TWO NOTES ON REGRESSIVE ISOLS

Joseph Barback

This paper deals with regressive functions and regressive isols. It was proven by J. C. E. Dekker in [2] that the collection Λ_{R} of all regressive isols is not closed under addition. In the first note of this paper we shall given another proof of this fact by considering a new relation, denoted by $\stackrel{*}{*}$, between $^{\text {, }}$ infinite regressive isols. Let A and B denote infinite regressive isols. The main results established in the first note are:
(1) $A \leqq * B \Longrightarrow A \stackrel{*}{*} B$, yet not conversely.
(2) $A+B \in \Lambda_{R} \Longrightarrow A * * B$, yet not conversely.
(3) There exist infinite regressive isols which are not ${ }^{*}$ related.
(4) Λ_{R} is not closed under addition.

In addition, the following result is stated.
(5) $A+B \in \Lambda_{R} \Longrightarrow \min (A, B) \leqq A+B$, yet not conversely.

In the second note we consider the $\leqq *$ relation between regressive isols. A natural question concerning this relation is whether $A \leqq{ }^{*} B$, where A and B are regressive isols, is a necessary or a sufficient condition for the sum $A+B$ to be regressive. In the second note we show that this condition is neither necessary nor sufficient.

We shall assume that the reader is familiar with the notations, terminology and main results of [1] and [2].

Preliminaries. Let $\varepsilon=\{0,1,2,3, \cdots\}$ be the set of nonnegative integers (numbers). A one-to-one function t_{n} from ε into ε is regressive if there is a partial recursive function $p(x)$ such that $\rho t \subseteq \delta p$ and $p\left(t_{0}\right)=t_{0},(\forall n)\left[p\left(t_{n+1}\right)=t_{n}\right]$. The function p is a regressing function of t_{n} if p has the following additional properties: $\rho p \cong \delta p$ and $(\forall x)\left[x \in \delta p \rightarrow(\exists n)\left[p^{n+1}(x)=p^{n}(x)\right]\right]$. It is known (cf. [1]) that every regressive function has a regressing function. A set is regressive if it is finite or the range of a regressive function. A set is retraceable if it is finite or the range of a strictly increasing regressive function. Let p be a regressing function of t_{n}, then the function p^{*} is defined by: $\delta p^{*}=\delta p$ and $p^{*}(x)=(\mu n)\left[p^{n+1}(x)=p^{n}(x)\right]$. It follows that p^{*} is a partial recursive function and $(\forall n)\left[p^{*}\left(t_{n}\right)=n\right]$.

Let s_{n} and t_{n} be two one-to-one functions from ε into ε. Then $s_{n} \leqq * t_{n}$, if there is a partial recursive function f such that

$$
\begin{equation*}
\rho s \cong \delta f \quad \text { and } \quad(\forall n)\left[f\left(s_{n}\right)=t_{n}\right] \tag{1}
\end{equation*}
$$

Also, s_{n} and t_{n} are said to be recursively equivalent (denoted $s_{n} \simeq t_{n}$)
Received October 5, 1964. Most of the results contained in this paper were obtained while the author was a student of Professor J. C. E. Dekker at Rutgers University. Research on this paper was supported under NSF Grant GP-266.
if there is a one-to-one partial recursive function f such that (1) holds. Let σ and τ be two sets. Then $\sigma \leqq{ }^{*} \tau$, if either σ is finite and card. $\sigma \leqq \operatorname{card} . \tau$, or σ is infinite and there is a partial recursive function f such that $\sigma \cong \delta f, f$ is one-to-one on σ and $f(\sigma)=\tau$. Let S and T be two isols. Then $S \leqq * T$, if there are sets $\sigma \in S$ and $\tau \in T$ such that $\sigma \leqq * \tau$. The following propositions will be useful:
(a) Retraceable sets are either recursive or immune.
(b) Every function recursively equivalent to a regressive function is regressive.
(c) Every set recursively equivalent to a regressive set is regressive.
(d) Let $\sigma=\rho s_{n}$ and $\tau=\rho t_{n}$ where s_{n} and t_{n} are one-to-one regressive functions. Then $\sigma \leqq{ }^{*} \tau$ if and only if $s_{n} \leqq{ }^{*} t_{n}$, and $\sigma \simeq \tau$ if and only if $s_{n} \simeq t_{n}$.
(e) Let s_{n} and t_{n} be one-to-one functions from ε into ε. Then $s_{n} \simeq t_{n}$ if and only if $s_{n} \leqq * t_{n}$ and $t_{n} \leqq * s_{n}$.

Proposition (a) is proven in [3]. Propositions (b) and (c), and the second part of (d) are proven [1]. Both (e) and the first part of (d) are given in [2].

Two sets α and β are said to be separated (denoted $\alpha \mid \beta$) if there are disjoint r.e. sets α^{*} and β^{*} such that $\alpha \cong \alpha^{*}$ and $\beta \cong \beta^{*}$. Two functions a_{n} and b_{n} are said to be separated (denoted $a_{n} \mid b_{n}$) if their ranges are separated sets. We will use the familiar primitive recursive functions j, k and l defined by

$$
\begin{aligned}
j(x, y)= & x+(x+y)(x+y+1) / 2 \\
& j(k(n), l(n))=n
\end{aligned}
$$

The function j maps ε^{2} one-to-one onto ε.
Note 1. The $\stackrel{*}{*}$ relation.

DEFINITION 1. Let a_{n} and b_{n} be any two one-to-one functions from ε into ε. Then $a_{n} \stackrel{*}{*} b_{n}$ if there is a partial recursive function $p(x)$ such that

$$
\left.(\forall n)\left[a_{n} \in \delta p \text { and } p\left(a_{n}\right)=b_{n}\right) \vee\left(b_{n} \in \delta p \text { and } p\left(b_{n}\right)=a_{n}\right)\right]
$$

The following proposition can be readily proven using the definitions of the concepts involved. Its proof will be omitted.

Proposition 1.1. Let a_{n} and b_{n} be any two one-to-one functions from ε into ε. Then
(a) $a_{n} \stackrel{*}{*} b_{n} \Longrightarrow b_{n} \stackrel{*}{*} a_{n}$,
(b) $a_{n} \leqq{ }^{*} b_{n} \Longrightarrow a_{n} \stackrel{*}{*}_{n}$,

Definition 2. Let A and B be any two infinite regressive isols. Then $A \stackrel{*}{\vee} B$ if there are regressive functions a_{n} and b_{n} such that

$$
\rho a_{n} \in A, \quad \rho b_{n} \in \beta, \quad a_{n} \mid b_{n} \quad \text { and } a_{n} \stackrel{*}{\cup} b_{n} .
$$

Rerark. In view of Proposition (d) and part (c) of Proposition 1.1, we see that if A and B are infinite regressive isols, then $A \stackrel{*}{*} B$ means that $a_{n} \stackrel{*}{*} b_{n}$ for every pair a_{n} and b_{n} of separated, regressive functions ranging over sets in A and B respectively.

Theorem 1.1. Let A and B be infinite regressive isols. Then

$$
A \leqq * B \Longrightarrow A \stackrel{*}{\vee} B .
$$

Proof. Let a_{n} and b_{n} be any two (one-to-one) regressive functions ranging over sets in A and B respectively and such that $\mathrm{a}_{n} \leqq b_{n}$. Set $a_{n}^{\prime}=2 a_{n}$ and $b_{n}^{\prime}=2 b_{n}+1$. Then $a_{n} \simeq a_{n}^{\prime}, b_{n} \simeq b_{n}^{\prime}$ and $a_{n}^{\prime} \mid b_{n}^{\prime}$. Taking into account Propositions (b), (c) and (d) it follows that a_{n}^{\prime} and b^{\prime} are separated, regressive functions which range over sets in A and B respectively. In addition, $a_{n} \leqq{ }^{*} b_{n}$ implies $a_{n}^{\prime} \leqq * b_{n}^{\prime}$. By Proposition 1.1 (b) this means $a_{n}^{\prime} \stackrel{*}{\cup} b_{n}^{\prime}$, and therefore $A,{ }_{*}^{*} B$.

Theorem 1.2. For all infinite regressive isols A and B,

$$
A+B \in \Lambda_{R} \Longrightarrow A * B .
$$

Proof. Let A and B denote two infinite regressive isols whose sum is also regressive. Let a_{n} and b_{n} be regressive functions with $\alpha=\rho a_{n} \in A, \beta=\rho b_{n} \in B$ and $\alpha \mid \beta$. Then $\alpha+\beta \in A+B$ and $\alpha+\beta$ is a regressive set. Let c_{n} be a regressive function ranging over the set $\alpha+\beta$ and let $p(x)$ be a regressing function of c_{n}. Set

$$
\delta=\left\{x \mid\left(x=a_{n} \text { and } p^{*}\left(b_{n}\right)<p^{*}\left(a_{n}\right)\right) \vee\left(x=b_{n} \text { and } p^{*}\left(a_{n}\right)<p^{*}\left(b_{n}\right)\right)\right\} .
$$

We note that $\delta \subseteq \alpha+\beta$ and that for each number n, exactly one of the numbers a_{n} and b_{n} belongs to δ. Let the function f with domain δ be defined by

$$
f(x)= \begin{cases}b_{n}, & \text { if } x=a_{n}, \\ a_{n}, & \text { if } x=b_{n} .\end{cases}
$$

It is easily seen that if f has a partial recursive extension then $a_{n} \stackrel{*}{*} b_{n}$.

Since a_{n} and b_{n} are separated functions this fact would also imply that $A{ }_{*}^{*} B$. Hence to complete the proof it suffices to show that f has a partial recursive extension. For this purpose, assume that $x \in \delta$. Since α and β are separated sets we can determine whether $x \in \alpha$ or $x \in \beta$. First suppose that $x \in \alpha$. Taking into account that α_{n} and c_{n} are regressive functions, we can find the numbers u and v such that $x=$ $a_{u}=c_{v}$. The number a_{u} belongs to δ and therefore

$$
b_{u} \in\left(c_{0}, c_{1}, \cdots, c_{v-1}\right)=\left\{p^{r}(x) \mid 1 \leqq r \leqq v\right\}
$$

The members of the set on the right side can be effectively obtained from x, since p is a partial recursive function. In addition, using once again the separability of the sets α and β, and the regressiveness of the function b_{n}, it follows that we can find the number b_{x}. This gives the value of $f(x)$. In a similar fashion one can determine the value of $f(x)$ in the event $x \in \beta$. From these remarks we can conclude that f will have a partial recursive extension. This completes the proof.

Remark. We shall state without proof, two additional facts which can be established in the proof of Theorem 1.2. These are

$$
\begin{align*}
& \delta \in \min (A, B) \tag{a}\\
& \delta \mid(\alpha+\beta)-\delta \tag{b}
\end{align*}
$$

Since $\alpha+\beta \in A+B$, these facts imply that

$$
\begin{equation*}
\min (A, B) \leqq A+B \tag{*}
\end{equation*}
$$

In the proof of Theorem 1.2, A and B were assumed to be infinite regressive isols. However, it is easily seen that the relation denoted by (*) is also true in the event either A or B is finite, for in this case $\min (A, B)$ assumes one of the values (A, B). From these remarks one has the following

Theorem. For all regressive isols A and B,

$$
A+B \in \Lambda_{R} \Longrightarrow \min (A, B) \leqq A+B
$$

The statement obtained by reversing the implication in the above theorem is false, for in the second note it is shown that there are two infinite regressive isols which are comparable relative to the $\leqq *$ relation, hence their minimum assumes one of these two values, and yet whose sum is not regressive. According to Theorem 1.1, this also means that reversing the implication in Theorem 1.2 yields a false statement as well.

THEOREM 1.3. There exist infinite regressive isols A and B which
are not $\stackrel{*}{*}$ related.
Proof. Let $\left\{p_{i}\right\}$ be an enumeration of partial recursive functions of one variable such that:
(a) every partial recursive function of one variable occurs at least once in $\left\{p_{i}\right\}$,

$$
\text { (b) } \quad p_{0}(1) \neq 3 \text { and } p_{0}(3) \neq 1
$$

We shall define two functions a_{n} and b_{n} such that the recursive equivalence types, $A=\operatorname{Req} \rho a_{n}$ and $B=\operatorname{Req} \rho b_{n}$ satisfy the conditions of the Theorem.

Put $a_{0}=1$ and $b_{0}=3$. We note that (b) implies

$$
\begin{equation*}
p_{0}\left(a_{0}\right) \neq b_{0} \quad \text { and } \quad p_{0}\left(b_{0}\right) \neq a_{0} \tag{1}
\end{equation*}
$$

Let $t \geqq 1$ and suppose that a_{0}, \cdots, a_{t-1} and b_{0}, \cdots, b_{t-1} have already been defined. We define a_{t} and b_{t} by setting

$$
\begin{aligned}
a_{t} & =j\left(a_{t-1}, u_{t}\right), \\
b_{t} & =j\left(b_{t-1}, v_{t}\right)
\end{aligned}
$$

where the numbers u_{t} and v_{t} will be defined in such a manner that

$$
\begin{equation*}
p_{t}\left(a_{t}\right) \neq b_{t} \quad \text { and } \quad p_{t}\left(b_{t}\right) \neq a_{t} \tag{2}
\end{equation*}
$$

The definition of u_{t} and v_{t}. Set

$$
\begin{aligned}
& \eta=\left\{u \mid j\left(a_{t-1}, u\right) \in \delta p_{t}\right\}, \\
& \zeta=\left\{v \mid j\left(b_{t-1}, v\right) \in \delta p_{t}\right\} .
\end{aligned}
$$

We consider three cases:

Case I. $\quad \eta^{\prime} \neq \phi$. Let u be the smallest number belonging to η^{\prime}. Then $p_{t} j\left(a_{t-1}, u\right)$ is undefined.

Subcase I.1. There exists a number v such that

$$
p_{t} j\left(b_{t-1}, v\right) \neq j\left(a_{t-1}, u\right)
$$

Set

$$
\begin{aligned}
u_{t} & =u \\
v_{t} & =(\mu v)\left[p_{t} j\left(b_{t-1}, v\right) \neq j\left(a_{t-1}, u\right)\right]
\end{aligned}
$$

Subcase I.2. For all numbers v,

$$
p_{t} j\left(b_{t-1}, v\right)=j\left(a_{t-1}, u\right)
$$

Consider the number $j\left(a_{t-1}, u+1\right)$. Since j maps ε^{2} one-to-one onto ε,
it follows that $j\left(a_{t-1}, u+1\right) \neq j\left(a_{t-1}, u\right)$. Hence for all numbers v,

$$
p_{t} j\left(b_{t-1}, v\right) \neq j\left(a_{t-1}, u+1\right)
$$

Clearly there exist numbers v^{\prime} such that $j\left(b_{t-1}, v^{\prime}\right) \neq p_{t}\left(a_{t-1}, u+1\right)$.
Set

$$
\begin{aligned}
& u_{t}=u+1 \\
& v_{t}=\left(\mu v^{\prime}\right)\left[j\left(b_{t-1}, v^{\prime}\right) \neq p_{t} j\left(a_{t-1}, u+1\right)\right]
\end{aligned}
$$

Case II. $\zeta^{\prime} \neq \phi$. Here we proceed in a fashion similar to Case I. The details are omitted.

$$
\begin{aligned}
& \text { Case III. } \eta^{\prime}=\zeta^{\prime}=\phi \text {, i.e., } \eta=\zeta=\varepsilon \text {, i.e., } \\
& (\forall u)\left[j\left(a_{t-1}, u\right) \in \delta\right] \quad \text { and } \quad(\forall v)\left[j\left(b_{t-1}, v\right) \in \delta\right],
\end{aligned}
$$

where $\delta=\delta p_{t}$. The numbers in the following four lists:
L1.

$$
j\left(a_{t-1}, 0\right), j\left(a_{t-1}, 1\right), \cdots
$$

L2.

$$
p_{t} j\left(b_{t-1}, 0\right), p_{t} j\left(b_{t-1}, 1\right), \cdots
$$

L3.

$$
j\left(b_{t-1}, 0\right), j\left(b_{t-1}, 1\right), \cdots
$$

L4.

$$
p_{t} j\left(a_{t-1}, 0\right), \quad p_{t} j\left(a_{t-1}, 1\right), \cdots
$$

are therefore all defined. Since the function $j(x, y)$ is one-to-one, all numbers in L1 are distinct and all numbers in L3 are distinct.

Subcase III.1. L1 contains a number which does not occur in L2. Set

$$
u_{t}=(\mu u)(\forall v)\left[j\left(a_{t-1}, u\right) \neq p_{t} j\left(b_{-1}, v\right)\right]
$$

Since all of the numbers in L3 are distinct, it follows that

$$
(\exists v)\left[j\left(b_{t-1}, v\right) \neq p_{t} j\left(a_{t-1}, u_{t}\right)\right]
$$

Set

$$
v_{t}=(\mu v)\left[j\left(b_{t-1}, v\right) \neq p_{t} j\left(a_{t-1}, u_{t}\right)\right]
$$

Subcase III.2. Every number of L1 occurs at least once in L2. Since L1 contains infinitely many numbers this implies that L2 contains infinitely many numbers. Hence, not only

$$
(\forall u)(\exists v)\left[j\left(a_{t-1}, u\right) \neq p_{t} j\left(b_{t-1}, v\right)\right]
$$

but also

$$
(\forall u)(\exists \text { infinitely many } v)\left[j\left(a_{t-1}, u\right) \neq p_{t} j\left(b_{t-1}, v\right)\right] .
$$

This must be true in particular for $u=0$. Thus there exists an infinite
sequence $v_{0}, v_{1}, v_{2}, \cdots$ of distinct numbers such that

$$
(\forall n)\left[j\left(\alpha_{t-1}, 0\right) \neq p_{t} j\left(b_{t-1}, v_{n}\right)\right]
$$

Let

$$
n^{*}=(\mu n)\left[j\left(b_{t-1}, v_{n}\right) \neq p_{t} j\left(a_{t-1}, 0\right)\right]
$$

Define

$$
\begin{aligned}
& u_{t}=0 \\
& v_{t}=v_{n^{*}}
\end{aligned}
$$

This completes the definition of the numbers u_{t} and v_{t}, and hence also of the functions a_{n} and b_{n}. It is readily verified that the numbers a_{t} and b_{t} have been so defined as to satisfy (2), that is

$$
p_{t}\left(a_{t}\right) \neq b_{t} \quad \text { and } \quad p_{t}\left(b_{t}\right) \neq a_{t} .
$$

Combining this fact with (1) gives

$$
\begin{equation*}
(\forall n)\left[p_{n}\left(a_{n}\right) \neq b_{n} \quad \text { and } \quad p_{n}\left(b_{n}\right) \neq a_{n}\right] . \tag{3}
\end{equation*}
$$

Let

$$
\alpha=\rho \alpha_{n} \quad \text { and } \quad \beta=\rho b_{n}
$$

We claim:
(a) a_{n} and b_{n} are strictly increasing regressive functions and α and β are retraceable sets,
(b) $\alpha \mid \beta$,
(c) a_{n} and b_{n} are not $\stackrel{*}{*}$ related, $^{\text {a }}$
(d) α and β are immune sets.
$R e(a)$: It follows from the definition of the function $j(x, y)$ that $x<j(x, y)$ for $x>0$. Moreover, we have

$$
\begin{aligned}
& a_{0}>0 \quad \text { and } \quad(\forall n)(\exists u)\left[a_{n+1}=j\left(a_{n}, u\right)\right], \\
& b_{0}>0 \quad \text { and } \quad(\forall n)(\exists v)\left[b_{n+1}=j\left(b_{n}, v\right)\right] .
\end{aligned}
$$

Hence

$$
a_{0}<a_{1}<a_{2}<\cdots \quad \text { and } \quad b_{0}<b_{1}<b_{2}<\cdots
$$

and therefore a_{n} and b_{n} are strictly increasing functions. Set

$$
q(x)= \begin{cases}a_{0}, & \text { if } \quad x=a_{0} \\ k(x), & \text { if } \quad x \neq a_{0}\end{cases}
$$

Clearly $q(x)$ is a recursive function and it can be readily shown that $q(x)$ is a regressing function of a_{n}. By replacing a_{0} by b_{0} in the de-
finition of $q(x)$ yields a regressing function of b_{n}. Hence, a_{n} and b_{n} are each strictly increasing regressive functions and therefore α and β are retraceable sets.
$R e(b)$: As a consequence of the definition of the functions a_{n} and b_{n}, we have

$$
\begin{aligned}
& \alpha \subset\left\{z \mid z=1 \vee(\exists n)\left[k^{n}(z)=1\right]\right\} \\
& \beta \subset\left\{z \mid z=3 \vee(\exists n)\left[k^{n}(z)=3\right]\right\}
\end{aligned}
$$

The sets appearing on the right sides are clearly r.e. Also, since $k(3)=0, k(1)=0$ and $k(0)=0$, they are disjoint. Hence $\alpha \mid \beta$.
$R e$ (c): Suppose that statement (c) were false; this would then mean $a_{n} \stackrel{*}{\stackrel{ }{2}} b_{n}$. Hence there would be a partial recursive function $p(x)$ such that

$$
\begin{equation*}
\left.(\forall n)\left[p\left(a_{n}\right)=b_{n}\right) \vee\left(p\left(b_{n}\right)=a_{n}\right)\right] \tag{4}
\end{equation*}
$$

Assume that the index of p in our enumeration is i, i.e., $p(x)=p_{i}(x)$. In view of (4), we would have

$$
p_{i}\left(a_{i}\right)=b_{i} \cdot \text { or } \quad p_{i}\left(b_{i}\right)=a_{i}
$$

However, according to (3) this statement must be false. This contradiction establishes the desired conclusion that a_{n} and b_{n} are not $\stackrel{*}{*}^{*}$ related.
$R e(d):$ By part (a), each of the sets α and β is retraceable and hence is either recursive or immune. If one of these sets is recursive then the strictly increasing function ranging over the set would be a recursive function. Thus, if α were a recursive set then a_{n} would be a recursive function. In this event, we would have that

$$
\begin{aligned}
& b_{n} \leqq * n \text {, since } b_{n} \text { is a regressive function, } \\
& n \leqq * a_{n} \text {, since } a_{n} \text { is a regressive function, }
\end{aligned}
$$

and, by the transitivity of the $\leqq *$ relation, also that $b_{n} \leqq * a_{n}$. By Proposition 1.1 (b), this means that $a_{n}{\stackrel{*}{*} b_{n} \text {, which is not possible }}_{\text {, }}$ according to part (c). Therefore α must be an immune set. In a similar way it can be shown that β is also an immune set. This verifies (d).

To complete the proof, let

$$
A=\operatorname{Req} \alpha \quad \text { and } \quad B=\operatorname{Req} \beta
$$

By statements (a) and (d) it follows that A and B are infinite regressive isols. In addition, combining statements (a) and (c) with the Remark
following Definition 2 implies that A and B are not $\stackrel{*}{*}$ related. Hence A and B satisfy the requirements of the Theorem.

Remark A. In [2, Theorem T2] it is shown that both the collection A_{R} of all regressive isols and the collection $A_{O_{R}}$ of all cosimple regressive isols are not closed under addition. We note that the first of these results can be obtained by combining Theorems 1.2 and 1.3.

Remark B. It is readily seen from Definitions 1 and 2, that the ${ }^{*}$ relation for infinite regressive isols is both reflexive and symmetric. The following Corollary to Theorem 1.3 shows that $\stackrel{*}{*}^{\text {is a not a transi- }}$ tive relation.

Corollary. There exist infinite regressive isols A, B and W uith $A \stackrel{*}{*} W, B \stackrel{*}{*} W$, while A and B are not $\stackrel{*}{*}$ related. $^{\vee}$.

Proof. Let A and B be any two infinite regressive isols which are not $\stackrel{*}{*}$ related. Set $W=\min (A, B)$. Then W is an infinite regressive isol with

$$
W \leqq{ }^{*} A \quad \text { and } \quad W \leqq * B
$$

Hence, by Theorem 1.1

$$
W \stackrel{*}{*} A \text { and } W \stackrel{*}{*} B
$$

According to our choice of A and B, the proof is complete.
Note 2. The main results of this note will establish the fact that $A \leqq{ }^{*} B$ (where $A, B \in \Lambda_{R}$) represents neither a necessary condition nor a sufficient condition for the sum $A+B$ to belong to Λ_{R}. In the following discussion we will use the notion of the degree of unsolvability of a regressive isol. This concept is studied in [2]. If A is a regressive isol, then A_{A} will denote its degree of unsolvability.

Theorem 2.1. There exist regressive isols A and B with $A \leqq * B$, yet whose sum $A+B$ is not regressive.

Proof. Let P and Q denote two (infinite) regressive isols with different degrees of unsolvability, i.e., $\Delta_{P} \neq \Delta_{Q}$. Set

$$
A=\min (P, Q)
$$

Then A is an infinite regressive isol such that

$$
A \leqq * P \quad \text { and } \quad A \leqq * Q
$$

To complete the proof we need only show that at least one of the two
isols $A+P$ and $A+Q$ is not regressive. To prove this fact, let us suppose otherwise, namely that both $A+P$ and $A+Q$ are regressive isols. Then according to [2, Proposition 17(d)], it follows that

$$
\Delta_{\Delta}=\Delta_{P} \quad \text { and } \quad \Delta_{\Delta}=\Delta_{Q},
$$

and therefore $\Delta_{P}=\Delta_{Q}$. This last equality contradicts our choice of P and Q. Hence, either $A+P$ or $A+Q$ is not regressive. If we define B to be P if $A+P \boxminus \Lambda_{R}$ and to be Q otherwise, then A and B will satisfy the requirements of the Theorem.

Remark. It is proven in [2] that there are cosimple regressive isols with different degrees of unsolvability. Moreover, the minimum of two cosimple regressive isols is again a cosimple regressive isol. Thus, as a consequence of the previous proof, we see that the following result is also true.

Theorem. There exist cosimple regressive isols A and B with $A \leqq{ }^{*} B$ yet whose sum $A+B$ is not regressive.

Theorem 2.2. There exist regressive isols S and T which are incomparable relative to the \leqq * relation and whose sum is regressive.

Proof. This shall be a constructive type of proof and we shall use a technique introduced in the proof of [4, Theorem 95]. The proof will progress in four steps.

Step I. In this step we shall define a particular function a_{n} from ε into ε, and show that it is strictly increasing and regressive.

Let $p_{i}(x)$ denote a function of the two variables i and x such that every one-to-one partial recursive function and no other function appears in the sequence $\left\{p_{i}\right\}$. For any numbers $t_{0}, \cdots, t_{m}, i ; \max ^{*}\left\{p_{i}\left(t_{0}\right), \cdots\right.$, $\left.p_{i}\left(t_{m}\right)\right\}$ is defined to be 0 if none of the $m+1$ numbers $p_{i}\left(t_{0}\right), \cdots, p_{i}\left(t_{m}\right)$ is defined; and is defined to be the maximum of those numbers $p_{i}\left(t_{0}\right), \cdots, p_{i}\left(t_{m}\right)$ which are defined; if at least one of them is defined.

The function a_{n} is defined by,

$$
\begin{gathered}
a_{0}=1, \\
a_{k+1}=j\left(a_{k}, u_{k+1}\right), \text { where } \\
u_{k+1}=0, \text { if either } k=4 n+1 \text { or } k=4 n+3, \\
u_{k+1}=(\mu y)\left[j\left(a_{k}, y\right)>\max ^{*}\left\{p_{n}\left(a_{0}\right), \cdots, p_{n}\left(a_{n}\right)\right\}\right], \text { if either } k=4 n \text { or } k=4 n+2 .
\end{gathered}
$$

It is readily seen that a_{n} is an everywhere defined function from ε into e. Moreover, just as the function a_{n} in the proof of Theorem 1.3 was shown to be strictly increasing and regressive, it can be shown that
a_{n} is also strictly increasing and regressive.
Step II. Let the four sets $\hat{o}_{0}, \hat{\partial}_{1}, \hat{o}_{2}$ and \hat{o}_{3} denote the ranges of the functions $a_{4 n}, a_{4 n+1}, a_{4 n+2}$ and $a_{4 n+3}$ respectively. Since each of the functions $4 n, 4 n+1,4 n+2$ and $4 n+3$ is strictly increasing and recursive, it follows that each of the functions $a_{4 n}, a_{4 n+1}, a_{n+2}$ and $a_{4 n+3}$ is regressive. Hence the four sets $\delta_{0}, \delta_{1}, \delta_{2}$ and δ_{3} are each regressive. We shall now prove:
(a) $\operatorname{not}\left[\delta_{0} \simeq \delta_{1}\right]$,
(b) $\operatorname{not}\left[\delta_{2} \simeq \delta_{3}\right]$,
(c) a_{n} ranges over an immune set.
$R e(a)$: To prove statement (a), let us suppose that it is false. Then, by the enumeration in Step I, there would be a number i such that

$$
\delta_{0} \subset \delta p_{i} \quad \text { and } \quad p_{i}\left(\delta_{0}\right)=\hat{o}_{1}
$$

One consequence of this fact is

$$
\begin{equation*}
\left(p_{i}\left(a_{0}\right), p_{i}\left(a_{4}\right), \cdots, p_{i}\left(a_{4 i}\right)\right) \subset \delta_{1} \tag{1}
\end{equation*}
$$

By the definition of the function a_{n}, it follows that $a_{4 i+1}$ would exceed each of the numbers $p_{i}\left(a_{0}\right), p_{i}\left(a_{4}\right), \cdots, p_{i}\left(a_{4 i}\right)$. Since a_{n} is strictly increasing, the same would be true for $a_{4 j+1}$ with $j \geqq 1$. Hence from (1) we can conclude that

$$
\left(p_{i}\left(a_{0}\right), p_{i}\left(a_{4}\right), \cdots, p_{i}\left(a_{4 i}\right)\right) \subset\left(a_{1}, a_{5}, \cdots, a_{4(i-1)+1}\right)
$$

However, the set on the left side has exactly $i+1$ members while the set on the right side has only i members. This contradicts the fact that p_{i} is a one-to-one function. This means that statement (a) must be true.
$R e$ (b): We can prove statement (b) in a way similar to the one used to prove (a). Assuming that statement (b) is false implies that there is a number i such that

$$
\delta_{2} \subset \delta p_{i}, \quad \text { and } \quad p_{i}\left(\delta_{2}\right)=\delta_{3}
$$

and

$$
\begin{equation*}
\left(p_{i}\left(a_{2}\right), p_{i}\left(a_{6}\right), \cdots, p_{i}\left(a_{4 i+2}\right)\right) \subset \hat{o}_{3} \tag{2}
\end{equation*}
$$

The definition of the function a_{n} implies that $a_{4 i+3}$ will exceed each of the numbers $p_{i}\left(a_{2}\right), p_{i}\left(a_{6}\right), \cdots, p_{i}\left(a_{4 i+2}\right)$, and since a_{n} is strictly increasing, the same will be true for $a_{4 j \div 3}$ with $j \geqq i$. Hence from (2) we can conclude that

$$
\left(p_{i}\left(a_{2}\right), p_{i}\left(a_{6}\right), \cdots, p_{i}\left(\alpha_{4 i+2}\right)\right) \subset\left(a_{3}, a_{7}, \cdots, a_{4(i-1)+3}\right) .
$$

Yet the set on the left side has exactly $i+1$ members while the set on the right side has exactly i members. This contradicts the fact that p_{i} is a one-to-one function. Therefore (b) must be a true statement.
$R e(c)$: Since a_{n} is a strictly increasing regressive function it ranges over an infinite retraceable set. We know that this set will be either recursive or immune. But it is easily seen that if a_{n} ranges over an infinite recursive set then each of the sets δ_{0} and δ_{1} will also be infinite and recursive. According to statement (a), this is not possible. Hence a_{n} ranges over an immune set. This verifies (c) and also completes Step II.

Step III. Let

$$
\sigma=\hat{o}_{0}+\delta_{3} \text { and } \tau=\hat{o}_{1}+\hat{\delta}_{2} .
$$

We shall now prove:
(d) σ and τ are infinite regressive sets,
(e) $\sigma \mid \tau$,
(f) $\operatorname{not}[\sigma \leqq * \tau]$,
(g) not $[\tau \leqq * \sigma]$.

For this purpose, let

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{lll}
4 n, & \text { if } \quad x=2 n, \\
4 n+3, & \text { if } \quad x=2 n+1,
\end{array}\right. \\
& h(x)= \begin{cases}4 n+1, & \text { if } \quad x=2 n, \\
4 n+2, & \text { if } \quad x=2 n+1 .\end{cases}
\end{aligned}
$$

Then

$$
\begin{equation*}
\rho a_{g(n)}=\sigma \quad \text { and } \quad \rho a_{n(n)}=\tau . \tag{3}
\end{equation*}
$$

We also note that the functions g and h are each recursive and strictly increasing. In addition, their ranges are disjoint and the union of their ranges is ε.
$R e(d)$: Since both g and h are strictly increasing, recursive functions and a_{n} is a regressive function it readily follows that both $a_{g(n)}$ and $a_{n(n)}$ are regressive function. By (3), this means that σ and τ are infinite regressive sets.

Re (e): From the two facts, a_{n} is a regressive function, and the ranges of the recursive functions g and h are disjoint, one can easily show that the two functions $a_{g(n)}$ and $a_{n(n)}$ are separated. This means
that σ and τ are separated sets.
$R e(f)$: Suppose that statement (f) were false, namely assume that $\sigma \leqq *=$. According to Proposition (d), this implies that $a_{g(n)} \leqq * a_{n(n)}$. Comparing the definitions of $g(x)$ and $h(x)$, we can conclude from this fact that

$$
a_{i n} \leqq * a_{4 n+1}
$$

Clearly,

$$
a_{4 n-1} \leqq * a_{4 n}
$$

and hence by Proposition (e),

$$
a_{4 n} \simeq a_{4 n+1} .
$$

According to Proposition (d), this implies that $\delta_{0} \simeq \hat{o}_{1}$ which is not possible in view of part (a). Therefore statement (f) is true.
$R e(g)$: To verify (g) we can proceed as in the previous case. Suppose that statement (g) is false. This will imply that $a_{n(n)} \leqq * a_{g(n)}$, and this fact gives

$$
a_{4 n+2} \leqq * a_{4 n+3}
$$

Clearly,

$$
a_{4 n+3} \leqq * a_{4 n+2}
$$

and hence

$$
a_{4 n+2} \simeq a_{4 n+3}
$$

This means that $\hat{o}_{2} \simeq \hat{o}_{3}$ which is not possible in view of part (b). This contradiction establishes (g) and also completes Step III.

Step IV. Let

$$
S=\operatorname{Req} \sigma \quad \text { and } \quad T=\operatorname{Req} \tau
$$

Both σ and σ are infinite subsets of the immune set ρa_{n}, and therefore are themselves immune sets. Also, by part (d), σ and τ are regressive. Hence
(i) S and T are infinite regressive isols.

Combining [2, Proposition P 10] and statement (f) and (g), implies that
(ii) S and T are incomparable relative to the $\leqq *$ relation.

In view of (i) and (ii), in order to complete the proof it remains only to show that
(iii) $S+T \in \Lambda_{R}$.

Since σ and τ are separated sets, it follows that $\sigma+\tau \in S+T$. Moreover, $\sigma+\tau$ is a regressive set since $\sigma+\tau=\rho a_{n}$. Hence $S+T$ is a regressive isol. This verifies (iii) and completes the proof.

References

1. J. C. E. Dekker, Infinite Series of Isols, Amer. Math. Soc. Proc. of the Symposia in Pure Mathematics, 5 (1962), 77-96.
2. ——, The minimum of two regressive isols, Math. Zeitschr. 83 (1964), 345-366.
3. J. C. E. Dekker and J. Myhill, Retraceable sets, Canad. J. Math. 10 (1958), 357-373.
4. -, Recursive Equivalence Types, Univ. California Publ. Math. (N.S.), 3 (1960), 67-214.
5. E. Ellentuck, Infinite products of isols, Pacific J. Math. 14 (1964), 49-52.
6. A. Nerode, Extensions to isols, Ann. of Math. 73 (1961), 362-403.

University of Pittsburgh
State University of New York at Buffalo

