ON TWO-SIDED H*-ALGEBRAS

Parfeny P. Saworotnow

We call a Banach algebra A, whose norm is a Hilbert space norm, a two-sided H^{*}-algebra if for each $x \in A$ there are elements x^{l}, x^{r} in A such that $(x y, z)=\left(y, x^{l} z\right)$ and $(y x, z)=$ $\left(y, z x^{r}\right)$ for all $y, z \in A$. A two-sided H^{*}-algebra is called discrete is each right ideal R such that $\left\{x^{r} \mid x \in R\right\}=\left\{x^{l} \mid x \in R\right\}$ contains an idempotent e such that $e^{r}=e^{l}=e$. The purpose of this paper is to obtain a structural characterization of those two-sided H^{*}-algebras M which consist of complex matrices $x=\left(x_{i j} \mid i, j \in J\right)$ (J is any index set) for which

$$
\sum_{i, j} t_{i}\left|x_{i j}\right|^{2} t_{j}
$$

converges. Here t_{i} is real and $1 \leqq t_{i} \leqq a$ for all $i \in J$ and some real a. The inner product in M is

$$
(x, y)=\sum_{i, j} t_{i} x_{i j} \bar{y}_{i j} t_{j}
$$

and

$$
x_{i j}^{r}=\left(t_{i} / t_{j}\right) \bar{x}_{j i}, \quad x_{i j}^{l}=\left(t_{j} / t_{i}\right) \bar{x}_{j i} .
$$

Then every algebra M is discrete simple and proper ($M x=0$ implies $x=0$). Conversely every discrete simple and proper two-sided H^{*}-algebra is isomorphic to some algebra M. An incidental result is that the radical of a two-sided H^{*}-algebra is the right (left) annihilator of the algebra.

In this paper we will refer to such an algebra M above as a canonical algebra. We studied two-sided H^{*}-algebras (and more general algebras) in two previous papers [4,5]. When $x^{r}=x^{l}$ for all x in A we have the H^{*}-algebras of Ambrose [1] and if we omit x^{l} we have the right H^{*}-algebra of Smiley [6]. Incidentally, in [4, Theorem 2] we proved that a proper right H^{*}-algebra is a two-sided H^{*}-algebra. So most of the theory of this paper applies to a right H^{*}-Algebra.

Our proof of the main result (Theorem 4) uses the technique of Ambrose [1] and the lemmas about existence of minimal two-sided projections (Theorem 3 and Lemma 6).

The author is very grateful to the referee for his suggestions for the improvement of the paper.
2. A general theorem. The following theorem may be of an independent interest (compare with § 2 in [1]).

Theorem 1. The radical \mathfrak{R} of each two-sided H^{*}-algebra A

[^0]coincides with both the right and left annihilator of the algebra.
Proof. $A x=0$ gives $(x y, z)=\left(x, z y^{r}\right)=\left(z^{l} x, y^{r}\right)=0$ for all $y, z \in A$ so that $x A=0$. Thus $r(A)$, the right annihilator or A, and $l(A)$ coincide. Now consider $B=r(A)^{p}$ which is easily seen to be a twosided H^{*}-algebra which is proper in the sense that $r(B)=l(B)=0$. The proof of Theorem 3.1 of [1] shows that each nonzero ideal of B contains a nonzero idempotent (see also [3], page 101). This means that $B \cap \Re=(0)$ since radical cannot contain idempotents [2, page 309]; thus $\Re=r(A)=l(A)$.

Corollary. The following conditions are equivalent in any twosided H^{*}-algebra (each one of these conditions can be used to define a proper algebra):
(i) $\quad r(A)=0$
(ii) $l(A)=0$
(iii) x^{r} is unique for each $x \in A$
(iv) x^{l} is unique for each $x \in A$
(v) A is semi-simple.

Proof. Equivalence of (i) and (iii) ((ii) and (iv)) can be established as in the proof of Theorem 2.1 of [1].
3. Invariant ideals. Unless otherwise stated A will denote a simple proper two-sided complex H^{*}-algebra. Note that both involutions ($x \rightarrow x^{r}$ and $x \rightarrow x^{l}$) in A are continuous (This follows from the closed graph theorem).

Lemma 1. If $x, y \in A$ then $(x, y)=\left(y^{l}, x^{r}\right)=\left(y^{r}, x^{l}\right)$.
Proof. The set I of linear combinations of products of members of A is dense in A (because I is a two-sided ideal). If $x=u v$ for some $u, v \in A$ then $(x, y)=(u v, y)=\left(u, y v^{r}\right)=\left(y^{l} u, v^{r}\right)=\left(y^{l}, v^{r} u^{r}\right)=$ (y^{l}, x^{r}). Hence $(x, y)=\left(y^{l}, x^{r}\right)$ (and similarly $(x, y)=\left(y^{r}, x^{r}\right)$) holds if $x \in I$. The lemma now follows from the continuity of the involutions.

Corollary. If S is any subset of A, then $S^{r p}=S^{p l}$ and $S^{l p}=$ $S^{p_{r}}$ (as in [4] S^{p} denoted the set of elements of A orthogonal to S and $S^{r}\left(S^{l}\right)$ denotes the image of S under the involution $x \rightarrow x^{r}$ $\left(x \rightarrow x^{l}\right)$).

Lemma 2. If B is a closed right (left) ideal of A, then $l(B)=$ $B^{r p}=B^{p l}\left(r(B)=B^{l p}=B^{p r}\right)$.

Proof. From $\left.\left(B^{r p} B, A\right)=\left(B^{r p}, A B^{r}\right)=A^{l} B^{r p}, B^{r}\right)=\left(B^{r p}, B^{r}\right)=0$ we conclude that $B^{r p} B=0$. Thus $B^{r p} \subset l(B)$. If $x B=0$, then $0=(x B, A)=\left(x, A B^{r}\right)=\left(A^{l} x, B^{r}\right)=\left(A x, B^{r}\right), A x \subset B^{r p}$ and $x \in B^{r p}$ by Lemma 1 of [6]. This simple means that $l(B) \subset B^{r p}$.

Definition. An ideal I in A is said to be invariant if $I^{r}=I^{l}$.
Lemma 3. A closed (right, left) ideal I in A is invariant if and only if I^{p} is invariant.

Proof. Direct verification: $\quad I^{p l}=I^{r p}=I^{l p}=I^{p r}$.
Corollary. A closed right (left) ideal $R(L)$ is invariant if and only if $l\left(R^{p}\right)=l(R)^{p}\left(r\left(L^{p}\right)=r(L)^{p}\right)$.

Definition. An idempotent in A which is both left and right self-adjoint will be called a two-sided projection.

Lemma 4. If $e \in A$ is a left projection and $e A$ is invariant, then e is a two-sided projection.

Proof. From $A e=A e^{r}$ we have $e e^{r}=e$ which shows that $e^{r}=e$ also.

Theorem 2. A proper two-sided H^{*}-algebra A is an H^{*}-algebra if and only if each closed right (left) ideal of A is invariant.

Proof. In view of the first structure theorem (Theorem 1 in [4] we may assume (without loss of generality) that A is simple. Now the condition of the theorem implies that each left projection is a right projection (Lemma 4) an vice-versa. From this it is not difficult to show that both involutions coincide. This could be done either by proving the second structure theorem (Theorem 4.3 of [1]) or by showing that the set S of all linear combinations of products of projections is dense in A (using the arguments in proofs of Lemma 8 in [4] and Theorem 1 in [5] one can show that S is a two-sided ideal).

4. Finite-dimensional algebras.

Lemma 5. For each right projection f in A there exist a left projection $e \in A$ such that $(e, f-e)=0$ and $e f=e, f e=f$. If f is minimal then e is minimal also. A similar statement holds for a left projection.

Proof. Consider the closed right ideal $R=\{x-f x \mid x \in A\}=r(f)$ and write $f=e+u$ with $e \in R^{p}, u \in R$. Then by Lemma 2 in [4] e is a left projection such that $R^{p}=e A$ and $R=r(e)=\{x \in A \mid e x=0\}$. Also $(e, f-e)=(e, u)=0, e f=e(e+u)=e$ and $f e=f(f-u)=f$. If f is minimal then minimality of e follows from the fact that $A f=A e$.

Remark. The algebra A in Lemma 5 does not have to be finitedimensional.

Theorem 3. Every finite-dimensional proper two-sided H^{*}-algebra A contains a minimal two-sided projection.

Proof. We may assume that A is simple. By Lemma 5 there exists a sequence $\left\{f_{1}, f_{2}, \cdots, f_{n}, \cdots\right\}$ of minimal right projections and a sequence $\left\{e_{1}, e_{2}, \cdots, e_{n}, \cdots\right\}$ of minimal left projections such that $\left\|f_{n}\right\|^{2}=\left\|e_{n}\right\|^{2}+\left\|f_{n}-e_{n}\right\|^{2},\left\|e_{n}\right\|^{2}=\left\|f_{n+1}\right\|^{2}+\left\|e_{n}-f_{n+1}\right\|^{2}$ (and $e_{n} f_{n}=$ $e_{n}, f_{n} e_{n}=f_{n}, e_{n} f_{n+1}=f_{n+1}, f_{n+1} e_{n}=e_{n}$) Also $\left\|f_{n}\right\| \leqq\left\|f_{1}\right\| \geqq\left\|e_{n}\right\|$ for each n. By the Bolzano-Weierstrass theorem there exists a subsequence $\left\{g_{k}\right\}$ of $\left\{f_{n}\right\}$ (for simplicity we write g_{k} instead of $f_{n_{k}}$) and some $g \in A$ such that $g=\lim g_{k}$. Then g is right self-adjoint and idempotent. From

$$
\begin{aligned}
\left\|f_{1}\right\|^{2} & =\left\|f_{1}-e_{1}\right\|^{2}+\left\|e_{1}-f_{2}\right\|^{2}+\left\|f_{2}-e_{2}\right\|^{2}+\cdots \\
& +\left\|f_{n}-e_{n}\right\|^{2}+\left\|e_{n}-f_{n+1}\right\|^{2}+\left\|f_{n+1}\right\|^{2}
\end{aligned}
$$

and $\left\|f_{n+1}\right\| \geqq\left\|f_{n+p}\right\| \geqq\|g\|$ it follows that $\left\|f_{n}-e_{n}\right\| \rightarrow 0$. Therefore $g=\lim _{k} e_{n_{k}}$ also and so g is left self-adjoint.

It remains to show that g is minimal. If $x \in A$ then for each k there exists a complex number λ_{k} such that $g_{k} x g_{k}=\lambda_{k} g_{k}$ ([4], page 52 and [1], page 380). Then $\lambda_{k} g_{k}$ tends to $g x g$. From $\left|\lambda_{k}\right| \leqq\left|\lambda_{k}\right| \cdot\left\|g_{k}\right\|=$ $\left\|g_{k} x g_{k}\right\| \leqq\left\|g_{k}\right\|^{2}\|x\| \leqq\left\|g_{1}\right\|^{2}\|x\|$ it follows that λ_{k} has a subsequence converging to some complex number λ. Then $g x g=\lambda g$ and so $g A g$ is isomorphic to the complex number field, from which we may conclude that g is minimal.

Later (corollary to Theorem 4) we will see that each finite-dimensional proper simple two-sided H^{*}-algebra is isomorphic to a canonical algebra M. In fact each such an algebra is discrete in the sense of the next definition.

5. Discrete algebras.

Definition. A two-sided H^{*}-algebra A is said to be discrete if
each invariant ideal in A contains an invariant ideal of the form $e A$ where e is a left projection.

Because of Lemma 4 this definition is equivalent to the corresponding definition in the introduction.

Lemma 6. Each invariant closed right ideal R in a discrete twosided H^{*}-algebra A contains a minimal two-sided projection.

Proof. By Lemma $4 R$ contains a two-sided projection e. The set $e A e$ is a finite-dimensional proper two-sided H^{*}-algebra included in R. The lemma now follows from Theorem 3.

Corollary. Each discrete proper two-sided H^{*}-algebra A contains a (maximal) family $\left\{g_{i}\right\}$ of mutually orthogonal minimal two-sided projections such that $A=\sum_{i} g_{i} A=\sum_{i} A g_{i}=\sum_{i, j} g_{i} A g_{j}$.

Theorem 4. Each simple discrete proper two-sided H^{*}-algebra A is isomorphic to a canonical algebra.

Proof. Consider the family $\left\{g_{i}\right\}$ of the last corollary and select $g_{i j} \in g_{i} A g_{j}$ such that $g_{i j}^{l}=g_{j i}, g_{i j} g_{j k}=g_{i k}$ and $g_{i i}=g_{i}$ for each i, j, k (as in [1], page 381). Then the $g_{i j}$'s are mutually orthogonal. We set $t_{i}=\left\|g_{i}\right\| ;$ then $1 \leqq t_{i}$ for each i and also $\left\|g_{j i}\right\|^{2}=\left(g_{j i}, g_{j i}\right)=\left\|g_{i}\right\|^{2}=t_{i}^{2}$ for each j (and a fixed i). Also one can show that $g_{i j}^{r}=t_{i}^{-2} t_{j}^{2} g_{j i}$ (note that $\left(g_{i j}, g_{i j}\right)=\left(g_{i j} g_{i j}^{r}, g_{i i}\right)=\left(g_{i j}^{r}, g_{j i}\right)$ and that $g_{i j}^{r}$ is a scalar multiple of $\left.g_{j i}\right)$. Let $e_{i j}=t_{i}^{1 / 2} t_{j}^{-1 / 2} g_{i j}$, then $\left(e_{i j}, e_{i j}\right)=t_{i} t_{j}, \quad e_{i j}^{l}=\left(t_{i} / t_{j}\right) e_{j_{i}}$ and $e_{i j}^{r}=\left(t_{j} / t_{i}\right) e_{j_{i}}$. The theorem now is easy to complete (see for example the proof of Theorem 4.3 in [1]). Boundedness of the set $\left\{t_{i}\right\}$ follows from continuity of the right involutions: take a fixed k and consider $x_{i}=g_{i k}^{r}$, then $\left\|x_{i}\right\|=t_{i}^{-2} t_{k}^{2}\left\|g_{k i}\right\|=t_{i}^{-1} t_{k}^{2}$ and $\left\|x_{i}^{r}\right\|=t_{k}$.

Corollary. Each finite-dimensional proper simple two-sided H^{*}-algebra is isomorphic to a canonical algebra M for some finite set J.
6. Remark on the algebra M. To complete the paper we show that the canonical algebra M in the introduction is discrete. For each k let e_{k} be the matrix $x_{i j}=\delta_{i}^{k} \delta_{j}^{k}$ ($\delta_{i}^{k}, \delta_{j}^{k}$ are Kronecker deltas). Then $\left\{e_{k}\right\}$ is a maximal family of mutually orthogonal minimal two-sided projections in M. Let R be an invariant closed right ideal in M. Let e in $\left\{e_{k}\right\}$ be such that $e R \neq 0$. Let $R_{1}=(e M)^{p}=r(e)$; then $R_{2}=$ $R \cap\left(R \cap R_{1}\right)^{p}$ is an invariant closed nonzero right ideal (note that $R_{2}=0$ would imply $R \subset R_{1}=r(e)$ since R_{2} is the orthogonal comple-
ment of $R \cap R_{1}$ relatively to R).
Suppose that R_{2} is not minimal. Let e_{1}, e_{2} be two orthogonal left projections in R_{2}. Let $x=\lambda e_{1}+\mu e_{2}(\lambda, \mu$ are scalars) be such that $(x, e)=0$. If $x e=0$ then $e x^{l}=0$ and so $R_{1} \cap R_{2} \neq 0$ (note that $x^{l}=\bar{\lambda} e_{1}+\bar{\mu} e_{2}$ belongs to R_{2}). If $x e \neq 0$ then $x e M$ contains a left projection e_{3} ([4], Lemma 5), $e_{3}=$ xey for some $\mathrm{y} \in M$. Then $\left(e_{3}, e\right)=$ $(x e y, e)=\left(x, e y^{r} e\right)=0$ (since $e y^{r} e$ is a scalar multiple of e) from which it follows that $e_{3} e=0\left(\left(e_{3} e, e_{3} e\right)=\left(e_{3}, e\right)=0\right)$. But then $e e_{3}=0$ since e_{3} and e are both left self-adjoint. So we see that also in this case there exists a nonzero element z in $R_{2} \cap R_{1}$. But this implies $z \in R \cap R_{1}$ and $z \in\left(R \cap R_{1}\right)^{p}$, which is impossible.

Thus R_{2} is minimal and so it is of the form $R_{2}=g M$ for some (minimal) left projection g.

Bibliography

1. W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
2. N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300-320.
3. L. H. Loomis, An introduction to abstract harmonic analysis, New York, 1953.
4. P. P. Saworotnow, On a generalization of the notion of an H^{*}-algebra, Proc. Amer. Math. Soc. 8 (1957), 49-55.
5. On the imbedding of a right H^{*}-algebra into Ambrose's H^{*}-algebra, Proc. Amer. Math. Soc. 8 (1957), 56-62.
6. M. F. Smiley, Right H^{*}-algebras, Proc. Amer. Math. Soc. 4 (1953), 1-4.

The Catholic University of America

[^0]: Received July 2, 1964.

