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ON TWO-SIDED H*-ALGEBRAS

PARFENY P. SAWOROTNOW

We call a Banach algebra A, whose norm is a Hubert
space norm, a two-sided H*-algebra if for each x e A there
are elements xι

9 x
r in A such that (xy, z) = (y, xιz) and (yx, z) —

(y, zxr) for all y, z e A. A two-sided i ί *-algebra is called
discrete i s e a c h r i g h t i d e a l R s u c h t h a t {xr \ x e R } = {xι \ x e R }
contains an idempotent e such that er = eι = e. The purpose
of this paper is to obtain a structural characterization of those
two-sided H *-algebras M which consist of complex matrices
x = (Xij \i, je J) (J is any index set) for which

Σ UIxu \%

converges. Here U is real and 1 ̂  U ̂  a for all i e J and some
real a. The inner product in M is

(»j l/) = Σ tiXisyats
id

and
«iy = (tiltj)Xji , X\j = (tjlU)Xji .

Then every algebra M is discrete simple and proper (Mx — 0
implies x = 0). Conversely every discrete simple and proper
two-sided ίf*-algebra is isomorphic to some algebra M. An
incidental result is that the radical of a two-sided iϊ*-algebra
is the right (left) annihilator of the algebra.

In this paper we will refer to such an algebra M above as a
canonical algebra. We studied two-sided iϊ*-algebras (and more general
algebras) in two previous papers [4, 5]. When xr = xι for all x in A
we have the H*-algebras of Ambrose [1] and if we omit xι we have
the right iϊ*-algebra of Smiley [6]. Incidentally, in [4, Theorem 2]
we proved that a proper right iϊ*-algebra is a two-sided iϊ*-algebra.
So most of the theory of this paper applies to a right H*-Algebra.

Our proof of the main result (Theorem 4) uses the technique of
Ambrose [1] and the lemmas about existence of minimal two-sided
projections (Theorem 3 and Lemma 6).

The author is very grateful to the referee for his suggestions for
the improvement of the paper.

2* A general theorem* The following theorem may be of an
independent interest (compare with § 2 in [1]).

THEOREM 1. The radical 3ΐ of each two-sided H*-algebra A
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coincides with both the right and left annihilator of the algebra.

Proof. Ax = 0 gives (xy, z) = (x, zyr) — (zιx, yr) — 0 for all y,ze A

so that xA = 0. Thus r(A), the right annihilator or A, and l(A)
coincide. Now consider B — r(A)p which is easily seen to be a two-
sided if*-algebra which is proper in the sense that r(B) = l(B) — 0.
The proof of Theorem 3.1 of [1] shows that each nonzero ideal of B
contains a nonzero idempotent (see also [3], page 101). This means
that B Π 3Ϊ = (0) since radical cannot contain idempotents [2, page 309];
thus 31 = r(A) = l(A).

COROLLARY. The following conditions are equivalent in any two-
sided H*-algebra (each one of these conditions can be used to define
a proper algebra):

( i )
(ii) β

(iii) xr is unique for each xe A
(iv) xι is unique for each xe A
(v) A is semi-simple.

Proof. Equivalence of (i) and (iii) ((ii) and (iv)) can be established
as in the proof of Theorem 2.1 of [1].

3* Invariant ideals* Unless otherwise stated A will denote a
simple proper two-sided complex H*-algebra. Note that both involutions
(x —* xr and x —* xι) in A are continuous (This follows from the closed
graph theorem).

LEMMA 1. If x,yeA then (x, y) = (y\ xr) = (y\ xι).

Proof. The set I of linear combinations of products of members
of A is dense in A (because / is a two-sided ideal). If x = uv for
some u, v e A then (x, y) — (uv, y) = (u, yvr) — (yιu, vr) — (y\ vrur) —
(y\ xr). Hence (x, y) = (y\ xr) (and similarly (x, y) = (yr, x1)) holds if
xe I. The lemma now follows from the continuity of the involutions.

COROLLARY. // S is any subset of A, then SrP = SPl and SlP =
SPr (as in [4] Sp denoted the set of elements of A orthogonal to S
and Sr (Sι) denotes the image of S under the involution x—>xr

LEMMA 2. If B is a closed right (left) ideal of A, then l(B) —
βrP = βVl ( r ( β ) = βlV = βVr^
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Proof. From (BrPB, A) = (BrP, ABr) = AιBrP, Br) = (BrP, Br) = 0
we conclude that BrPB = 0. Thus BrP c l(B). If xB = 0, then
0 = (xB, A) = (a?, ABr) = (A'a, £ r) = (Ax, Br), Ax c Sr3) and x e BrP by
Lemma 1 of [6]. This simple means that l(B) c BrP.

DEFINITION. An ideal / in A is said to be invariant if Γ — P.

LEMMA 3. A closed (right, left) ideal I in A is invariant if
and only if P is invariant.

Proof. Direct verification: Pι = Pp = Pp = Γr.

COROLLARY. A closed right (left) ideal R (L) is invariant if
and only if l(Rp) = l(R)p (r(Lp) = r(Lf).

DEFINITION. An idempotent in A which is both left and right
self-adjoint will be called a two-sided projection.

LEMMA 4. If ee A is a left projection and eA is invariant, then
e is a two-sided projection.

Proof. Prom Ae — Aer we have eer — e which shows that er = e
also.

THEOREM 2. A proper two-sided H*-algebra A is an H*-algebra
if and only if each closed right (left) ideal of A is invariant.

Proof. In view of the first structure theorem (Theorem 1 in [4]
we may assume (without loss of generality) that A is simple. Now
the condition of the theorem implies that each left projection is a
right projection (Lemma 4) an vice-versa. From this it is not difficult
to show that both involutions coincide. This could be done either by
proving the second structure theorem (Theorem 4.3 of [1]) or by
showing that the set S of all linear combinations of products of pro-
jections is dense in A (using the arguments in proofs of Lemma 8 in
[4] and Theorem 1 in [5] one can show that S is a two-sided ideal).

4* Finite-dimensional algebras*

LEMMA 5. For each right projection f in A there exist a left
projection eeA such that (e, f — e) = 0 and ef = e, fe— f. If f is
minimal then e is minimal also. A similar statement holds for a
left projection.
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Proof. Consider the closed right ideal R — {x — fx\xe A] — r(f)
and write / = e + u with e e Rp, ue R. Then by Lemma 2 in [4] e
is a left projection such that Rp = eA and R = r(e) — {xe A\ex = 0}.
Also (e, f—e) = (e, u) = 0, e/ = e(e + u) = β and /e = / ( / — u) = /•
If / is minimal then minimality of β follows from the fact that
Af = Aβ.

REMARK. The algebra A in Lemma 5 does not have to be finite-
dimensional.

THEOREM 3. Every finite-dimensional proper two-sided H*-algebra
A contains a minimal two-sided projection.

Proof. We may assume that A is simple. By Lemma 5 there
exists a sequence {/i,/2, •••,/«, •••} of minimal right projections and
a sequence {eu e2, , en, •} of minimal left projections such that
I I / J I 2 = I K II2 + I I Λ - e%\\\ | | β . II1 = ||/.+1 II2 + || e n - fn+11|2 ( a n d e . Λ -
e», /»βn = Λ, e»/ +i = / +i, Λ+iβ» = βΛ) Also | | / Λ | | ^ 11yi 11 ̂  | | β w | | for
each n. By the Bolzano-Weierstrass theorem there exists a subsequence
{9k} of {/J (for simplicity we write gk instead of fnj) and some g e A
such that g = lim gk. Then # is right self-ad joint and idempotent.
From

and | | / n + 1 1 | ^ \\fn+p \\^\\g || it follows that \\fn - β. || -* 0. Therefore
g = lim en. also and so g is left self-ad joint.

k k

It remains to show that g is minimal. If x e A then for each k
there exists a complex number λfc such that gkxgk — Xkgk ([4], page 52
and [1], page 380). Then Xkgk tends to gxg. From | Xk | ^ |λfc | || gk \\ —
|| gkxgk \\ ̂ \\gk ||2 \\x\\ ^ || gx | |

2 1 | a? || it follows that Xk has a subsequence
converging to some complex number λ. Then gxg = λ# and so ^Aβr is
isomorphic to the complex number field, from which we may conclude
that g is minimal.

Later (corollary to Theorem 4) we will see that each finite-dimen-
sional proper simple two-sided H* -algebra is isomorphic to a canonical
algebra M. In fact each such an algebra is discrete in the sense of
the next definition.

5* Discrete algebras*

DEFINITION. A two-sided H*-algebra A is said to be discrete if
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each invariant ideal in A contains an invariant ideal of the form eA
where e is a left projection.

Because of Lemma 4 this definition is equivalent to the corre-
sponding definition in the introduction.

LEMMA 6. Each invariant closed right ideal R in a discrete two-
sided H*-algebra A contains a minimal two-sided projection.

Proof. By Lemma 4 R contains a two-sided projection e. The
set eAe is a finite-dimensional proper two-sided iϊ*-algebra included in
R. The lemma now follows from Theorem 3.

COROLLARY. Each discrete proper two-sided H*-algebra A contains
a {maximal) family {grj of mutually orthogonal minimal two-sided
projections such that A = X g{A = X Ag% = Σ oΛQi

i % i.j

THEOREM 4. Each simple discrete proper two-sided H*-algebra
A is isomorphic to a canonical algebra.

Proof. Consider the family {g^ of the last corollary and select
gaegiAgs such that g\ό = gu, gugjk = gik and gti = gi for each i, j , k
(as in [1], page 381). Then the g^'s are mutually orthogonal. We set
ί< = || ^ ||; then 1 ^ t, for each i and also || gu ||2 = (gu, g5i) = || g{ ||2 = t\
for each j (and a fixed i). Also one can show that glj = t~H)gji (note
that (gij9 giS) = (gi5g

r

u, gu) = (gr

id, gSi) and that gr

iό is a scalar multiple
of gji). Let e<i = tψtγl2gih then (e^ , e<5 ) = t tj, e\ά = (tjt^eu and
βJtf — (tj/U)βu The theorem now is easy to complete (see for example
the proof of Theorem 4.3 in [1]). Boundedness of the set {ί4} follows
from continuity of the right involutions: take a fixed k and consider

COROLLARY. Each finite-dimensional proper simple two-sided
H*-algebra is isomorphic to a canonical algebra M for some finite
set J.

6. Remark on the algebra M+ To complete the paper we show
that the canonical algebra M in the introduction is discrete. For each
k let ek be the matrix xi3 — h\h) (δ|, dk

a are Kronecker deltas). Then
{ek} is a maximal family of mutually orthogonal minimal two-sided
projections in M. Let R be an invariant closed right ideal in M. Let
e in {ek} be such that eR Φ 0. Let Rx = (eM)p = r(e); then R2 —
R Π (R Π i?i)p is an invariant closed nonzero right ideal (note that
R2 — 0 would imply R(z Rx — r(e) since JK2 is the orthogonal comple-
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ment of R Π Rί relatively to R).
Suppose that R2 is not minimal. Let eu e2 be two orthogonal left

projections in R2. Let x = \e1 + μe2 (λ, μ are scalars) be such that
(xf e) = 0. If xe = 0 then esc1 = 0 and so i?x Π R2 Φ 0 (note that
xι — Xex + βe2 belongs to R2). If xe Φ 0 then cceikf contains a left
projection β3 ([4], Lemma 5), eB = xey for some y e M. Then (e8, e) =
(α?eτ/, e) = (a?, e /̂re) = 0 (since eyre is a scalar multiple of e) from which
it follows that e3e = 0 ((β8β, β3β) — (e8, β) = 0). But then ββ3 = 0 since e5

and β are both left self-adjoint. So we see that also in this case
there exists a nonzero element z in R2 Π i?i But this implies « 6 JSΠ i?x

and ^ e (i2Πi?i)p, which is impossible.

Thus R2 is minimal and so it is of the form R2 = gM for some
(minimal) left projection g.
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