is nonprincipal then $|\pi(\bar{\rho}, \chi)|^{2}=p$ for all N of the ρ and $A_{1}=p(p-1) N$. If $\psi \chi^{n}$ is principal, then $|\pi(\bar{\rho}, \chi)|^{2}=p$ for $N-1$ of the ρ and $|\pi(\bar{\rho}, \chi)|^{2}=1$ for $\rho=\varepsilon$. Thus, in this case, $A_{1}=(p-1)(p(N-1)+1)=N p(p-1)^{2}$.
N, the number of solutions of $\rho^{n}=\psi \chi^{n}$, is the number of solutions of $\sigma^{n}=\psi$. It is a standard lemma from the theory of cyclic groups of order k that $a^{n}=b$ has (n, k) or 0 solutions according to whether
or not order $b \mid k /(n, k)$. Also, N is the number of solutions of $x^{n}=$ $\psi(g)$, for x, in $(p-1)-s t$ roots of unity. From either description of N, it follows that $N=d$ or $N=0$ according as $d s \mid(p-1)$ or $d s \nmid(p-1)$, and the theorem follows.

Proof of Theorem I. Referring to the hypotheses of Theorem I,

$$
|S|^{2}=\sum_{r, s} a_{r} \bar{a}_{s} \chi\left(y r^{m_{1}}+x r^{m_{2}}+g(r)\right) \bar{\chi}\left(y s^{m_{1}}+x s^{m_{2}}+g(s)\right)
$$

and thus,
(12) $A_{2}=\Sigma \alpha_{r} \bar{a}_{s} \Sigma \chi\left(y r^{m_{1}}+x r^{m_{2}}+g(r)\right) \chi\left(y s^{m_{1}}+x s^{m_{2}}+g(s)\right)=T_{1}+T_{2}$.
T_{1} is the sum of the terms in (12) such that $r \not \equiv 0$ and $s \not \equiv 0 . T_{2}$ is the sum of the terms in (12) such that $r \equiv 0$ or $s \equiv 0 . T_{1}$ can be witten

$$
\begin{equation*}
T_{1}=\sum_{r \neq 0, s} a_{r} \bar{a}_{s} \chi^{m_{1}}(r / s) A\left(r^{m_{2}-m_{1}}, r^{-m_{1}} g(r) ; s^{m_{2}-m_{1}}, s^{-m_{1}} g(s)\right) \tag{13}
\end{equation*}
$$

where

$$
A(a, b ; c, d)=\sum_{y+c x+d \neq 0} \chi\left(\frac{y+a x+b}{y+c x+d}\right)
$$

Now,

$$
A(a, b ; c, d)=\sum_{x} \sum_{y \neq 0} \chi\left(\frac{y+x(a-c)+(b-d)}{y}\right)
$$

Except when $(a-c) x+(b-d) \equiv 0(p)$,

$$
\sum_{y \neq 0} \chi\left(\frac{y+(a-c) x+(b-d)}{y}\right)=-1 .
$$

Also, $(a-c) x+(b-d) \equiv 0(p)$ when $x \equiv((b-d) /(a-c))(p)$ or when $a \equiv c$ and $b \equiv d$. Thus, if $a \not \equiv c$ or $b \not \equiv d$, then

$$
A(a, b ; c, d)=-(p-1)+p-1=0
$$

If $a \equiv c$ and $b \equiv d$, then

$$
A(a, b ; c, d)=p(p-1)
$$

In view of this (13) becomes the sum over all r and s such that $r \not \equiv 0 \not \equiv s$ and $r^{m_{2}-m_{1}}=s^{m_{2}-m_{1}}, \quad r^{-m_{1}} g(r)=s^{-m_{1}} g(s)$. Since $\left(m_{2}-m_{1}\right.$, $p-1)=1$, we have $r \equiv s$. Thus the sum in (13) is over those r and s such that $r \not \equiv 0 \not \equiv s$ and $r \equiv s$. Thus

$$
T_{1}=p(p-1) \sum_{r=1}^{p-1}\left|a_{r}\right|^{2}
$$

Now

$$
\begin{align*}
T_{2}= & \sum_{r \neq 0} a_{r} \bar{a}_{0} \sum_{x, y} \chi\left(y r^{m_{1}}+x r^{m_{2}}+g(r)\right) \bar{\chi}(g(0)) \tag{14}\\
& +\sum_{s \neq 0} a_{0} \bar{a}_{s} \sum_{x, y} \chi(g(0)) \bar{\chi}\left(y s^{m_{1}}+x s^{m_{2}}+g(s)\right) \\
& +\left|a_{0}\right|^{2} \sum_{x y} \chi(g(0)) \bar{\chi}(g(0))=p^{2}\left|a_{0}\right|^{2}|\chi(g(0))|^{2}
\end{align*}
$$

except when $m_{1}=0$ or $m_{2}=0$.
Thus, if $g(0) \equiv 0$,

$$
A_{2}=p(p-1) \sum_{r \neq 0}\left|a_{r}\right|^{2}
$$

and if $g(0) \not \equiv 0$, then

$$
A_{2}=p(p-1) \sum_{r \neq 0}\left|a_{r}\right|^{2}+p^{2}\left|a_{0}\right|^{2}
$$

when $m_{1}=0$ or $m_{2}=0$, then $\chi(g(0))$ in (14) must be changed to $\chi(y+g(0))$ or $\chi(x+g(0))$, and A_{2} is given by (6).

References

1. H. Davenport, and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fallen, Journal für Math. (Crelle) 172 (1934), S. 151-182.
2. M. J. Delsarte, Essai sur l'application de la theorie des fonctions periodiques a l'rithmetique, Annales Scientifiques L'Ecole Normale Superieure, series 3, 62 (1945), 185204.

Ohio State University

[^0]: Received November 21, 1963 and in revised form June 16, 1964. Research done under the auspices of the National Science Foundation.

