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TWO NOTES ON REGRESSIVE ISOLS

JOSEPH BARBACK

This paper deals with regressive functions and regressive
isols. It was proven by J. C. E. Dekker in [2] that the collection
AR of all regressive isolβ is not closed under addition. In the
first note of this paper we shall given another proof of this
fact by considering a new relation, denoted by >*,, between
infinite regressive isols. Let A and B denote infinite regressive
isols. The main results established in the first note are:
(1) A ^ * B — » A >•, B, yet not conversely.
(2) A + BeAB ==> A <J, B, yet not conversely.
(3) There exist infinite regressive isols which are not >*, related.
(4) AR is not closed under addition.
In addition, the following result is stated.
(5 ) A + BeAB = * min(A,B) ^ A + B, yet not conversely.

In the second note we consider the έ * relation between
regressive isols. A natural question concerning this relation
is whether A ^ * 5 , where A and B are regressive isols, is a
necessary or a sufficient condition for the sum A -f- B to be
regressive. In the second note we show that this condition is
neither necessary nor sufficient.

We shall assume that the reader is familiar with the
notations, terminology and main results of [1] and [2].

Preliminaries* Let s = {0, 1, 2, 3, •} be the set of nonnegative
integers (numbers). A one-to-one function tn from ε into ε is regressive
if there is a partial recursive function p(x) such that pt £ δp and
p(tQ) = ί0, (Vn)[p(tn+1) = tn]. The function p is a regressing function
of tn if p has the following additional properties: pp £ δp and
(Vx)[xeδp —* (37&)[p +ι(a?) = 2>w0»)]]. It is known (cf. [1]) that every
regressive function has a regressing function. A set is regressive if
it is finite or the range of a regressive function. A set is retraceable
if it is finite or the range of a strictly increasing regressive function.
Let p be a regressing function of tn, then the function p* is defined
by: δp* = dp and p*(x) = (μn)[pn+1(x) = pn(x)]. It follows that p* is
a partial recursive function and (vri)[p*(tn) = ri\.

Let sn and t% be two one-to-one functions from ε into ε. Then
sn ^ * tnf if there is a partial recursive function / such that

(1) psQδf and (Vn)[f(sn) = tn] .

Also, sn and ίπ are said to be recursively equivalent (denoted sn ~ tn)
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if there is a one-to-one partial recursive function / such that (1) holds.
Let σ and τ be two sets. Then σ ^ * r, if either σ is finite and card.
σ fg card, r, or σ is infinite and there is a partial recursive function
/ such that σ gΞ δf, f is one-to-one on σ and f(σ) = τ. Let S and T
be two isols. Then S ^ * T, if there are sets σeS and τe T such that
σ S * T. The following propositions will be useful:

( a ) Retraceable sets are either recursive or immune.
(b) Every function recursively equivalent to a regressive function

is regressive.
(c) Every set recursively equivalent to a regressive set is re-

gressive.
(d) Let σ = psn and τ = ptn where sn and tn are one-to-one re-

gressive functions. Then σ S * τ if and only if sn ^ * tny and σ a τ if
and only if sn ~ tn.

(e) Let sn and tn be one-to-one functions from ε into e. Then
sn CΞ tn if and only if sn ^ * ίΛ and £n ^ * sΛ.

Proposition (a) is proven in [3]. Propositions (b) and (c), and the
second part of (d) are proven [1]. Both (e) and the first part of (d)
are given in [2].

Two sets a and β are said to be separated (denoted a \ β) if there
are disjoint r.e. sets α* and β* such that a £ α* and β <Ξ β*. Two
functions an and bn are said to be separated (denoted an \ bn) if their
ranges are separated sets. We will use the familiar primitive recursive
functions j , k and I defined by

j(x, y) = x + (x + y)(x + y+

j(k(n)y l(n)) = n .

The function j maps ε2 one-to-one onto ε.

Note 1. The O relation.

DEFINITION 1. Let an and bn be any two one-to-one functions from
ε into ε. Then an^/bn if there is a partial recursive function p(x)
such that

(Vn)[an e δp and p(an) = 6J V (&Λ € δp and p(6Λ) = an)] .

The following proposition can be readily proven using the definitions
of the concepts involved. Its proof will be omitted.

PROPOSITION 1.1. Let an and bn be any two one-to-one functions
from ε into ε. Then

( a ) α,O6 w —>6»<>α. ,
(b) an g * 6 Λ = > α n v ^ f e n ,
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(c) α n ~ < , δ n ^ δ ; , |
an I bni a'n\b'n,

DEFINITION 2. Let A and B be any two infinite regressive isols.
Then A^/B if there are regressive functions an and bn such that

pan e A, pbn e /3, αn ( δw and an^/bn .

RERARK. In view of Proposition (d) and part (c) of Proposition
1.1, we see that if A and B are infinite regressive isols, then A^B
means that an <^, bn for every pair an and bn of separated, regressive
functions ranging over sets in A and B respectively.

THEOREM 1.1. Let A and B be infinite regressive isols. Then

Proof. Let an and bn be any two (one-to-one) regressive functions
ranging over sets in A and B respectively and such that au ^ * bn. Set
< = 2an and b'n = 2bn + 1. Then an ~ a'n, bn ~ b'n and < | b'n. Taking
into account Propositions (b), (c) and (d) it follows that o!n and b' are
separated, regressive functions which range over sets in A and B re-
spectively. In addition, an ^ * bn implies a'n ̂ * 6̂ . By Proposition 1.1
(b) this means a'n^b'ny and therefore A^B.

THEOREM 1.2. For all infinite regressive isols A and B,

Proof. Let A and 5 denote two infinite regressive isols whose
sum is also regressive. Let an and bn be regressive functions with
a = ρaneA, β = pbneB and a \ β. Then a + βeA + B and α + β
is a regressive set. Let cn be a regressive function ranging over the
set oc + β and let p(x) be a regressing function of cn. Set

δ = {x I (a? - an and p*(δn) < p*(αn)) V (x = bn and p*(αn) < p*(δn))} .

We note that δ g α: + β and that for each number n, exactly one of
the numbers an and bn belongs to δ. Let the function / with domain
δ be defined by

(αw, if x = δn .

It is easily seen that if / has a partial recursive extension then an ̂  bn.
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Since an and bn are separated functions this fact would also imply that
A <*, JB. Hence to complete the proof it suffices to show that / has a
partial recursive extension. For this purpose, assume that x e δ. Since
a and β are separated sets we can determine whether xea or xeβ.
First suppose that xea. Taking into account that an and cn are re-
gressive functions, we can find the numbers u and v such that x =
au = cv. The number au belongs to δ and therefore

K e (Co, Ci, , <vJ = {pr(α) 11 ^ r ^ v} .

The members of the set on the right side can be effectively obtained
from x9 since p is a partial recursive function. In addition, using once
again the separability of the sets a and β, and the regressiveness of
the function £>n, it follows that we can find the number bu. This gives
the value of f(x). In a similar fashion one can determine the value of
f(x) in the event xeβ. From these remarks we can conclude that /
will have a partial recursive extension. This completes the proof.

REMARK. We shall state without proof, two additional facts
which can be established in the proof of Theorem 1.2. These are

(a) δ e min (A, B) ,

(b) s\(a+β)-δ.

Since a + β e A + B, these facts imply that

( * ) min (A, B) ^ A + B .

In the proof of Theorem 1.2, A and B were assumed to be infinite re-
gressive isols. However, it is easily seen that the relation denoted by
(*) is also true in the event either A or B is finite, for in this case
min (A, B) assumes one of the values (A, B). From these remarks one
has the following

THEOREM. For all regressive isols A and B,

A+BeJB = > min (A, B) ^ A + B .

The statement obtained by reversing the implication in the above
theorem is false, for in the second note it is shown that there are
two infinite regressive isols which are comparable relative to the ^ *
relation, hence their minimum assumes one of these two values, and
yet whose sum is not regressive. According to Theorem 1.1, this also
means that reversing the implication in Theorem 1.2 yields a false
statement as well.

THEOREM 1.3. There exist infinite regressive isols A and B which



TWO NOTES ON REGRESSIVE ISOLS 411

are not \y related.

Proof. Let {pj be an enumeration of partial recursive functions
of one variable such that:

( a ) every partial recursive function of one variable occurs at
least once in {pj,

(b) j>o(l) =£ 3 and po(3) Φ 1 .
We shall define two functions an and bn such that the recursive
equivalence types, A = Req pan and B — Req pbn satisfy the conditions
of the Theorem.

Put aQ = 1 and &0 = 3. We note that (b) implies

(1) Po(θo) =£ h and po(bo) Φ a0.

Let t ^ 1 and suppose that α0, , α ί - x and 60, , 6 ί β l have already
been defined. We define at and bt by setting

where the numbers ut and vt will be defined in such a manner that

(2) pt(at) Φ bt and ptφt) Φ at .

The definition of ut and vt. Set

V =

We consider three cases:

Case I. rf Φ φ. Let u be the smallest number belonging to rf\
Then ptj(at^u u) is undefined.

Subcase I .I . There exists a number i; such that

PtάΦt-u v) Φ j(at_u u) .

Set

% = {μv)[ptjφt-u v) Φ j(at_u u)] .

Subcase 1.2. For all numbers v,

Consider the number j(at_ly u + 1). Since j maps ε2 one-to-one onto ε,
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it follows that j(at_u u + 1) Φ j(at_ly u). Hence for all numbers v,

pJΦt-» v) Φ j(at_u u + 1) .

Clearly there exist numbers v' such that j(bt_L, v') Φ pt(at_u u + 1).

Set

ut = u + 1 ,

% = (μv')[JΦt-u V) Φ Ptj(at_u u + 1)] .

Case II. ζ' Φ φ. Here we proceed in a fashion similar to Case I.
The details are omitted.

Case III. rf = ζ' = φ, i.e., η = ζ = ε, i.e.,

(V^fΛα^, M) G δ] and (w)[j(bt_u v) e δ] ,

where δ = δp t. The numbers in the following four lists:

LI. ί(α,_i,O), i (α^ l f 1), •••

L2. pJΦt-» 0), fti(6*-i, 1), •

L3. i(6,-i,0), i ( δ ^ , l ) , •••

L4. PtJ(a>t-i, 0), pJ(a>t-ι, 1),

are therefore all defined. Since the function jf(#, #) is one-to-one, all
numbers in LI are distinct and all numbers in L3 are distinct.

Subcase III.l. LI contains a number which does not occur in L2.
Set

Since all of the numbers in L3 are distinct, it follows that

(3v)[jφt-lf v) Φ ptj(at_l9 ut)] .

Set

^ = (μv)[jφt_lf v) Φ ptj(aM, ut)\ .

Subcase III.2. Every number of LI occurs at least once in L2.
Since LI contains infinitely many numbers this implies that L2 contains
infinitely many numbers. Hence, not only

(Vu)(3v)[j(at_lf u) Φ ptύΦt-» v)] ,

but also

(V^)(3 infinitely many v)[j(at^u u) Φ PtΰΦt-u v)]

This must be true in particular for u = 0. Thus there exists an infinite
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sequence vQ, vu v2, of distinct numbers such that

(Vn)[j(at_lf 0) Φ ptj(bt_u vn)] .

Let

n* = (μn)[j(bt_ly vn) Φ ptj{at_u 0)] .

Define

413

vt =

This completes the definition of the numbers ut and vt, and hence also
of the functions an and bn. It is readily verified that the numbers at

and bt have been so defined as to satisfy (2), that is

h and pt(bt) Φ at .

Combining this fact with (1) gives

( 3) (Vn)[pn(an) Φ bn and pn(bn) Φ αΛ] .

Let

a = pan and β = ρbn β

We claim:
( a ) an and δΛ are strictly increasing regressive functions and a

and β are retraceable sets,

(b) a\β,
( c ) αΛ and bn are not s^ related,
(d) a and £ are immune sets.

Re (a): It follows from the definition of the function j(x, y) that

% < J(x> v) f° r x > 0 Moreover, we have

α0 > 0 and (Vra)(3tt)[αΛ+1 = i ( ^ , ^)] ,

δ0 > 0 and (vn)(3v)[6n+1 = i(6., v)] .

Hence

α0 < αx < α2 < and bQ<bt<b2< ,

and therefore an and δπ are strictly increasing functions. Set

ία0, if x = α0 ,

if a?

Clearly #(#) is a recursive function and it can be readily shown that
q(x) is a regressing function of an. By replacing α0 by b0 in the de-
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finition of q(x) yields a regressing function of bn. Hence, an and bn

are each strictly increasing regressive functions and therefore a and β
are retraceable sets.

Re (b): As a consequence of the definition of the functions an and
bn, we have

z) = 1]} ,

z) = 3]}.

The sets appearing on the right sides are clearly r.e. Also, since
fc(3) = 0, fc(l) = 0 and fc(0) = 0, they are disjoint. Hence a \ β.

Re (c): Suppose that statement (c) were false; this would then
mean an <^ bn. Hence there would be a partial recursive function p(x)
such that

(4) (Vn)[p(an) = 6J V (pφj = αj] •

Assume that the index of p in our enumeration is i, i.e., p(a?) = Pi(x).
In view of (4), we would have

Pi(a>i) = bi* o r Pi(b%) = α < .

However, according to (3) this statement must be false. This con-
tradiction establishes the desired conclusion that an and bn are not ^
related.

Re (d): By part (a), each of the sets a and β is retraceable and
hence is either recursive or immune. If one of these sets is recursive
then the strictly increasing function ranging over the set would be a
recursive function. Thus, if a were a recursive set then an would be
a recursive function. In this event, we would have that

bn £** n, since bn is a regressive function,

n ^ * α Λ , since an is a regressive function,

and, by the transitivity of the ^ * relation, also that bn ^ * α w . By
Proposition 1.1 (b), this means that an^bn1 which is not possible
according to part (c). Therefore a must be an immune set. In a similar
way it can be shown that β is also an immune set. This verifies (d).

To complete the proof, let

A = Req a and B = Req β .

By statements (a) and (d) it follows that A and B are infinite regressive
isols. In addition, combining statements (a) and (c) with the Remark
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following Definition 2 implies that A and B are not ̂  related. Hence
A and B satisfy the requirements of the Theorem.

REMARK A. In [2, Theorem T2] it is shown that both the collection
ΛR of all regressive isols and the collection A0R of all cosimple regres-
sive isols are not closed under addition. We note that the first of
these results can be obtained by combining Theorems 1.2 and 1.3.

REMARK B. It is readily seen from Definitions 1 and 2, that the
\z relation for infinite regressive isols is both reflexive and symmetric.
The following Corollary to Theorem 1.3 shows that <J/ is a not a transi-
tive relation.

COROLLARY. There exist infinite regressive isols A, B and W
with Asy W, B >*, W, while A and B are not \JJ> related.

Proof. Let A and B be any two infinite regressive isols which
are not <Ĵ  related. Set W — min (A, B). Then TFis an infinite regressive
isol with

W^*A and W^*B.

Hence, by Theorem 1.1

W^A and W^B.

According to our choice of A and J5, the proof is complete.

Note 2. The main results of this note will establish the fact that
A ίg* B (where A, Be AR) represents neither a necessary condition nor
a sufficient condition for the sum A + B to belong to AR. In the
following discussion we will use the notion of the degree of unsolvability
of a regressive isol. This concept is studied in [2], If A is a regres-
sive isol, then AA will denote its degree of unsolvability.

THEOREM 2.1. There exist regressive isols A and B with A ^ * Bf

yet whose sum A + B is not regressive.

Proof. Let P and Q denote two (infinite) regressive isols with
different degrees of unsolvability, i.e., AP Φ JQ. Set

A = min (P, Q) .

Then A is an infinite regressive isol such that

A^*P and A ^* Q .

To complete the proof we need only show that at least one of the two
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isols A + P and A + Q is not regressive. To prove this fact, let us
suppose otherwise, namely that both A + P and A + Q are regressive
isols. Then according to [2, Proposition 17(d)], it follows that

ΔA = ΔP and ΔΛ = ΔQ ,

and therefore ΔP — ΔQ. This last equality contradicts our choice of P
and Q. Hence, either A + P or A + Q is not regressive. If we define
B to be P if A + Pζ ΛR and to be Q otherwise, then A and B will
satisfy the requirements of the Theorem.

REMARK. It is proven in [2] that there are cosimple regressive
isols with different degrees of unsolvability. Moreover, the minimum
of two cosimple regressive isols is again a cosimple regressive isol.
Thus, as a consequence of the previous proof, we see that the following
result is also true.

THEOREM. There exist cosimple regressive isols A and B with
A ^ * B yet whose sum A + B is not regressive.

THEOREM 2.2. There exist regressive isols S and T which are
incomparable relative to the ^ * relation and whose sum is regressive.

Proof. This shall be a constructive type of proof and we shall
use a technique introduced in the proof of [4, Theorem 95], The proof
will progress in four steps.

Step I. In this step we shall define a particular function an from
ε into ε, and show that it is strictly increasing and regressive.

Let Pi(x) denote a function of the two variables ί and x such that
every one-to-one partial recursive function and no other function appears
in the sequence {pj. For any numbers tQ, , tm, i; max* {Pi(t0), ,
Pi(tm)} is defined to be 0 if none of the m + 1 numbers Pi(tQ), , p<(ίm)
is defined; and is defined to be the maximum of those numbers
PiiQi * >?>i(O which are defined; if at least one of them is defined.

The function an is defined by,

αΛ+1 = i(α*, uk+d , where

uk+ί = 0, if either k = An + 1 or k = in + 3 ,

M*+i= (μy)[j(ak,y)>m2ix* {pn(a0), ,p»(αm)}], if either k=Anoτ k=An+2.

It is readily seen that an is an everywhere defined function from ε into
ε. Moreover, just as the function an in the proof of Theorem 1.3 was
shown to be strictly increasing and regressive, it can be shown that
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an is also strictly increasing and regressive.

Step II. Let the four sets 50, δL, δ2 and o3 denote the ranges of
the functions α4w, α4 n + 1, ain+2 and α 4 n f 3 respectively. Since each of the
functions 4?ι, in + 1, 4w + 2 and 4n + 3 is strictly increasing and
recursive, it follows that each of the functions α4n, α4 n + 1, <zn+2 and ain+z

is regressive. Hence the four sets <50, δt, δ2 and <53 are each regressive.
We shall now prove:

( a ) not [So ~ SJ,
( b ) not [δ2 ~ <53],
( c ) αn ranges over an immune set.

Re (a): To prove statement (a), let us suppose that it is false.
Then, by the enumeration in Step I, there would be a number i such
that

δQ c δpi and Pi(δ0) — δx .

One consequence of this fact is

By the definition of the function ani it follows that α 4 ί + 1 would exceed
each of the numbers Pi(a0), Pi(a4), •• ,p i (α 4 ί ). Since an is strictly in-
creasing, the same would be true for α 4 i + 1 with 'j ^ 1. Hence from
(1) we can conclude that

However, the set on the left side has exactly i + 1 members while the
set on the right side has only i members. This contradicts the fact
that Pi is a one-to-one function. This means that statement (a) must
be true.

Re (6): We can prove statement (b) in a way similar to the one
used to prove (a). Assuming that statement (b) is false implies that
there is a number i such that

δ2<zδpi9 and ^(δ2) = δ3 ,

and

The definition of the function an implies that au+3 will exceed each of
the numbers Pi(α2), P;(α6), , ̂ (α 4 ί + 2 ) , and since an is strictly increasing,
the same will be true for α4 i :.3 with j ^ i. Hence from (2) we can
conclude that
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Yet the set on the left side has exactly i + 1 members while the set
on the right side has exactly i members. This contradicts the fact that
Pi is a one-to-one function. Therefore (b) must be a true statement.

Re (c): Since an is a strictly increasing regressive function it
ranges over an infinite retraceable set. We know that this set will
be either recursive or immune. But it is easily seen that if an ranges
over an infinite recursive set then each of the sets δQ and δι will also
be infinite and recursive. According to statement (a), this is not
possible. Hence an ranges over an immune set. This verifies (c) and
also completes Step II.

Step III. Let

o = δ0 + σ3 and z = δλ + δ2 .

We

For

shall
( d )
( e )

( f )
(g)
this

now prove:
σ and
σ\τ,
not [σ
not [τ

purpose

τ are

ΞS*r],
£*σ].
, let

g(χ)--

h(x) --

infinite

_ ί 4 % >
(4w +

(An +

~ \4n +

regressive sets,

3 ,

1 ,

2 .

if

if

if

if

x — 2n

x = 2n

x = 2n

x — 2n

f

+

+

1 ,

1 .

Then

( 3 ) ρag{n) = σ and pahin) = τ .

We also note that the functions g and h are each recursive and strictly
increasing. In addition, their ranges are disjoint and the union of their
ranges is ε.

Re (d): Since both g and h are strictly increasing, recursive
functions and an is a regressive function it readily follows that both
ag{n) and ah{n) are regressive function. By (3), this means that σ and
τ are infinite regressive sets.

Re (e): From the two facts, an is a regressive function, and the
ranges of the recursive functions g and h are disjoint, one can easily
show that the two functions agίn) and αΛ(w) are separated. This means
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that σ and τ are separated sets.

Re (/): Suppose that statement (f) were false, namely assume
that σ :g* 7. According to Proposition (d), this implies that ag{nλ ίg* ah{n).
Comparing the definitions of g(x) and h(x), we can conclude from this
fact that

Clearly,

and hence by Proposition (e),

According to Proposition (d), this implies that Jo ~ dt which is not
possible in view of part (a). Therefore statement (f) is true.

Re (g): To verify (g) we can proceed as in the previous case.
Suppose that statement (g) is false. This will imply that αA(w) g* ag(n),
and this fact gives

Clearly,

and hence

^4w-r2 — tt4«-ί-3

This means that o2 2̂  <53 which is not possible in view of part (b). This
contradiction establishes (g) and also completes Step III.

Step IV. Let

S = Req σ and T = Req τ .

Both σ and τ are infinite subsets of the immune set pan, and therefore
are themselves immune sets. Also, by part (d), σ and r are regressive.
Hence

( i) S and T are infinite regressive isols.

Combining [2, Proposition P 10] and statement (f) and (g), implies
that

(ii) *S and T are incomparable relative to the ίg* relation.

In view of (i) and (ii), in order to complete the proof it remains
only to show that
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(iii) S + Tesl&.

Since σ and τ are separated sets, it follows that σ + τeS + 7\

Moreover, σ + τ is a regressive set since σ + τ = pan. Hence S + T

is a regressive isol. This verifies (iii) and completes the proof.
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