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SOME IDENTITIES VALID IN SPECIAL JORDAN
ALGEBRAS BUT NOT VALID IN

ALL JORDAN ALGEBRAS

C M . GLENNIB

A Jordan algebra is defined by the identities:

(1) %-y = y x,(x-y)'yz = (x-y2)-y .

The algebra Aj obtained from an associative algebra A on
replacing the product xy by x-y — l/2(xy -f yx) is easily seen
to be a Jordan algebra. Any subalgebra of a Jordan algebra
of this type is called special. It is known from work of Albert
and Paige that the kernel of the natural homomorphism from
the free Jordan algebra on three generators to the free special
Jordan algebra on three generators is nonzero and consequently
that there exist three-variable relations which hold identically
in any homomorphic image of a special Jordan algebra but
which are not consequences of the defining identities (1). Such
a relation we shall call an ^-identity. It is the purpose of this
paper to establish that the minimum possible degree for an
S-identity is 8 and to give an example of an S-identity of
degree 8. In the final section we use an S-identity to give a
short proof of the main theorem of Albert and Paige in a
slightly strengthened form.

NOTATION. The product in a Jordan algebra will be denoted by

a dot, thus α δ, and {ahc} will denote the Jordan triple product

( 2 ) {abc} = α (δ c) — b (c a) + c (a-b) .

Unbracketed products ax a2 an will denote left-normed products

i.e. ( (((V(v) α3) α j . When working in a special Jordan algebra

we shall use juxtaposition, thus ah, to denote the product in the

underlying associative algebra., Then a b = l/2(ab + ba) and 2{abc} =

abc + cba. The free (respectively free special) Jordan algebra on n

generators, taken as xu , xn or as x, y, z if n = 3, will be denoted

by J{n) (respectively J0

U)) and the kernel of the natural homomorphism

vn (written as v for n = 3) of J{n) onto J o

u ) by Kn. The subspace of

J{n) spanned by the monomials of degree n linear in each of the

generators will be denoted by Ln. The underlying associative algebra

for J0

(?λ) is the free associative algebra on n generators: we shall denote

this by A{n). Throughout the paper we work over some fixed, but

arbitrary, field of characteristic not two.

Received August 13, 1964. This paper is a revised version of part of the author's
1963 Yale Ph.D. dissertation.

47



48 C. M. GLENNIE

I* The following theorem has been proved by MacDonald [4]:

THEOREM 1. (MacDonald). K3 contains no (nonzero) element
which is linear in one of the generators.

We have at once the following corollaries:

COROLLARY 1. Kz contains no (nonzero) element of degree less
than six.

COROLLARY 2. An element u in J ( 3 ) linear in one generator, or
of degree less than six, can be unambiguously represented by the
expansion of uv in A(3).

In this section we shall strengthen Corollary 1 to the following
theorem, which I understand has previously been proved by J . Blattner;

THEOREM 2. K3 contains no (nonzero) element of degree less than
eight.

Proof. Let L be the subspace of J ( 3 ) spanned by the elements of
degree two in x, two in y and two in z\ M t h e subspace of J ( 3 ) spanned
by the elements of degree two in x, two in y and three in z. It is
sufficient to show that (i) the restriction of v to L is one-to-one and
(ii) the restriction of v to M is one-to-one. For (i) we display a set
of elements which span L but whose images are linearly independent
in Lv. For (ii) we prove a Lemma which implies that if (ii) does not
hold, then (i) does not hold.

Let Rh denote the mapping a—>c& 6 in a Jordan algebra. Then it
is well-known that:
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where two of α, 6, c, d, e, f represent x, two represent y and two
represent z. Consider those of type (i). We have

(16 aRhRcRdRe)v = {abode + edcba) + (bacde + edcab)

+ (cabde + edbac) + (cbade + edabc)

+ (dabce + ecbad) + (dbace + ecabd)

+ (dcabe + ebacd) + (dcbae + eabcd)

- 17,+ C/2+ . . . + ί7δ(say)

(where t/x = α&cdβ + βrfc&α, etc) .

Cohn has shown [2] that reversible elements in A{3) are in Jo

(3) so that
each Ui is in J"0

(3). Since v is an epimorphism there exist ^ e P 1 (i =
1, , 8) for which ^v = Z7i# Then

(16 aRhRcRdRe)v ^

Thus

lQaRbRcRdRe = ^ (Theorem 1, Corollary 1)

and

16 aRhRcRdReRf = (Σu,)-/ = Σ(urf)

By Theorem 1, Corollary 2, we can use J7< to represent ut without
introducing ambiguity. Thus instead of u^f we can write U^f i.e.
(abode + edcba)«f, an element in Ji3) but with notation for the part
in brackets borrowed from Jo

(3). Treating elements of types (ii)-(viii)
similarly we see that with this notational convention L is spanned by
elements of the forms (abode + edcba) •/ and (abed + dcba) (e f). The
following elements then, together with those obtained by permuting
x, y and z, span L:

T-elements

2(a). x (xyzyz + z^/x) = 2x {x{yzy}z} ="2x-{xy{zyz}} .

(b). x (xzyzy + yzyzx) = 2a>{φ?/φ} = 2a;-{

3. 2x°(xyz2y + ^Λ/x) = 4α? - (α; {i/«2i/})

4. 2z°(yzyx2 + x%^) = 4s ({3/33/} sc2)

5. 2x-(yxzyz + zyzxy) = 4x-{yx{zyz}}

6. 2y (2^ 22 + ^ y ^ ) = 4«/ {2(2/ ̂ 2)^}

7. 2α (2/2ff22 + 32a?2/2) = 4a; *{y2xz2}

8(a). x-(yzxyz + zτ/̂ τ/) = x-f(x,y,z)

(b). y (zxyzx + xzyxz) = y f(y, z, x)
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z (xyzxy + yxzyx) = z f(z, x, y)

where fix, y, z) = 4{(y-z)x(y z)}

2y (xzyzx) = 2y-{x{zyz}x}

aj2 (2/V + z2τ/2) = 2x*-(y*-z*)

τ/2 (zV + xV) = 2 / . (z2. x2)

{y{zxz}y} - {z{yxy}z}

x2-(yzyz +

2x2-(yz2y) =

(x 7/) (£7/z2 + z2yx) =

(x-y)-(xzyz + 27/20?) = 2{zyz}RzRx.y

ix-y) ixz2y + yz2x) = 2ix-y)R[xz2y}

(x-y)-(zxyz

{zyz}) = 2x2-({yzy}-z)

(c).

9.

10(a).

(b).

(c).

11.

12.

13.

14.

15.

16.

T16 is clearly redundant, while use of formulae (3), (5) and (3)
respectively shows that T13, T14 and T15 are also redundant. So the
set T (namely T1-T12 together with those elements obtained from
T1-T12 by permuting x, y and z) spans L. We now display a set U
of Jordan elements. Each Z7-element may be considered as an element
in J0

(3): as such its expansion in A(3) appears as the corresponding V-
element. Alternatively the [/-element may be considered as an element
in L: its expression as a linear combination of T-elements appears as
the corresponding W-element. For each integer r the validity of the
relation Ur = Wr can be checked by appealing to MacDonald's theorem.
For example, in the case of r = 7, U7 = W7 is valid in J0

(3) and linear

r

1

2

3

4

5

6

7

8

9

10

11

[/-elements

2xi {yziy}

2{x{yz*y}x}

2{xψz2}

2{x(y2'Z2)x}

2{x(y-{zyz})x}

2{x*{yzy}z}

2{zx2{yzy}}

2y {x{zyz}x}

2{xyx} {zyz}

x f(x,y,z) -yf(y,z,x)

+ z-f(z,x,y)

F-elements

x2yz2y + yz2yx2

2xyz2yx

x2y2z2 + z2y2x2

xy2z2x + xz2y2x

xyzyzx + xzyzyx

x2yzyz + zyzyx2

zx2yzy + yzyx2z

yzx2yz + zyx2zy

yxzyzx + xzyzxy

xyxzyz + zyzxyx

xyzxyz + zyxzyx

W-elements

T12

T3 -

TlOa -

T l -

T2a

T2a

T 4 -

T6 -

T9

T5 -

T8a

T12

T10b +

• W 3

+ T 2 b -

- T 2 b +

-W6

-W7

-W9

- T 8 b +

TlOc

T i l

Til

T8c
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in {yzy}, so U7 — Wl is valid in J ( 3 )

o Suppose now that the sets of
[7, V and PF-elements have been augmented by adjoining all elements

•obtained from those displayed by permuting x, y and z. The column
headed π shows the number of distinct elements obtained for each value
of r. It is then easy to check that each T-element is a linear combi-
nation of W-elements, so the "PF-elements span L. But their images
under v are the F-elements which are clearly linearly independent.
So v\L is one-to-one. To complete the proof of the theorem we now
prove the following lemma:

LEMMA 1. Let n be an odd (positive) integer and u an element
in Knf]Ln which is expressible in the form u = ΣΓ=i#ίβ2/i Then
y{ e Kn for each i = 1, , n.

Proof. For convenience we denote vn by vo For n = 1 there is
nothing to prove. Assume n > 1 and let the coefficient of

fft+iffί-ί-2 β β ^ A β Xi-i (%2 β β v* if i = 1)

in y-p be μio Then the coefficient of x%+1xτ+2 xnx1 x{ in 2uv is
P% + Pi+i Since distinct monomials in A{n) are linearly independent we
have μi + /Vi = 0, i - 1, , n — 1 and μn + μγ = 0, whence (n being
odd) μ% — 0, i ~ 1, «>, n. In particular μ1 — 0, iae. the coefficient of
#2 xn in 2/J.I; is zero. It follows by considering suitable renumberings
of x2, , xn that 2/î  = 0, i.e. yx e Kn9 Similarly yί e Kn for i = 2, , w.

COROLLARY. Leέ % be an element in K3 which is homogeneous
Of odd degree such that u — x*a + y b + z°c. Then α, δ, ce K3.

Proof. Suppose u — x°a + y°b + z°c is of degree p in x, q in y
and r in 2 with p + # + r = n (an odd integer). Let xu * >, xn be n
symbols of which p denote x, q denote y and r denote z. For convenience
we denote vz by v. For n — 1 there is nothing to prove. We now
proceed almost word for word as in the proof of the lemma. Assume
n > 1 and let μi be the coefficient of xi+1 - xnx1 x^ (x2

 β β xn if
i — 1, a?! #„_! if i = ^) and so also of ^_i xλxn ceί+1 (a;w x2

if ί = 1, x%_λ #! if i — n) in the expansion in A(3) of α^ if ^̂  — x, of
όv it Xi — y and of cv if ^ = z. Then the coefficient of xi+1 ° # A
aji (xx >' ° xn if ΐ = ?ι) in the expansion in A{3) of 2uv is j«i + μi+1

(μn + μλ if i = n). Since distinct monomials in A{3) are linearly
independent we have μi + //i+1 = 0, i = 1 , , w — 1 and μn + μ^ — 0.
Whence (^ being odd) ̂  = 0, i = 1, , w. Since the argument goes
through for any distribution of £> x's, q y's and r 2;'s amongst xu , xn

the coefficient of each monomial in the expansion in A{2>) of av is zero,
i.e. a e iΓ3. Similarly for b and c.
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It is now sufficient for the proof of Theorem 2 to show that each
element in ikfis of the form x α + 7/ 6 + £ c. Let N be the subspace
of J ( 3 ) spanned by elements of this form. We shall write a = b to
denote a — b e N: thus we wish to show that m = 0 for each me M.
Now M is spanned by elements of the forms a°(bcdefg + gfedcb) and
(a-b)*(cdefg + gfedc) where two of a,b,c,d,e, f, g represent x, two

represent y and three represent z. It is sufficient to show that each
element of the form (a-b)-(cdefg + gfedc) is in N> or by formulae (3)
and (4) that each of the following is in N:

( 1 ) aRbRcRdReRf.g = cRa.bRdReRf.g

( 2 ) aRhRcRd.eRf.g = cRa.bRd.eRf.g

( 3 ) aRbRc.dReRf.g

For types (1) and (2) let t — α°δ c. Then we have for (1): (f-g)Rt.d er
and for (2): (f g)Rd.e.t. Since Rt — Ra.b.c it follows by two applications*
of formula (3) in each case that elements of types (1) and (2) are in N.
Since any element in M can be written as zP where P is an operator
generated by the right multiplications Ru,ueJ{3), it will be sufficient
in the case of elements of type (3) to consider a = z. The possibilities,
modulo interchange of x and y, are:

( i ) zRzRx.xRzRy.y = xRxRz.zRzRy.y = xRxRzRz.zRy.y = 0 (type 2)

( ii ) zRzRx.xRyRy.z = -hzRzRx.xRzRy.y = 0 by ( i )

(ii i) zRxRz.xRzRy.y == -\zRzRx.xRzRy.y = 0 by ( i)

(iv ) zRxRz.xRyRz.y = -\zRxRz.xRzRy.y = 0 by (iii)

( v ) zRzRx.yRzRx.y - xRyRz.zRzRx.y = xRyRzRz.zRx.y = 0 (type 2)

( v i) zRzRx.yRxRz.y = -hzRzRx.xRyRz.y = 0 by (ii)

(vii) zRxRz.yRzRx.y = -hzRzRx.yRzRx.y = 0 by ( v )

(viii) zRxRz.yRxRy.z = -hzRzRx.yRxRy.z ^ 0 by (vi)

(ix ) zRyRx.xRzRz.y = xRxRz.yR2Rz.y = ~ϊxRxRz.zRyRz.y = 0 by (ii)

( x ) zRyRx.xRyRz.z = -2zRyRx.xRzRy.z = 0 by (ix)

( x i ) zRxRx.yRzRz.y = -izRyRx.xRzRz.y ~Q by (ix)

(xii) zRxRx.yRyRz.z = -ϊzRyRx.xRyRz.z = 0 by (x)

(xiii) zRxRz.zRxRy.y = xRzRz.zRxRy.y = xRz.zRzRxRy.y = 0 (type 1)

(xiv) zRxRz.zRyRx.y = xRzRz.zRyRx.y = xRz.zRzRyRx.y = 0 (type 1)

This completes the proof of Theorem 2.

It is possible to avoid the use of MacDonakΓs theorem in the proof
of Theorem 2 by using the following result, tabulating bases for each
subspace spanned by homogeneous elements of degree six and applying
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the Corollary to Lemma 1 to each subspace spanned by homogeneous
elements of degree seven. This process is straightforward, if somewhat
tedious, and is in any case largely a special case of MacDonald's
theorem. We include Theorem 3, however, as it would appear to be
of independent interest, in providing easy verification of proposed
five-variable identities linear in each variable.

THEOREM 3. Kn n Ln = {0} for n ^ 5.

Proof. The cases n — 1, 2, 3 follow at once from the case n — 4
with which we begin, taking the generators of J{i) as x,y,z,t. Let
Rb, Sbc, Ubc denote the mappings α —>α»6, α-+{αδc}, α—>{bac} respectively.
Then Sbc = Rb.c + RbRc - RΰRb, and Ubc - RbRe + RcRh - Rb.e. Since

L4 is spanned by the elements tRxRyRz1 tRxRy.z1 tRx.yRz and all others
obtained from these by permuting x, y and z and Rb.c = RbRc + RcRb— Ubc,
2RbRc — Sbc + Ubc1 we have that (again to within permutations of x, y
and z) L4 is spanned by tRxSyz1tRxUyz, tUxyRz. Now let ueK^OL^
and suppose that

u - Σt(axyzRxSyz + βxRxUyt + ΊzUxyRz)

where the summation is over permutations of x, y and 2. Since ue KA

and distinct monomials in A{i) are linearly independent we have
( 1 ) axyz = Q (coefficient of txyz in A{4)) and similarly each a-

coefficient is zero, and
( 2) βy + ΊZ = 0 (coefficient of $£7/2 in A(4)) and similarly for each

pair of distinct subscripts. So βx — βy ~ βz — —ηx— —yy— —yz and
u is a scalar multiple of

t(RxUyz + RyUzx + # z £/ x y - L^β, - UyzRx - UzxRy)

which is zero by (5). So K4 Π LA = {0}.
The result for n — 5 now follows by Lemma 1 and the fact, already

noted in the proof of Theorem 2, that L5 is spanned by the elements
α ί> where a is a generator and b is linear in each of the other generators.

2* In order to establish the existence of an S-identity of degree
8 we now examine the situation discussed by Albert and Paige in the
paper [1] mentioned in the introduction.

Let D be an algebra with an identity element 1 and an involution
d—>d. In the algebra Dn of n x n matrices with entries in D we
can define an involution M—+M' by taking ( M % = (ilί,-,-), i.e. Mr is
the conjugate transpose of M. Further, we can define an involution
M—> M * in Dn by choosing a diagonal matrix Γ = diag{Yi, , τ»}
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where the 7̂  are self-ad joint (7* = 7*), in the nucleus of D and have
inverses, and defining M* = Γ^M'Γ. Such an involution is called a
canonical involution in Dn. The particular case in which Γ is the
identity matrix reduces to the first involution defined and this is called
a standard involution. It is clear that the subset of Dn of matrices
self-adjoint under a canonical involution (i.e. M* = M) is closed under
the product A B = 1/2(AB + BA) where AB is the usual matrix product
and forms an algebra relative to this product and the usual addition
and scalar multiplication. We denote this algebra by H(DnJ Γ) or
simply H{Dn) if Γ is the identity matrix. With this notation the
main theorem proved by Albert and Paige can be stated as:

THEOREM 4. {Albert and Paige). If H(Dό) is the homomorphic
image of a special Jordan algebra then D is associative.

Our first step will be to obtain a three-variable relation, S(x, y, z) —
0, which will be easily seen to hold in J0

(3) and so in any homomorphic
image of a special Jordan algebra. Substitution of suitable elements
x, y, z from H(D3) will immediately show that D is associative, giving
an independent proof of the Albert-Paige result and simultaneously
showing that S(x, y, z) — 0 is not valid in every Jordan algebra, since
an example is known (with D as the eight-dimensional Cayley algebra)
of a Jordan algebra H(D3) in which D is not associative. The homo-
geneous part of S(x, y, z) — 0 of degree 3 in x, 2 in y and 3 in z then
gives the required S-identity of degree 8. Lemmas 2 and 3 are
essentially due to Albert and Paige.

LEMMA 2. Let θ be a homomorphism from a special Jordan
algebra H, embedded in an associative algebra U, onto a Jordan
algebra J such that

(1) H is generated by elements X, Y, Z and I (I an identity in
U) and

( 2 ) H contains elements Eu

 β, Ek (k ^ 3) such that E{Ej —
EjEi in U and such that ely - , ek {ei — Eβ) form a set of orthogonal
idempotents in J whose sum is the identity f'= Iθ of J . Then, for
a, β in the set 1, , k and A a monomial in U generated by X, Y, Z
and I we have (FaAFβ + FβA*Fa)θ e Jaβ where Fa = E%> Fβ = E%, A*
is the reverse of A and Jaβ is the a, β component of J in the Pierce
decomposition determined by the e^s.

Proof. Let B - EaAEβ + EβA*Ea, C = A + A*. Then

FaAFβ + FβA*Fa = EaBEβ + EβBEa - (EaEβ)C(EaEβ)

= 2{EaBEβ) - {(Ea.Eβ)C(Ea Eβ)}
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So

(FaAFβ + FβA*Fa)θ = 2{ea(BΘ)eβ} - {(ea-eβ)(CΘ)(ea-eβ)}eJaβ

LEMMA 2'. Wϊί/& iϊ, J, 0 and condition (1) (6uί no£ condition (2))
as m Lemma 2 suppose that Eλ — 1/2(X2 + X), JS72 = I — X2, E3 =
1/2(X2 - X) and X# = a?, 10 = /, £^0 = e1? Eφ = e2, #30 = e8. Tfcen
i/ (2)' α;3 = x, we have that (a) eu e2, e3 are orthogonal idempotents
with sum f and (b) (EaAEβ + EβA*Ea)θ e Jaa + Λ^ + Jββ.

Proof, (a) This follows immediately from the definitions of e1}

e2, e3 and condition (2)'.
(b) Let B = XA(I - X) + (/ - X)A*X. Then

+ E2)B(2E1

= {(2ex + e2){BΘ){2e, + e2)} e J u + J1 2 + J2 2

Similarly for other choices of a and /3.

LEMMA 3. With notation as in Lemma 2':

2[(EaAEβ + EβA*Ea)*(EβDEy + EyD*Eβ)]θ

= [EaAEβEβDEy + EyD*EβEβA*Ea]θ

where D is a monomial in U generated by X, Y, ^ and 7, and ar, /S, 7
are distinct integers chosen from 1, 2, 3.

Proo/.

2[(£7βA^ + EβA*Ea)*(EβDEy + EyD*Eβ)]θ

= (EaAEβEβDEy + EyΌ*EβEβA*Ea)θ

+ (EaAEβEyD*Eβ + EβDEyEβA*Ea)θ

+ (EβA*EaEβDEy + EyD*EβEaAEβ)θ

+ {EβA*EaEyD*Eβ + EβDEyEaAEβ)θ .

Now, since a, /5 and 7 are distinct, /α βJβY g /α γ β So, by Lemma 2',
the left-hand-side is in J α γ β The result now follows from Lemma 2'
and the disjointness of the Peirce decomposition.

COROLLARY.

. (E2AE2E2ZE3

Equation (6) suggests the following relation in U:
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+ E,ZE2E2C*E2)]

(E2ZEJΞ2CE2E2ZEZ + E.ZE.E.C^E.E.ZE,)

E2

- (E1ZE2E2CE2E3ZE2

- (E2C*E2E2ZE1E2ZES

- (E2C*E2E2ZE1EzZE2

where, for reasons which will appear later, we take C = YXZY and
C* = ΓZXΓ. In turn, (7) suggests the following relation in J<3),
(this is the relation referred to previously as S(x, y, z) — 0)

4:{e1ze2}*p1 + {(e2 + 2e3)q1(e2 + 2e3)}

- {(2β!

2 - {(2ex + e2)q2(2e1 + β2)}

{(e2 + 2e 3)r 2(e 2 + 2e3)} - {e2s2e2}

where e1 = l/2(^2 + x), e2 = 1 — x\ e3 = l/2(x2 — x) and p l y 2qu 2ru slt p2,
2q2, 2r2, s2 are Jordan elements in J0

(3) equal respectively in A(3) to

e2yxzye2e2zeB + eBze2e2yzxye2 ,

(1 + x)ze1e2yxzye2e2zx + xze2e2yzxye2exz{l + x) ,

xze2e^e2e2yzxy(l — a?) + (1 ~ x)yxzye2e2zeze2zx ,

e1ze2e2yxzye2 + e2yzxye2e2ze1 ,

#3e2e22/2C32/e2β33(l — x) + (1 — x)zese2yzxye2e2zx ,

(1 + x)yzxye2e2ze1e2zx + xze^ze^yxzyiX + cc) ,

zeBeλze2e2yxzy .

Now, (8) is an S-identity. By construction it holds in J0

(3) and we may
see that it does not hold in ίί(C3), where C is the eight-dimensional
Cayley algebra, by substituting

where w, v and w are arbitrary elements in C, and examining the 1, 3
element on each side of (8). The calculation is quite simple: by choice
of x, the only nonzero contribution on each side arises from the first
term. Further, px and p2 are of degree two in z and so may be
evaluated as though C were associative, that is by substituting directly
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into their equivalent associative forms displayed above. The result is
u[(v — v)w] on the left and [u(v — v)]w on the right. Since self-adjoint
elements in C are in any case in the nucleus we have u[(v + v)w] =
[u(v + v)]w Whence u(vw) — (uv)w. But C is not associative. So (8)
does not hold in the Jordan algebra H(C3) and is thus an S-identity.

The relation (8) can be written as Σi6=3fi(x9y9z) — 0, where
fi(x9 y, z) is a Jordan polynomial of degree i in x. Now fi(x, y9 z) can
be expanded in A(3) as a linear combination of monomials in x, y, z of
degree i in x. Since A{3) is free, fι{x, y, z) = 0 for each i. We consider
the case i = 3.

The parts of the terms of (8) which are of degree 3 in « are
equal respectively in A[Z) to:

(a) —4(x z) (yxzyzx + xzyzxy)

(b) zxyxzyzx + xzyzxyxz

(c) xzxzyzxy + yxzyzxzx

(d) zxxzyzxy + yxzyzxxz

(e) — 4(2
β
 a?) (xzyxzy + yzxyzx)

(f) xzyxzyxz + zxyzxyzx

(g) yzxyzxzx + xzxzyxzy

(h) yzxyzxxz + zxxzyxzy

W e now make the following choices for Jordan expressions of the
above:

(a) + (c) + (d): -£{(x*z)y{x{zyz}x}}

(e) + (f) + (g) + (h): -2{φMa>sMφ}

and obtain the following relation which clearly holds identically in J0

(3):

( 9 ) 4{{z{xyx}z}y(z x)} - 2{z{x{y(x s)i/}φ}

Substitution in (9) of the same elements as were substituted in (8)
shows that (9) is an S-identity.

3. In H{D3) let

la p q\ /• 1

g = ip β r , x = (1

\q f 7/

Then we have
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jβ V Λ
{xgx} = \p a ) and {ygy} = [ 7 r ) ,

r

while ##?/ (ordinary matrix multiplication) is equal to

r β\

q p\ .

With these results in mind, (8) suggests the following candidate for
an S-identity:

(10) 2{xzx}-{x{zy2z}y} - {x{z{x{yzy}y}z}x}

= 2{x{zx2z}y}'{yzy} - {y{z{y{xzx}x}z}y}

We verify that (10) is an S-identity by using it to prove the Albert-
Paige Theorem in a slightly strengthened form. (Albert and Paige
mention that their method will give the stronger result but do not
give the details.)

THEOREM 4(a). If H(Dny Γ),n ^ 3, is the homomorphic image
of a special Jordan algebra then D is associative.

[Theorem 4(a) is also a stronger form of a theorem due to Jacobson
[3] viz: If H(Dn, Γ), n ^ 3, is a special Jordan algebra then D is
associative.]

Proof of Theorem 4(a). It is sufficient to prove the result for
n = 3. Since H(D3, Γ) is the homomorphic image of a special Jordan
algebra the relation (10), which clearly holds in J0

(3\ holds in H(D3, Γ).
Now suppose that

la .

Γ= β

\ " 7/

and let

y = .

where u, v and w are arbitrary elements in D. Substitution in (10)
gives, in the first row, third column:
left hand side: βuaβiavyβywβy)
right hand side: (βuaβavyβ)ywβy
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Since u, v and w are arbitrary and a, β and 7 are in the nucleus of
D with inverses the result follows at once.

REMARK. It can be shown by using the corollary to Lemma 1
that the S-identity (10) is generated by S-identities of degree 8. We
do not give the details here as we hope to embody them in a later paper.
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