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PRIMAL CLUSTERS

ApIL YAQUB

In a series of recent publications [Math. Z, 66 (1957),
452-469; Math Z, 62 (1955), 171-188] Foster introduced and
studied the theory of a “primal cluster”, —a concept which
embraces classes of algebras of such diverse nature as the
classes of all (i) prime-fields, (ii) “n-fields”, (iii) basic Post
algebras., Here, a primal cluster is essentially a class {U;} of
primal (=strictly functionally complete) algebras of the same
species such that every finite subset of {U;} is “independent”,
The concept of independence is essentially a generalization to
universal algebras of the Chinese residue Theorem in number
theory, Each cluster, U, equationally defines —in terms of
tlle identities jointly satisfied by the various finite subset of
l[-a class of “ﬁ-algebras”, and a structure theory for these
U-algebras was established by Foster, —a theory which contains
well known results for Boolean rings, p-rings, and Post algebras,
In order to expand the domain of applications of this theory,
one should then look for primal clusters. In this paper a
permutation, ~, of ths residue class ring R,, mod %, is con-
structed, such that {(R., X, )} forms a primal cluster. In
Theorem 9, which is the main result of this paper, it is shown
that a much more comprehensive (and quite “heterogeneous”)
class K of algebras nevertheless forms a primal cluster, Indeed,
K here is the union of all nonisomorphic algebras in the classes
of all (i) residue class rings, (ii) basic Post algebras, and (iii)
“p-fields”, Thus, the primal cluster K furnishes an extension
of the primal clusters which were previously given by Foster
(oc. cit.).

In a series of recent publications ([1]-[3]) Foster introduced and
studied the theory of a “primal cluster”, —a concept which embraces
classes of algebras of such diverse nature as (i) the class of all prime-
fields, (ii) the class of all “n-fields”, (iii) the class of all basic Post
algebras, and (iv) the union of the primal clusters (ii) and (iii) above.
Here, a primal cluster is essentially a class {U,;} of universal algebras
U, (all of the same species), each is primal (=strictly functionally
complete), and such that every finite subset of {U;} is “independent”.
The concept of independence is essentially a generalization to universal
algebras of the Chinese residue Theorem in number theory. Each
cluster, U, equationally defines—in terms of the identites jointly
satisfied by the various finite subsets of U-a class of “U-algebras”,
and a structure theory for these U-algebras was established in [1],
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—a theory which contains well known results for Boolean rings, p-rings,
and Post algebras. In order to expand the domain of applications of
this theory, we should then always look for primal clusters. Thus,
our present object, in part, will be to first establish that the class
{R,} of all residue class rings, mod %, can be converted to a primal
cluster (with respect to suitably chosen operations). Indeed, we shall
construct a permutation, ~, of R, such that (R,, X,”) is a primal
algebra (Theorem 7). We will thus obtain a confirmation to an existence
theorem proved in [2, pp. T0-81], —a theorem which implies the
existence (but does not give the constructability) of such a permutation, ~.
In Theorem 9, which is the main result of this paper, we show that
a much more comprehensive (and quite “heterogeneous”) class K of
algebras nevertheless forms a primal cluster. Indeed, K here is the
union of all nonisomorphic algebras in the classes of all (i) residue class
rings, (ii) basic Post algebras, and (iii) “n-fields”. Thus, the primal
cluster K furnishes an extension of the primal clusters which were
previously given by Foster [3; p. 179].

1. Fundamental concepts. In this section, we recall the following
basic concepts of [1]. Let S = (n,, n,, -++) be a given finitary species,
where the n, are positive integers, and let o,, 0,, - - - denote the primitive
operation symbols of S. Here, o; is n;-ary, o; =0;({y, -+, &,). By
an expression ¢({, --+) of species S we mean a primitive composition
of one or more indeterminate-symbols ¢, - -+ via the primitive operations
0;. As usual, we shall use the same symbols o; to denote the primitive
operations of the algebras U, U, --- when these algebras are of
species S. We write “p(C, --+) (U)” to mean that the S-expression ¢
is interpreted in the S-algebra U. This simply means that the primitive
operation symbols are identified with the corresponding primitive oper-
ations of U, and the indeterminate-symbols ¢, --- are now viewed as
indeterminates over U. Thus for unrelated S-algebras U, and U,,
@, -++)(U) will in general be quite unrelated to @(g, ---)(T).
“p(L, -+ )(U)” is also called a strict U-function. An identity between
the strict U-functions f, g-holding throughout U-is called a strict U-
tdentity, and is written as f(g, --+) = g({, +--)(U). A finite algebra
U with more than one element is called primal if every (set-theoretical)
mapping of U X --- X Uinto U is expressible by a strict U-function.
Examples of primal algebras are wide spread. Thus, for example, the
two-element Boolean algebra, (F}, X, 7)(X = intersection, ~ = complement)
was shown in [1] to be primal. Other examples of primal algebras
are (see [1]):

(i) The prime-field (F,, X, ), »p = prime, and where

FP:{Oyl’zy"'yp_l}v CA:C‘}“l(mOdI)).
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(ii) The basic Post algebra (P,, X, "), n arbitrary. Here, P, =
{0, On_szy On_sy ==+, D1, 1}, L X 9 = min ({, ), where “min” refers to the
above ordering, and where 0" =1,1" = 0, 07 = 0y, *++, Oy = 0.

(iii) The “n-field” (F,, X, ), n arbitrary. Here,

Fn = {O, 1, @, a{2, ooy a”*z} , (a'n—l — 1) ,

and where 0 X { ={ x 0=0(eF,). Furthermore, 0" =1,1" = a,
a” =a? -+, (@) =0. (For further examples, see [1].)

We now procede to define the concept of independence. Let {U;} =
{U, +--, U2} be a finite set of algebras of species S. We say that {U;}
satisfies the Chinese residue condition, or that {U,} is independent,
if, corresponding to each set of expressions ¢, -+, ¢, of species S,
there exists a single expression ¥ such that ¥ =@ (U)t =1, ---, 7).

A primal cluster of species S is simply a class U = {--+, U,, - -} of
primal algebras, of species S, any finite subset of which is independent.

It was shown in [1] that numerous classes of algebras (of rather di-
verse nature), including those in (i), (ii), (iii) above, form primal clusters.

2. Independence. Let
n:pfl...pft; P> e >, ,

where p,, -+, p, are primes and k,, ---, k, are positive integers. We
now have the following.

DeriNiTION, With %, p,, <--, p,, ki, <=+, k,, as above, the residue
class ring R, is of type 1 if k, =1, and is of type 2 if k, > 1.

We procede to define a permutation, =, of R,. This we do in two
stages.

Case 1. If R, is of type 1. In this case, let {1,a, -+, a,} be
the set of all positive integers which are relatively prime to p,, and
which do not exceed %, and choose the notation so that «, ---a, =
a(mod n). Define, =, by the ordering

1 Tr=def =0,1,p,2p, o, (L~ 1)p, @y oy o,

.

i.e.,Oﬁzl’]_A:pl, "',“?:O.

REMARK. If n is prime, the [p, -+, {(n/p,) — 1}p,] is empty. If
n = 2, then both [p,, ---, {(n/p,) — 1}p,] and {a,, ---, @} are empty.

Case 2, If R, is of type 2. Then n = pf... pft, and where
k, = 2. Let o(m) denote the familiar Euler ¢-function (=number of
positive integers =<m and relatively prime to m). Then
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2.1y ppi ™) =pirt — Pz pht 2 2 = ), — 1.

Let {¢(=1), tts, +-+, ptx—} be an arbitrary but fixed set of distinct
positive integers, each relatively prime to p, and each less than pi,
This is possible by (2.1). Moreover, let {1,%,, ---,n,} be the set of
all positive integers which are relatively prime to p, and which are
less than #. Now, define, =, by the following ordering:

(2.2) Ifn=4":=def=0,1,32.

(2-3) If n# 49 i =def = 0, 1, Moy =2y Nay D1y YD1y =2y #kl—lpu Blpu ctty
Byp, where B,p, = def = (L7, - - - 0.) {(p)(£0,) - * + (24, —.21)} (mod m) .

Here, the (possibly empty) set {8, *:+, B,_ip} gives the remaining
elements of R,, arranged in an arbitrary but fixed way.

LeMMA 1. Suppose that R, is of type 2, n + 4, and suppose
that, ~, satisfies (2.3). Then B,p, ts distinct from 0,1, <+, 7,
Diy ***y MeDy, @0, T, 98 @ permutation of R,.

Proof. Clearly, B,p, # 0. Furthermore, B,p, # 1,7, <+, 7. If
k., > 2, then B,p, = Mp?, for some )\, and the result follows since all of
the n; and p; are relatively prime to p,. Hence assume k, = 2 (recall
that &, > 1 since R, is of type 2.) Now, assume that n = p¥1 ... pf,
and ¢ > 1. Then p,e{n, ---, 7}, and hence B,p, = \p,p,, for some .
Again, the result follows since {p,, +--, tt, 0.} = {p.}. An easy appli-
cation of Wilson’s Theorem shows that, in this case,

17, -+ 7 = (—D"(mod p,) , (s = @(p}) = pi — v,
and hence B,p, = (—1)"1p,(mod p?) == p,(mod p3) unless p, = 2 (and hence

n = p! = 4). Henee, if n # 4, B,p, is distinct from p,, and the lemma

is proved.
Following [1], we define a frame to be an algebra (U, x,”;0,1)
of species (2, 1) possessing distinguished elements 0, 1 (0 # 1) such that

O0X{=C{x0=0,1XxC=¢x1=¢ e U),

and where {” is a cyclic permutation of the elements of U such that
0~ =1.
Now, let, 7, denote the inverse of, =, and as in [1], define

aX_b=(a" xXb) .

It is readily verified that a X _0=0 X_a = a.
We shall now state the following result of [1, p. 456] which is
very useful in proving the independence of algebras.



PRIMAL CLUSTERS 383

LEMMA 2. Let U, U, +--, U, be a set of frames,
U, =(U, x,70,1).

If there exist (g) expresstons |;; such that |; = {3‘%%‘)) A=2i<i=sEn,
J J

then the algebras U, -+, U, are independent.

Proof. The proof is essentially a combination of the proofs of
Lemma 5.1 and Theorem 5.2 of [1]. Indeed, if |;; is as above, then
by defining

i =def = [[;{((:A) ",
one readily verifies that
= {00
()

Hence, there exist expressions |;; such that |; = {6'2%)) #7175 =
J J

1, ---,7). Now, for each ¢ =1, ---, r, define
l: (€) = def = [;;(£)+1:2(©) + -+ [i(C) (no [;; term) .

It is easily verified that |; ({) = {(1)’((%’)), for all 5 # ¢. Now, to prove
J J

the independence of U,, -+, U,, let o, +++), * =+, P, +++) be any set
of expressions of species x,”, and define

V& o) =Apdl =) X 1@} X o0 X _ApdC, o+2) X | (D} .

Then it is easily seen that (, +++) = @({, - )(U),2 =1, ---, r, and
the lemma is proved.

Suppose n = pf1 +-- pft, p, > +++ > p,, where each p; is prime and
where each k; is a positive integer. Suppose that

2.4) ro=def =n—" +F,.
Dy

It is readily verified that 2 <r, =< mn, for all n = 2. We now
have the following.

LEMMA 3. Let n,p,, -+, D, Ky, -+, k, be as above. Then

n—"pk>n—2 +k

V2 D

for each 1 =2, .-+ ¢,

Proof. Let
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d:(n~£l—+k1>—<n~ Z +k> (i 1).

Then,

d="M0 =) 4 g g " + (by— k) .
DiD; Dip;

If k, — k; = 0, then, clearly, we are through. Assume %k, < k;. Then,
k; = 2. Hence,

d= " — (k;, — k) = phiphi — (k; — 1)

1D;

zpit = (k- =25 — (ki —1) >0,

and the lemma is proved.

COROLLARY 4. Amny subset of {n — (n/p,) + k, — 1} distinct elements
taken from {0,1,2, <<+, n — 1} contains at least k;, multiples of the
prime p;(t = 2, « -, T).

Proof. This follows readily from Lemma 3.
Again, we shall denote the elements comprising the residue class
ring, mod %, by R,. We now have the following.

THEOREM 5. Let m,, ---,n, be any set of t distinct positive
integers, each mn; > 1, and let, ~, be defined as in (2.1) if R, s of
type 1 and as in (2.2), (2.3) of R,, is of type 2(¢ =1, ---,t). Then
the algebras (R,, X,7), +++,(R,,, X, ) are independent.

Proof. In view of Lemma 2, and its proof, we will be through
if we can prove the existence of the expressions |;; of Lemma 2. We
shall construet these expressions in several stages. To simplify the
notation, denote by (R,, X, ") any (R,, X, ") any two distinct algebras
in the above set, and define

(2.6) E=C0C--- T, where {TF=(coc (()) )7,

k-iterations.

Case 1. R, and R, are both of type 1. Let r, and »,. be defined
as in (2.4). We now distinguish the following subecases.

Case 1(a). r, <r,. By (2.4),(2.5),(2.1), and Corollary 4, it is
easily seen that
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S - 0(R,)
E"E™ e BT t)(E Y} =
(« B ={ 5
Case 1(b). r, < r,. By symmetry, this is essentially the same
as Case 1(a).

Case 1(¢). 7, =r,. Since n # n/, assume, without any loss in
generality, that n’ < n. We distinguish two subcases.
(i) If »'fn. It is readily verified that

0(R.)

(g e Eree) B = {

(ii) If n’|n. Then, one easily verifies that

Sal LT 42, TR T2 “a—I1" L(R.)
(@B R R S e
Case 2. R, and R,. are both of type 2. The argument here is
quite similar to the one given in Case 1. One need only replace in
the above proof (E"E™%..« E7»*)(E™™*") by E"E ..« E""" (see
2.4), (2.3), (2.2), and Corollary 4); (E **' ... E ) (E" ") by
(B~ oo Fmima=h) 0 ete,

Case 3. R, and R,. are of opposite types. Assume, without loss
of generality, that R, is of type 1 and R,. is of type 2. We distinguish
three subcases.

Case 3(a). m is prime. Since R, is of type 2, therefore, by (2.1),

(2.2), (2.3), (2.5), and Corollary 4, (E) = {‘{gf}n’))

Case 3(b). (7)% I’got prime, »’ = 4. Then by (2.1), (2.2), and Corollary
4 @B = {5

Case 3(c). m mot prime, n’ # 4. Then by (2.1), (2.3), and Corol-
lary 4,
0(R,)

(B e moy @y = {2

(Observe that, since, in addition, R, is of type 1, therefore, using (2.4),
7, = 4). The proof of Theorem 5 is now completed upon using Lemma 2.

3. Primal clusters; principal theorem. In this section, we shall
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prove, among other things, that the residue class frames (R,, X, ") are
primal algebras, where, ~, satisfies (2.1) if R, is of type 1, and satisfies
2.2)-(2.3) if R, is of type 2. First, we recall the following result
which is an immediate consequence of [2; Theorem 3].

LEMMA 6. Let (U, xX,7) be a finite frame, and let 4Q) =0 if
=0 and 40) =113 L+0(ecU). Suppose that 4({) is expressible
as a strict U-function. Then (U, X,7) is primal.

We now have the following

THEOREM 7. The residue class algebra (R,, X,”), where, ~, 1s
as in (2.1)—~(2.8), s primal.

Proof. Casel. R, isof typel. In this case, it is readily verified,
by (2.1), (2.4) and Corollary 4, that
AQ) = {7 T (E )
The result now follows readily from Lemma 6.
Case 2. R, is of type 2. In this case, it is easily seen, by (2.2),
(2.8), (2.4), and Corollary 4, that
AQ) = (3 eee Iy,

Again, the result follows from Lemma 6, and the theorem is proved.
Now, an easy combination of Theorem 7, Theorem 5, and the
definition of primal cluster gives the following

THEOREM 8. The residue class algebras {R,, R, R,, --+, R,, «--},
where R, = (R;, X,”) and where, ~, is determined by (2.1)~(2.3), form
a primal cluster.

It was proved in [3; p. 179] that the class consisting of F), P,, F3,
P, F,, ---, where F, and P, denote the n-field and basic Post algebra,
respectively, (see examples (ii), (iii), Section 1) forms a primal cluster.
We shall now prove the following

THEOREM 9. PRINCIPAL THEOREM. The class

{Fq}qz4 U {Pm}mzs U {Rn}ngz

18 a primal cluster with respect to the above operations.

Proof. First, we recall that the primitive operations of the algebras
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under consideration have been given in examples (ii), (iii), §1, and
in (2.1)-(2.3). Now, in view of the remarks immediately preceding
Theorem 9, together with Theorem 8, Lemma 2, and the definition of a
primal cluster, we will be through if we can show that: (4)(R,, X, "),
and (P,, xX,”), if nonisomorphic, are independent, and (B)(R,, xX,")
and (F,, x,7), if nonisomorphic, are independent.

Proof of (A). First, R, and P, are isomorphic if and only if
n =mn"=2. Assume thenthatn = 2 and »' = 3. We now distinguish
the following cases.

Case Al. n = p # 2;p, prime. Then it is easily verified, by (2.5)
and Fermat’s little Theorem, that

(R,)

(@ == =1{ )

Case A2, n =2. Then, n' # 2. Clearly

(R.,)

(BT = {O(Pnl) )

Case A3. m mot prime, R, of type 1. Then

0( P,
(E"E™y = {1§R )) (' +2),
el 70 ~rp—2 “n—1\1" l(P”’) '
(BB By @y = {0 @ =2).

Case A4. n mot prime, R, of type 2. Then

o,
(&) = {121?, )).

Assertion (A) now readily follows from Lemma 2.

Proof of (B). It is easily seen that (R,, X,") and (F,, X, ") are
isomorphic if and only if n =%" =2 or » = n' = 3 (see example (iii),
§1, and (2.1)). Assume then that »' = 4,72 = 2. We now distinguish
the following cases.

Case B, ' =n =p =prime. Then (E"E™*... E7?7%) 7)1 =

e
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Case B2. = prime, ' + n. Then (E-E -t = {2?}3).

Case B3. m mot prime, R, of type 1. Then E"E™* = {&g”))

Case B4, n not prime, R, of type 2. Then (E7)»-b» = {(l)gg’b))
Assertion (B) now readily follows from Lemma 2, and the theorem "is

proved.
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