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OPERATORS COMMUTING WITH TRANSLATIONS

R. E. EDWARDS

This paper is concerned with the representation, in terms
of convolutions with pseudomeasures, of continuous linear
operators which commute with translations and which trans-
form continuous functions with compact supports on a Hausdorff
locally compact Abelian group G into restricted types of Radon
measures on G. The two main theorems each assert that any
such operator T is of the form Tf = s * / for a suitably chosen
pseudomeasure s on G; the assertions differ in detail in respect
of the hypotheses imposed on the range of TΛ The second
theorem is an extension of Proposition 2 of [1] from the case
in which G is a finite product of lines and/or circles to the
general situation.

Preliminaries* The notations are as described in § 1 of [1],
with G in place of X, and with the following additions. If KdGy

CK(G) denotes the set of fe CC(G) satisfying supp faK. The symbol
Mb(G) will denote the set of all bounded Radon measures on G. Con-
tinuity of the operators T considered will, in the absence of any
indication to the contrary, refer to the inductive limit topology on CC(G)
and the vague topology σ(M(G), Ce(G)) on M(G) and its subsets. No
distinction is drawn between a locally integrable function f on G and
the associated measure fdxe M(G), dx denoting the element of Haar
measure on G. In this paper, X will denote the character group of G,
the Haar measure dξ on X being chosen so that the Fourier trans-
formation is an isometry of U(G) onto L2(X).

Prior to stating the representation theorems, we make some remarks
about pseudomeasures on G.

Let A(G) denote the space of functions u on G which are inverse
Fourier transforms of functions v e L\X):

u(x) -

A(G) is a Banach space under the norm

\\n\\A= \ \v(ξ)\dξ^\\v\\1.

By a pseudomeasure on G is meant a continuous linear functional on
A(G), and we denote by P(G) the set of pseudomeasures on G. By
|| UP is meant the usual norm on P(G) qua dual of A(G). The Fourier
transformation can be defined for pseudomeasures s in such a way that
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s —> s is an isometric isomorphism of P(G) onto L°°(X). There is an
obvious sense in which Mb(G) can be regarded as a subset of P(G).

If 6 is a finite product of lines and/or circles, one may think of
P(G) as comprising exactly those temperate distributions on G whose
Fourier-Schwartz transform is an essentially bounded function. It is
this identification which provides the link between Proposition 2 of [1]
and Theorem 2 below.

If se P(G)y the mapping f*~*s*f is a continuous endomorphism of
L\G). In connection with Theorem 1 we shall be concerned with the
case in which the restriction of this mapping to CC(G) has a range
lying in Mb(G), i.e., equivalently, in L\G). The pseudomeasures s
having this property form a subset P\G) of P(G). Naturally, P\G)
contains the set PC(G) of all pseudomeasures with compact supports (in
particular, P\G) = P(G) when G is compact) and contains also Mb(G).
The closed graph theorem shows that, if seP\G), then to each com-
pact set KcG corresponds a number mk > 0 such that

(1.1) Ilβ /Hi^m^l l/H (feCκ(G)),

where || || denotes the supremum norm. Further comments on P\G)
are given in §5 infra.

We can now state the two main theorems.

THEOREM 1. The continuous linear operators T from CC(G) into
Mb(G) which commute with translations are precisely those of the
form

(1.2) Tf=s*f,

where seP\G).

THEOREM 2. The continuous linear operators T from CC(G) into
Me(G) which commute with translations are precisely those of the
form (1.2), where now s e PC(G).

Theorem 2, combined with the basic properties of pseudomeasures,
shows that any continuous linear operator T from CC(G) into MC(G)
which commutes with translations admits an extension which maps L%G)
into L%G) and L\G) into L2(G), L%G) denoting L\G) Π Mβ(G), i.e., the
set of functions in L2(G) which vanish a.e. outside a compact subset
of G (a property equivalent to saying that the associated measure has
a compact support). In § 5 (B) we shall see that, by virtue of Theorem
1, each continuous linear operator from CC(G) into Mh(G) admits some-
what similar but less evident extensions.
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In Theorem (3.2) of [3] G. I. Gaudry has shown that there is a
valid analogue of Theorem 1 for the case in which Mb(G) is replaced
by the space M(G) of all Radon measures on G, the pseudomeasure s
being then replaced by a somewhat more general entity termed a
"quasimeasure". Theorem 2 above is used in [3] as an aid in studying
the local structure of quasimeasures.

2* In the proof of Theorem 1 we shall need a lemma.

LEMMA. TO each subset W of G containing interior points cor-
responds a number c = cw > 0 such that

\\F\\<c 8uv{\\Ff\\:feCw(G),\\f\\Sl}

for all functions F on X.

Proof. Define

N(F) = S u p { | | Ff\\ :feCw(G), \\f\\ ^ 1} ,

which is possibly ooβ If F is unbounded on X, the lemma on p. 281
of [1] shows that N(F) = °o, so that in this case any value of c > 0
will suffice (provided the usual conventions are adopted). Assume then
that FeB(X), the space of bounded functions on X. The functional
N is evidently a norm on B(X)O Moreover, B(X) is complete for N.
For suppose that (Fn) is an iV-Cauchy sequence in B(X). Evidently,
to each ξeX corresponds a number bξ > 0 such that

(2.1) \F(ξ)\£brN(F).

It follows that (Fn(ξ)) is Cauchy for each ξeX, so that F = lim Fn

exists pointwise on X. For any ε > 0 there exists nQ = no(e) such that

N(Fm -Fn)^ε (m, n > n0) .

That is, for any feCw(G) satisfying | | / | | ^ 1,

Sup.ez I Fm(ξ) - Fn(ξ) | |/(ί) I ̂  ε (m, n > nQ) .

On letting m —> oo it appears that

Sup,6χ I F(ξ) - FM 11 f(0 I ̂  e (n > n0)

and hence that

N(F -Fn)^s (n> n0) .

This shows first that N(F) < oo, and hence that FeB(X), and then

that Fm —> F in the sense of the norm N, Thus B(X) is iNΓ-complete,
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Reference to (2.1) shows that the supremum norm is lower semi-
continuous relative to N. Therefore, this supremum norm is actually-
continuous relative to N, which is precisely what the lemma asserts.

3* Proof of Theorem 1* The inequality (1.1) makes it plain that,
if s e P\G), then (1.2) defines T as a continuous linear operator from
CC(G) into L\G) c Mb(G) which commutes with translations. Actually
Γ, thus defined, maps CC{G) into L2(G) and is continuous for the L2-
topologies.

Turning to the converse, let us first show that the seminorm

/—> I d(\ Tf\) is continuous on Ce(G). Indeed, integration theory shows

that

the supremum being taken with respect to those fe CC(G) satisfying

11/11 ^ 1. It thus appears that the seminorm /—> I d(\ Tf\) is lower
JG

semicontinuous on the barrelled space CC(G), and is therefore continuous.
Accordingly, if KczG is compact, there exists a number mκ > 0

such that

(3.1) \Qd(\ Tf\) S mκ 11/11 (fe CK{G)) .

Take now a net (β<) of nonnegative functions in CC(G) such that

I e{dx — 1 and supp e< c Ni9 where the Nt form a neighbourhood base

at the origin in G. We may assume that all the Nt are contained in

some compact set JV. If feCκ(G), then 1™^*/ = / uniformly on G

and supp (^*/)cΛΓ+ K. Since T is continuous and commutes with

translations, Γ(β*/) = Te*/for e,fe CC(G). So, if μt = Teu it follows

from (3.1) that

(3.2) Tf - lim T(e^f) = lim μ^f in Mb(G) ,

and that

Taking the Fourier transform of this relation, it follows that for
fe CK(G) we have

Fixing K as any compact set with interior points, and applying the

lemma in §2, we conclude that



OPERATORS COMMUTING WITH TRANSLATIONS 263

This in turn ensures that the net (μ^ has a weak limiting point s e P(G).
The net (/***/) then has s*f as a weak limiting point in U(G) and a
comparison with (3.2) shows that Tf must coincide with s*/, i.e., that
(1.2) must hold. Since T maps CC(G) into Mb(G), s must belong to
P\G). The proof is complete.

4* Proof of Theorem 2. Once again it is evident that, if s e PC(G),
then (1.2) defines T as a continuous linear map of CC(G) into MC(G)
which commutes with translations.

For the converse, note that Theorem 1 implies the existence of a
pseudomeasure s such that (1.2) holds. The proof of Theorem 1 shows
moreover that s is a weak limiting point in P(G) of the measures
μ. — Te{. Now supp ei c N, a compact subset of G. Lemmas 2 and 3
of [2] show that accordingly there is a compact subset Kr of G such
that supp μ{ c Kr for all i. But then it follows that supp sa K' too,
showing that s e PC(G).

REMARK. In Theorem 4.2 of [3] it is remarked that Theorem 2
entails that every quasimeasure with a compact support is a pseudo-
measure. Theorem 1 leads to an analogous result, as we now show.

Reference to the proof of Theorem 4.5 of [3] confirms that if q is
a quasimeasure on G, then/—>q*f maps L2

C(G) continuously into L2

OC(G).
Let us write

II A 1 ^ = \'\h(x)\dx\1=V\h(x)

for an arbitrary complex-valued function h on G, so that h e L\G) if
and only if h is measurable and ||ft|[i < °° Then we have the

COROLLARY. If q is a quasimeasure on G such that

(4.1) \\q*f\\i<°o (feCc(G)),

then q is a pseudomeasure belonging to P\G).

Proof. Since q*fe L2

l0C(G), (4.1) shows that q*fe L\G). The pre-
ceding remarks show that the mapping f—>q*f has a graph which is
closed in CC(G) x L\G) and is therefore continuous. The assertion
therefore follows from Theorem 1.

5. Concerning P\G). We collect a few results about P\G) and
its elements.

(A) When G is compact, P\G) = P(G) (see § 1). The situation is
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much more complex when G is noncompact, and we know of no effective
and direct characterisation of P\G) as a subset of P(G). It is easy
to see that if s e P\G), then s coincides l.a.e. on each compact subset
H of X with the transform of an (iϊ-dependent) function in L^G); in
particular, s is equal ha.e. on X to a continuous function on X. This
shows that P\G) is dense in P(G) if and only if G is compact. More
elaborate arguments (based on properties of Helson subsets of X; see
[4], Chapter 5) will show also that P\G) is closed in P{G) if and only
if G is compact.

We turn next to a positive assertion which adds interest and weight
to Theorem 1.

(B) Suppose that s e P\G), that 2 ^ ^ o o , and that pf is defined
by 1/p + 1/p' = 1. Let W be any relatively compact open subset of
G, (dr)7=i any sequence of points of G. Put er for the characteristic
function of arW. If / is a measurable function on G vanishing out-
side a compact subset of E = \J {arW: r = 1, 2, •} and such that

(5.1)
r=l

then s*/e Lpf(G), and furthermore there exists a number m'w > 0 such

(5.2)

Proof. Consider first the case in which / is essentially bounded
and vanishes outside W. There exists then a sequence (fn)ζ=1 of
functions in C^(G) such that | | / J | ^ \\f\U and Λ — / a.e. By (1.1),
H s * / ^ ! S Mψ II/IU and so the s*fn have a weak limiting point
μeMb(G). On the other hand, since fn—+f in L2(G), s * / w — • ^ / i n
L2(G). It follows that μ = s*fe Mb(G) Π £2(G) c LX(G) and

(5.3) l l ^ / l l ^

We also know that

(5.4) l|β

Now (5.3) and (5.4) and the Riesz convexity theorem combine to show
that, for some number m'w > 0 and all p ^ 2, one has

(5.5) | |β*/H,'^m^. | l/l lp

whenever fe LP(G) vanishes outside W. By translation, (5.5) remains
valid whenever feLp(G) vanishes outside a translated set aW, where
a e G is arbitary.

Now suppose that / vanishes outside a compact subset of E and
and satisfies (5.1). Then /=ΣΓ=i/r> where fr = fer and where the
series converges m LP(G) and a fortiori in &(G). By (5,5),
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(5.6) \\S*fr\\p,^m'w.\\fr\\p,

so that in particular ΣΓ=i(s*/r) is convergent in LP\G). This latter
series is, however, convergent in L2(G) to s*/, whence it appears that
s*feU\G) and, from (5.6), that (5.2) is true. This completes the
proof.

REMARKS. (1) In the statement of (B) we assumed that /
vanishes outside a compact subset of E merely to ensure that s*/ is
defined a priori. Actually, the proof furnishes a method of extending
the definition of s*/ to all cases in which / vanishes outside E and
satisfies (5.1).

Notice that if G = Rn, we can always arrange that the arWίoτm
a covering of Rn by nonoverlapping congruent closed ^-dimensional
cubes; this is indeed one of the most natural choices of the arW in
this case. Taking n — 1, we see that s e P\R) if and only if the
operator f—+s*f maps the Wiener class M1 ([5], p. 73) into L\R)-, and
that any continuous linear operator from M1 into L\R) which commutes
with translations is of the form /—> s*/ for a suitably chosen s e P\R).

(2) By virtue of Theorem 1, (B) expresses some nontrivial ex-
tension properties possessed by all continuous linear operators from CC(G)
into Mb(G) which commute with translations.

(C) In case G = Rn = X, it is simple to specify smoothness con-
ditions on s ensuring that a given s e P(Rn) shall belong to P\Rn).
In fact, if we define mn to be 1 if n — 1 and to be 2[w/4] + 2 if n > 1
(square brackets denoting the integral part), it is sufficient that each
partial derivative of s of order at most mn be expressible as the sum
of a function in L{Rn) and a function in U{Rn). (The partial deriva-
tives are here understood in the distributional sense.)
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