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A DESCRIPTION OF MULT, (A1, ••, An) BY
GENERATORS AND RELATIONS

THOMAS W. HUNGERFORD

If R is a ring (with unit) and A^RtRA2

Ri > -, RAI'RA71 are
#-(bi)modules, then Multf'"(A1, , An) is defined to be the ^th
left derived functor of the multiple tensor product A1 (g) ® An

(® = ®Λ); i.e., HiiK1 (g) ® Kn)9 where each Kr is a pro-
jective resolution of Ar.

The purpose of this paper is to give a description of
Multf»w(AS •••, Aπ) in terms of generators and relations, an-
alogous to that given by MacLane in the case n=2 [and Mult; =
Torf (A1, A2)].

Throughout this paper R is a ring with unit, all modules are
unitary, and ® means (g)Λ. If A^, ^A ,̂ • • ,ΛA£~\ ^A* are iϋ-modu-
les (or bimodules, as indicated), then

Multf w(A\ -. . , An)

is defined to be the itla left derived functor of the multiple tensor
product A1 (g) 0 A%; iβeβ

ί W 1 Θ <g) κ«),

where each i£ r is a protective resolution of Ar. When no confusion
can arise we shall often write Mult; or Mult? in place of Multf>\
Note that for n = 2, Mult^ is simply the functor Torf (A1, A2).

A description of Multf'% (A1, •• , An) is given in [1]. MacLane
[2] has described Torf (A1, A2) in terms of generators and relations.
The purpose of this paper is to extend this description to the func-
tors Multf>n(A\ , An)c The first difficulty in doing this is to formulate
the proper definition of the generators and defining relations. Once
this is done, however, most of the proofs are analogous to (though
usually considerably more complicated than) the proofs given for
Torf(A\ A2).

A notable exception to this is Theorem 3,1, in which the results
for n — 2 are used as the first step in an inductive procedure, which
is much simpler than a direct proof. Unfortunately, this technique
apparently cannot be applied in the proof of the crucial Theorem
3.6, where we must resort to a long and somewhat involved procedure.

Throughout this paper we shall often use the term iϋ-module for
left-iϋ-modules, right i?-modules, or iϋ-bimodules, the specific meaning
being indicated by the context.
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62 THOMAS W. HUNGERFORD

2* Def ini t ion a n d basic properties* For a fixed ί ^ 0, we
consider chain complexes E of length i

777. 777 , d 777 , 3 , ^ 777

i l / . jβ/0 < hlγ < « « < hi I ,

with each Er a finitely generated free i?-(bi)module. The dual E* ~
Hom^ (E, R) can also be regarded as a chain complex of length i.

a* δ* δ*
E*:Ef< E*i^< ^—E* ,

where 3* = Horn (9, 1); each E* is also a finitely generated free JB-
(bi)module. (Note: our definition of the boundary operator in E*
differs by a sign from that given in [2].)

If A is an i?-module, it can be considered as a complex (in
dimension zero) with trivial boundary operator. If E is a complex
as in the previous paragraph, then by a mapμ:E—*A we mean a
chain transformation of complexes, i.e. an jR-module homomorphism
μ:E0—>A such that the composition

is zero. If E and F are two complexes as above then E (g) F and
E*($Z)F* are chain complexes of length 2ΐ of finitely generated free
jβ-bimodules (denote the boundary in these complexes by 9 and δ res-
pectively). If A is an .ff-bimodule, then by a map μ:(E<g> F)i-^ A
[or μ: (E* (g) JF*); —> A] is meant a bimodule homomorphism such that
the composition

(E(g) F)i+1 -^(E^F^-^A

[ o r (E* (g) i ί 7 * ^ — ( # * <g> F*), -^-> A]

is zero.
If Aι

R, RA2

R, , ̂ Aj"1, βAπ are J?-modules, we shall define a certain
group in terms of generators and relations, which (to avoid confusion
in the long run) we call Multf'^A1, « ,AW). We shall eventually
show that this is precisely the group defined in § 1. But until that
time we shall use Mult; to refer to the group defined below and not
to the group defined in § 1.

We take as generators of Multf'^A1, ••«, An) all elements: <μ(l),
E\ μ(l, 2), E\ μ(2, 3), E\ , μ(n - 2, n - 1), E*~\ μ(n)>, where (for
r = 1, 2, •••,̂  — 1) Er is a chain complex of length ί, with each £7^
finitely generated free ίϋ-module; the μ's are maps,

μ(r, r + 1): (Er (g) E^ 1 ) ; -> Ar+1 (2 ^ r ^ n - 1, r even)
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μ(r, r + 1): (£T <g) Er^% -> A^1 ( B r ^ - 1 , r odd)

μ(n): E%~λ —> Aw (w odd)

μ(w): JE*"1* -> A% (n even) .

These generators are subject to the following relations. Suppose
(for r — 1, , n — 1) Er and £ r are chain complexes of length i as
above, λ r: Er —+ Er is a chain transformation, and there are maps

μ(r, r + 1): (Er ® S r + 1), -> A r+1 (r even)

μ(r, r + 1): C£T ® JE^1*^ — A r+1 (r odd)

μ(n): E71'1 —> A% (n odd)

^(^) : S%~x* —> An (n even) .

Then we require that the following relation hold.

(1) <jS(l)λlf E\ μ(l, 2)(1* ® λ?), S 2 , jδ(2, 3) (1 <g) λ3), S 3 , //(3, 4)

(1* <g> λf), , μ(n - 2, n - 1)(1* ® λ^,), # n ~ \ ^ ) >

- <jδ(l), SS Ml, 2)(λf (8) 1*), J?2, jδ(2f 3)(λ2(8) 1), ^ 3 , ^(3, 4)

(λ3* ® 1*), - , μ(n - 2, n - l)(λ*_a ® 1*), E*-1, μ(n)\n^y

(^ is assumed odd here; the same relation, with the obvious changes
in the last entry holds for even n). Thus two generators of Mult;
are equal, provided one can be obtained from the other by a finite
number of applications of the above relation. When no confusion can
arise we shall often write generators of Mult^ as (μ,E1,μ,E2

y •••>.

Mult; ( A 1 , — , An) is made into an abelian group by definining
addition as follows. If a: X ® Y—+D and β: X(g) Ϋ—> D are iϋ-module
homomorphisms, we denote by a*β the map

which is the composition

( I 0 Ϊ ) ® ( Γ 0 Ϋ) = (X(g) Y) 0 (X(g) Y) 0 (X® Γ) 0 (X(g) Γ)

where π is the projection onto the two end summands and VD is the
usual codiagonal map. This definition is extended in the obvious way
to the situation where X, X, Y9 Ϋ are chain complexes of finite length

ϊ Ϋ)4 — £>. Now define

ζμ, E\ μ,E\- , E""1, μ) + <fi, E\ μ,E\ *., E*~\ μ>

to be the element
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<TAμ © μ), Eι 0 E\ μ*μ, E> 0 E\ μ*μ,

• •-, μ*μ, E-1 e E»-\ FAμ 0 μ)>.

It is easily verified that this addition respects the defining relation (1).
For ^-modules X, Y let ω = ω(X, Γ ) : X 0 Γ ^ Γ 0 X be the

map given by ω(x, y) = (y, x). Let Δx\ I - ^ I φ I and Fx: X®X->X
be the usual diagonal and codiagonal maps. Then the following identi-
ties hold.

( 2 ) Fx = Fxω

(3) if α:X — X, β: F — Ϋ, then

ω(α θ /3) = (/3 θ α)ω: I φ Γ - Γ 0 X

(4) if α:X(g> Γ— D,β:X® Ϋ->D, then

(α /9)(ω (gι 1) = (/3*α)(l ® ω): (X 0 X) ® (Γ 0 Ϋ) — β

( 5 ) if α, /3 are as in (4), then

a*β(ω ® ω) = /3*«: (X 0 X) (g) ( f © Γ) - D

(6) ω(X, Y)* = ω(X*, F*)

(7) if α,/S are as in (4) and γ : X ® Γ—D, then

(α*/3)*7 = α*(^*τ):

(8) if « : X ® Γ— D, then

a(VΣ ® 1) = α α(l ® J r ) : ( X 0 X) ® Y—1>;

( 9 ) {Ax)* = Fx> and (F x )* = Δx.\

(10) if β:X->D, then

/3FX = F ^ 0 β): X 0 X — i) .

Using (l)-(6) in a manner analogous to that in [2] one verifies
that addition in Multί (A1, •• ,AW) is commutative. Associativity fol-
lows from (7) and the associativity of the diagonal and codiagonal
maps. The zero element is <0, 0, •• ,0>, (where the zeros are either
zero maps or zero complexes of length i). The inverse of <μ, E1, •>•
is < - μ , E\ - - •> since VΛ,(μ 0 (-//)) = 0 .

Using (1) and (8)-(10) one verifies that the generators

(μ,E\μ, ...,E*~\μ>

are additive in the μ's; i.e.

= <^, .K1, , ̂ (r, r + 1) + Jδ(r, r + 1), , S - 1 , μ>

Finally if (for r = 1, 2, •••,») α(r): A r -^ Ar are i?-module homo-
morphisms, Mult, (A1, , A") becomes a covariant functor of w varia-
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bles to the category of abelian groups by defining

α(r)*<ju, E\ , μ(r - 1, r), , E*~\ μ>

= ζμ, E1,..., a(r)μ(r - 1, r), E*~\ μ) .

3* The main theorems*

THEOREM 3.1. If A1, , An are R-modules, then there is a
natural isomorphism:

A1 (g) A2 <g) (g An = Mult^^A1, , An) .

Proof. Define a map

/: A1 <g) . (g) Aw — Multo (A1, , Aw)

by /(fli <g) <g) αw) = <^(αθ, -R, ̂ (α2), , R, μ(an)y, where ^(α r): R =
iί(8)jB[=i2*(g)jB*]->A r is given by μ(αr)(l) = α r. / respects the
defining relations on the generators of the tensor product and hence
induces a well defined homomorphism. If a:A—>Ά and aeA, then

aoμ(a) — μ(aa): R-* A

it follows that / is natural in Ar (r = 1, , ri).
Next define a map

έ o ί A 1 , . . . , A^^A1® ••• (g)A%

as follows. If ζμ, E\ , En~\ μ) is a generator of Mult0, with each
Er finitely generated free, choose a basis {re(ir) \ ir e Ir} for each Er.
Let re*(ίr) be the dual basis for Er*. Then define gζμ, E\ . , # — \ /i>
to be the element

Σ ^[^(ii)] ® J^Γβ*^) <g> 2β*(ί2>] (g) ^[βe(i2) (g) *e(i3)] (g)

• (g) ^[ w ^*(ί ._ 2 ) (g) -2e*(iw-!)] (g jur^ίV-i)] ,

where ΐr e I r and the sum is taken over Ix x x JΛ - 1; (n is assumed
odd here; for n even the final terms should be changed in the obvious
way). The proof that g is well defined is straight-forward (and analo-
gous to the proof Theorem V. 7.3 of [2]).

It is immediately verified that gf = 1 and hence / is an epimor-
phism. In order to show that / is in fact an isomorphism we need
the following two lemmas.

LEMMA 3.2. If An is free, then f: A1 (g) . . (g An —> Mult0 (A1,
• • ,AW) is an isomorphism.

a
LEMMA 3.3. If 0 —> A > B > C —> 0 is a short exact sequence

of R-modules, then there is an exact sequence:
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Multo (A1, , A—1, A) -^U Multo (A1, , A—1, B)

-^U Multo (A1, , A- 1 , C) > 0

The proofs of these lemmas will be given below. Let F be a
free iϋ-module such that

(1) 0 > K-^ F-^ A" > 0

is exact (K = ker β). Consider the following commutative diagram
with exact rows

A 1 ® (gA%-:L(g)iίΓ—>Ax(g) ® A*""1® 2^—-•A1® ® A*-^

k k k
Multo(A\ , A- 1 , 2SΓ) — Multo(A\ . . . , F) — Multo(A\ , A ) -> 0 ,

with horizontal maps induced by the sequence (1). Since F is free
the middle map / is an isomorphism; since the other maps / are
epimorphisms, it follows from the five-lemma that

/: A1 ® ® An -> Multo (A1, , An)

is an isomorphism. Except for the proofs of the lemmas this com-
pletes the proof of Theorem 3.1.

Proof of Lemma 3.2. It suffices to assume that An is finitely
generated and hence that An = R. Consider the diagram:

A1 ® ® A"-1 ® R -^-> MultJ(A\ , A—1, 22)

k , ί«
A1 (g) (g) A11-1 ^=4 MultJ-^A1, , A1-1) ,

where λ is the usual isomorphism and G is defined by

(this makes sense since En~2 (g) i2 [or £>~2*(g) i2*] can be identified with
i?w~2 [or £r%~2*]). It can easily be verified that G respects the defining
relations in Multo"1 and hence induces a well defined homomorphism.
Define a map

H: MultJ(A\ , An~\ R) — MultΓ](A\ , An~')

by
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(this is for n odd; for n even, last entry is μ(l 0 v)). This makes
sense if we consider /i(l*0ι>*) as a map on En~2 ® R* — En~2*
(similarly for n even). It can be verified that H induces a well defined
homomorphism and that HG — 1 and GH — 1; hence G is an isomor-
phism. Finally one verified that the above diagram is commutative,
i.e. fn — G/%_1λ. Since fn^ is known to be an isomorphism for n — 3
(cf. [2]) the conclusion of the lemma now follows by induction on n.

Proof of Lemma 3O3. If ζμ,E\ , En~\ ιi) is a generator of
Mu.lto(A\ « ,A%~1, C), then the fact that En~\ is free implies that
there is a map 7: En~x —> B such that βy = vo Hence

and β* is an epimorphism. The rest of the proof is analogous to the
proof of Theorem V. 5Λ of [2] and is omitted here.

PROPOSITION 3O4. If F\ , Fn~\ A are iϋ-modules and each Fr

is finitely generated free, with basis {re(ir) | ir e Ir}, then every element
of F10 F2 0 0 F71-1 0 A can be written uniquely in the form:

where a(ίu •••, v J e A and the sum is taken over
The proof follows from the fact that i2 0 •

turally isomorphic to A under the map given by

rι 0 0 rn_i 0 α -> (rx r^Oα .

Suppose that F\ , F7 1"1 are finitely generated free iϋ-modules,
the basis of Fr being {re(ίr) \ ir e Ir}. Denote the dual basis of F?
by {re*(ir)}. For r odd let Fr be the finitely generated free iϋ-module
F1 0 0 Fr; it has a basis {̂ (iO 0 0 rβ(ίr)} which we shall
denote by {^(ί̂  β ,ΐr)}. For r even, let F r be the finitely generated
free iϋ-module F1* 0 0 i^r*; denote its basis by {re*(ίi, , ir)}.

Define maps:

π(r): Fr~' (g) Fr-± Fr (r odd, r ^ 3)

π(r): F*-1* 0 F r* —> i^r (r even, r ^ 0)

as follows.

πir^-'eii,, , i r-1) 0 re{ju , ir)] = Π δ(ik9 jk)
re(jr)

where δ(i, i) is the Kronecker delta, and ik,jkelke
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PROPOSITION 3.5. If F\ , Fn~\ A are j?-modules, with each
Fr finitely generated free, then every element of Mult0 (F\ , Fn~\ A)
can be written uniquely in the form:

<1, F\ τr(2), F\ , π(n - 1), F*~\ v> ,

where v: Fn~H*] —> A.

Proof. Under the natural isomorphism of Theorem 3.1, the ele-
ment <1, F\ π(2), F\ , Fn~\ y> is mapped onto

where the sum is taken over Ix x x JΛ_1# Hence by Proposition
3.4 the values ^["""^(ii, •••, V-i)] are uniquely determined and there-
fore so is v. It is also clear from Proposition 3.4 and Theorem 3.1
that every element of Mult0 can be written in the required form.

We are now in a position to prove the main result, that Multf'**
(A1, •••, An) as defined by generators and relations is isomorphic to
the ΐth left derived functor of the functor A1 (g) , (g) An. Recall
that to define this functor it suffices to take free resolutions of only
n — 1 of the n modules.

THEOREM 3.6. Let A\---,An be R-modules and K\ , Kn~1

free resolutions of A1, , A*"1. Then there is a natural isomorphism
(for each i)

F: Multf '"(A1, , An) = H^K1 ® ® K"-1 (g) An) ,

Proof. Let <μ, E\ , Έn~\ μ} be a generator of Mult^A1, , An).
By the lifting theorem for chain complexes there exist chain trans-
formations h over the respective identity maps as follows.

E\ > > E\ > El -?-> A1

Ud, i) U(l, 1) U(lf 0)

K\ > > K\ >K\-^ A1

(Er* (g) Er+1\ > (Er* (g) Er+1% - ^ Ar+1

I I
\h(r + l,i) \h(r+1,0)
i i

KΫ1 > > Kr

0

+1 —?-> Ar+1

for r odd, r ^ 1;

(Er (g) Er+% > > (Er (g) Er+% -^-> A r + 1

U(r+l,0)
4

7^r
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for r even, r ^ 2. Note that

h(r + 1, p): (Er' <g> Er+ι%_P -»K; + 1 (r odd)

λ(r + 1, p): (Er (g) Er^)i+P — if;+1 (r even) .

We define F(μ, EL, -•-, En~\ μ) to be the homology class
[in (K1 0 0 ϋΓ"-1 (g) Aκ)i] of the element

Λ — 1

where the sum is taken over all (p19 , pw-i) s u c h that ^ Pr = ί, and
r = l

Pr = Pi + V2 + + Pr (r odd);

Pr = ί - 2>i - 2>£ ~ - Pr (r even)

the sign ( — 1)* is determined as follows. For any positive integer fc,

let e(k) = X i . Given (pu , pΛ - 1) such that X p r = ΐ, let
l

ζ ( p r ) = ε(i — Pi — p 2 — •-- - Pr) + Pr+i (r o d d , r ^ 3)

>r) = ε(Pi + + Pr) + Pr+i (v even, r ^ 4) .

Then set (-1)* =
Strictly speaking the maps Ẑ (r, pr) in (2) are actually the restrictions

of these maps to suitable sub-modules; for example, if r is odd h(r, pr)
is defined on (E^1 0 Er)i+Pr and the map h(r, pr) in (2) is the restriction
to E;;^1(g)E;r^:(Er~1®Er)i+Pr. Note that for each r, h(r,pr) is a
map into Kr

Pr; if w is even pn_1 — i and μ: Eΐ'1*—> An; if ^ is odd
pΛ-i = 0 and ]M: ^ ί " 1 — Aw. Thus in every case F<μ, E\ , .S^-1, ^>
is^an element of degree i of the group

Mult0 (K\ , IT—\ Aw) = i ί 1 (8) - ® Z"^ 1 ® 4^ .

In order to show that î 7 is well defined we must verify that F
is independent of the choice of the maps h(r, —) and that the image
of .Fis in fact contained in the group of cycles of (K1® (QK^^A*)^
Let x = <μ, E1, , S—1, /i > ε Mult* (A1, , An). As an element of
K1 ® <g) if71"1 (g) A%, Fαj has boundary,

(3) Σ ( - l [

r—1

where p0 = 0, u(r) = Σ PΛ a n ( i Σ (—1)* * s a s
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Using the facts that the maps h{r, —) are chain maps (and thus
commute with the various boundary operators), the additivity (in μ)
of the <(• , μ, •)>, the defining relations in Mult0, and the fact that
μ o (boundary) is zero in each case, it follows that (3) becomes (for n
odd):

Σ (-1)*<M1, Pi - 1)3, E\χ h{2, p2), •> # w i
+ Σ (-!)*[ Σ (-l^X ^ ^ M r - l , ^ ,

r even

E£.1+ι, Mr, pr -1), ̂ , •> + (- l ) «"+3v< • - , # £ , ,
h(r, pr_0, E;r+1, h(r + 1, pr+1)(3 Θ 1), ̂ ^ •>]

+ Σ (-!)*[ Σ (-iY*K ' ,ErCvh{r,pr-l)(d®l),Elr,
3^rg%2

+ Σ (-!)*<• , EnC3, h(n - 2, pn_2)(l (8) 9), tf£!ϊ+1,

(A similar statement holds for n even.) After a suitable change
of indices (in the terms with r even) and careful attention to signs,
it follows that all the terms cancel and hence the boundary of Fx
is zero.

To show that F is independent of the choice of the maps h(r, —),
it suffices to assume that for some t, g(t, —) is another such choice.
(For convenience, assume t is odd; similar statements hold for even
t.) Then there is a chain homotopy

s: (E*-1 (8 E') -> K*

specifically,

and

g(t, p) = h(t, p) + ds(P + 1) + s(p)d.

(where 9 is the boundary in E1"1 (8) Eι). Thus it suffices to show that
the element

Σ (-l)*O(l, Pi), Elί9 - ,E^19 ds(p

is a boundary in iί 1 (8) β β ® iί""1 (8) ̂ % This fact follows from the
repeated use of the defining relations for Mult0 and the fact that maps
h(r — ) are chain maps.

For convenience we shall now assume that K1, , K71"1 are finitely
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generated; (more precisely, we use suitably chosen finitely generated
subcomplexes, cf. the argument in Theorem V.8βl of [2]). Denote by
Kr the complex Kr " c u t off" beyond dimension i and let Kr be the
complex K1 0 ® Kr (from dimension i through 0) for r odd and
K1* (g) 0 Kr* (from dimension 0 through i) for r even. Denote a
free basis of Kr

p by {rkp(ur)} where ur runs over a finite index set; the
dual basis of Kζ is denoted by {rk*(ur)}. If (rx, •• , r i ) is a ί-tuple
of nonnegative integers such that Σ rj — r, we denote by {*fc(r)(w, , wt)}
the free basis

r 2 (u 2 ) <g> <g> %t(ut)}

of

if ^ ® 0 £ ί 4 s ^ j (ί odd).

Similarly {*&(*(%!, •• ,u ί)} denotes the free basis of

Kl\ (8) <8> ^ S ^ U (ί even) .

Strictly speaking this notation is somewhat ambiguous; but in context
it will be clear.

Define as follows chain transformations

π: (K** (8) Kt+1*) — Kt+1 (t odd)

π: {Kι (8) Kt+1) -> Kt+1 (t even) ,

where (K** ® Kt+1*) runs from dimension 0 to i and {K* (8) ^ ί + 1 ) from
dimension 2i to i. For ί odd, let

2/ = *&£)(!*!, , wt) (8) ί+1fc(ί_S)(^, , vt+1) ,

(where (r1? , rt) = (r); (su , st) = (i — s); r + s — n), be a genera-
tor of (K** (8) Kt+1\. Define

where ε(r) is as above and δ is the Kronecker delta.
If πy Φ 0, then rj = Sy ( i ^ ί) and

ί + l t

hence st+1 — i — r — s = i — n and therefore

as desired (if πy = 0 there is no difficulty).
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For t even, let

y = '*(*<_,.,(%!, , ̂ ) (g) t+%S)(vlf , v*) ,

(where (ru , r f) = (i — r), (s^ , st) = s, r + s = i + w), be a genera-
tor of φ ® # ί + 1 ) ί + . Define

πy =

Note that if πy Φ 0, sj — r, (j ^ t) and

ί + l ί

= Σ s i = Σ r i + sί+i = i — r
3=1 j=l

hence st+1 = r + s — i = ί + n — i = n and therefore

as desired.
A laborious calculation shows that the maps π commute with the

various boundary operators and thus are chain transformations. This
calculation depends in part on the following facts (which will also be
used below). Suppose E is a finitely generated free chain complex of
finite length; denote the free basis of Er by {er(u)} and the dual basis
of JK? by {β?(w)} Let G be a finitely generated free JS-module with
basis {f{w)}\ define a map

π: E

by

π(e*(u) (g) es(v) (g) f(w)) = δ(r, s) δ(u, v) f(w) ,

where δ is the Kronecker delta. Then

π[d*e*(u) (8) er+ί(v) ® f(wy\ - π[er(u) ® 3er+1(v) ® jf(w)] .

This is true since the map d: J57r+1 —> Er can be described by matrix
(ruυ) such that d(er+1(v)) = J^ruver(u); hence 3*: J57r —> Er+ί is given by

d*(e*(u)) - Σ ^ e ? f l ( ^ ) .
V

To show that the map F is an epimorphism, let z be a cycle in
(ίC1 (g) (g) i^""1 (g) An)iu Then « can be written uniquely in the form
Σz(Pi> * >P»-i)> where the sum is over all (p1? •• ,p»_i) such that
2 , ^ = i and ^ ( ^ , , pw - 1) e Kl

H® (g) JKΓ*~±1 (g) A%. Each sfo, , p ^ )

can be written uniquely in the form:

\, π(2), frPvPi, π(Z), KlvW τr(4),
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[cf. Proposition 3.5; the subscripts on the Kr are necessary to dis-
tinguish the z(pu

 # ,2V-i)]. Hence

where the sum is as above. Let Kr and π be as in the previous
paragraphs; we can consider the various Kr

Pv...iPr as submodules (in
various dimensions) of Kr; then the maps π(r) are just the restrictions
of the maps π to these submodules (except perhaps for a sign).

Consider the element

x = <ε, K\ επ, K\ επ, K\ eπ, , eπ, Kn~\ v) ,

where v is defined as follows. If n is even, then

ffn—l* Γ̂» τrn—l*

(where the sum is over all (pl9 •• ,j?Λ-i) such t h a t ΣιPj = i)9 and

v: KΓ1*-> A is given on K*v...tPn^ by ( - l ) * M P i » •• , P » - I ) , where

and ζ(pj) as above). Similarly, if n is odd,

n—l V7» ffn-l
0 — ZΛ J^p1, ',pn-1

(sum as above) and v:K™~ι—>An is given on Kn

v~^..)Vn_Ύ by

(sign as above). Assuming that x is a well defined element of Mult;
(A1, •• ,A%) it follows [since π = ( - l ) 5 ^ ^ + 1)] that Fx is the
homology class of the cycle z [Choose the identity for h(l, —) and π
for h(r, —), r > 1.] Hence to show F is an epimorphism we need
only show that x is in fact a well defined element of Mult; (A1, , An).
For n odd this amounts to showing that vd — 0, where d is the bound-
ary operator in K"-1. (Similarly for n even, we must show that
v9* == 0.). The proof of this fact is tedious but straightforward and
we omit most of details. One first computes dz and notes that an
element of the form

<1, K*Pί, τr(2), , K;-]..,Pr_iy π(r), K'Pl,...,Pr,

can be written in the form

± <(1, K\v τr(2), , Kl~*..,pr_iy π, Kpv...,Pr^u

---,K£LtPr-1,...tPn_1,v(-)d>,

where (for n odd) 3 is the map 1 ® •• ® 1 ® 3 ® 1 ® 1 on
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Kι

Vl <g) (g) Kr

Pr-i Θ Θ ^ C - i T h i s i s a consequence of the defini-
tion of the map π9 repeated use of the defining relations in Mult0 and
the fact that π = (-l)*®fiπ<j + l)(j = 1, , n - 2). Since dz = 0 the
uniqueness statement of Proposition 3.5 implies that v(ply , pn - 1)3 = 0.
It then follows that vd — 0 as desired. Hence x is well defined and
F is an epimorphism.

In order to prove that F is a monomorphism we need the following
lemma.

LEMMA 3.7. Every generator of Multi (A1, , An) can be written
in the form:

where the Kr are formed as above from suitably chosen finitely

generated free subcomplexes of free resolutions Kr —̂—> Ar of the A\

The proof is given below; assume the lemma for the present.
Suppose x = <ε, K\ επ, K2

y , sπ, Kn~\ v) is a generator of Mult4

(A1, •••, An) and that Fx — 0, i.e. Fx is a boundary in

TCι 62\ . . . (shi If™—1 fi?\ Δ n

Then there is a chain

, ^ x , π(2), X51>Pa, , Kn

p-l.,Pn_

(where the sum is taken over all (pu , p n - 1 ) such that ^ i Pi — ^ + 1)
and du = x. The remarks above show that du can be written in the
form:

where the sum is over all (pu , p n - 1 ) such that Σ i Pi — * a n ( i ^ ^s

the boundary in Kn~ι (if w is odd: replace 3 by 3* for n even; recall
that X Kn~x S ^ % - 1 ) . It also follows that i^x can be written in the
form

V ί —ΓlVl K- π K- π ••• K-'1 i/>

(sum over all (pu , pn_λ) such that Σ i P i = Ό ^ follows from
Proposition 3O5 that

v = ± ζ3 .

Hence,
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x = <ε, K\ επ, K\ επ, • , Kn~\ v>

( i) = ± <β, K\ , επ(l* <g> 9*), £"- 1 , ζ>

(ϋ) = ±<β,K\ "

(iii) = ± <ε3, K\ eπ, *.*,K^\

(i) results from applying the defining relations in Mult^; (ii) follows
since by the definition of the generators of Mult;,

εττ(3* (g) 1*) ± εττ(l* (g) 3*) = 0

(where 3 is used to denote either the boundary in Kn~2 or Kn~ι).
Repeated use of this finally gives (ii); by definition ε3 = 0 and hence
x ~ 0. Thus F is a monomorphism, and therefore an isomorphism.
Except for the lemma, this completes the proof of Theorem 3.6, and
justifies the use of the notation Mult; (A1, , An) to denote unambigu-
ously either the group defined by resolutions (§ 1) or the group defined
by generators and relations (§ 2).

Proof of Lemma 3.7. Given a generator

of Mult; (A2, •••, An), there is a chain map &: .E1—> iΓ1 lifting the
identity map on A1 (K1 is a free resolution of A1 as above). Let K1

be a finitely generated free subcomplex of length i of K1 which
includes the image of h. Then

x = <μ, E\ , E«-\ v")

Note that K1 can be taken as K\ We now proceed by induction and
assume that x can be written in the form

<ε, K\ eπ, K\ . . . , eπ, K\ μ, E^\ . . . , E«~\ ̂ > .

For convenience, assume t is even. We wish to define a chain map
φ:Et+1—>Kt+1 such that μ — eπ(l (g) φ). If we can do this, then

x - <ε, K\ . - -, K\ eπ, K^\ μ(φ* (g) 1*), . . . , v>

and the induction is completed.
In order to define φ, note that there is a chain map h:
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I '
(where we take (Kι (g) Et+1) from dimensions 2ί to i; note that
(Kι (g) Et+1) is finitely generated). Let Kt+1 be a finitely generated
free subcomplex of length i of Kt+1 which includes the image of h.
Denote the generators of E\ Et+\ K\ Kt+1 as above and define
φ: Ei+1 —> K\+1 on a generator t+1e8(v) by

where the second sum runs over all (r) = (ru , r j such that
X TV = r and r takes all values from 0 to s; for each (rl9 , rt) the
first sum runs over all (uί9

 m

 fut), where the generators of Kr

rj are
indexed by the uj. Note that *kW)(uu •• ,ut) is a generator of &\tr

and λ [ ^ U (g) El+1] s ίΓ'ίJ; hence

and therefore <px e Ĵ ί*1"1. A tedious calculation shows that φ is in fact
a chain map and that eπ(l ®φ) — μ\Kt® Et+1 —> At+1. The procedure
for t odd is similar. This completes the proof of the lemma.
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