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ON STRATIFIABLE SPACES

CARLOS J. R. BORGES

In the enclosed paper, it is shown that (a) the closed
continuous image of a stratifiable space is stratifiable (b) the
well-known extension theorem of Dugundji remains valid for
stratifiable spaces (see Theorem 4.1, Pacific J. Math., 1 (1951),
353-367) (c) stratifiable spaces can be completely characterized
in terms of continuous real-valued functions (d) the adjunction
space of two stratifiable spaces is stratifiable (e) a topological
space is stratifiable if and only if it is dominated by a collection
of stratifiable subsets (f) a stratifiable space is metrizable if
and only if it can be mapped to a metrizable space by a
perfect map.

In [4], J. G. Ceder studied various classes of topological spaces,
called MΓspaces (ί = 1, 2, 3), obtaining excellent results, but leaving
questions of major importance without satisfactory solutions. Here
we propose to solve, in full generality, two of the most important
questions to which he gave partial solutions (see Theorems 3.2 and
7.6 in [4]), as well as obtain new results.1 We will thus establish
that Ceder's ikf3-spaces are important enough to deserve a better name
and we propose to call them, henceforth, STRATIFIABLE spaces.
Since we will exclusively work with stratifiable spaces, we now ex-
hibit their definition.

DEFINITION 1.1. A topological space X is a stratifiable space if
X is T1 and, to each open UaX, one can assign a sequence {i7Λ}»=i
of open subsets of X such that

( a ) U cU,
(b) Un~=1Un=U,
( c ) Un c Vn whenever UczV.
For convenience, we will say that {Un} (more precisely, {Z7w}n=i) is

a stratification of U whenever the Un satisfy (a) and (b) of Defini-
tion 1.1. Similarly, we will say that the correspondence U—*{Un} is
a stratification of X whenever the Un satisfy (a), (b) and (c) of De-
finition 1.1. Certainly, we may suppose that any stratification U—>{Un}
of X is increasing, i.e. UnaUn+1 for each n (if U—*{Un} is a strati-
fication of X, then so is U ->{C7i}, where Uf

n = \Jΐ=i Ui), a fact that
will actually be used in §4. The same applies to stratifications of
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1 We express our sincere thanks to Professor E. A. Michael for his enthusiastic,

helpful and encouraging supervision of this investigation. Nearly all our terminology
is consistent with that used in Kelley [9], except that our spaces are always TΊ.
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sets.2

For best appreciation of stratiίiable spaces, we state some of the
principal results of Ceder ((A) — (I)), our improvements of (E) — (I),
and some other results.

(A) The class of metrizable spaces is contained in the class of
stratifiable spaces, and the latter class is contained in the class of
perfectly paracompact spaces.3

(B) A stratifiable space is hereditarily stratifiable.
(C) The countable product of stratifiable spaces is stratifiable.
(D) In a stratifiable space X, the following are equivalent:

( a ) X is Lindelof,
(b) X is separable,
( c) X satisfies the countable chain condition.

(E) If A is a closed subset of a stratifiable space X, then the
space X/A, obtained by identifying all points of A, is stratifiable.

(F) Dugundji's extension theorem (4.1 in [5]) is valid for strati-
fiable first countable spaces.

(G) If a topological space X is a locally finite union of closed
stratifiable subspaces, then X is stratifiable.

(H) Every chunk-complex (see definition on p. 188 in [4]), and
thus every CTF-complex, is stratifiable.4

( I ) A locally compact (more generally, absolute Gδ) stratifiable
space is metrizable.
Our improvements of (E) — (I), where ((?', H') simultaneously generalizes
(G) and (H), are

(E') The closed continuous image of a stratifiable space is strati-
fiable (§ 3).

(F') Dugundji's extension theorem is valid for stratifiable spaces
(§4).

(G', H') A topological space, which is dominated (see Definition
7.1) by stratifiable subsets, is stratifiable (§ 7).

(Γ) A stratifiable space is metrizable if and only if it can be
mapped to some metrizable space by a perfect map (section 8).5

2 Definition of 1.1 is clearly equivalent to Definition 1.3 in [4] (If U-> {Un} is a
stratification of X, then s& — \J Z=ι&n is σ-cushioned pair-base for X if &n — {(Un, U) \ U
is an open subset of X}. If Xhas a ^-cushioned pair-base & — Un=i^», to each open
27c Xassign the sequence {Un}n=i, where Un = U {Piβ&n I Pi c U}). Ceder proved
the above equivalence in his dissertation (University of Washington, 1959).

3 A topological space X is said to be perfectly paracompact if it is paracompact
and every closed subset of X is a Gδ in X.

4 Ceder actually showed that chunk-complexes are Mi (Ceder showed that Mi im-
plies stratifiable, but it remains unknown whether the converse is true).

5 This actually strengthens (I), because Z. Frolίk [6] proved that any paracom-
pact absolute Gs-space can be mapped to a completely metrizable space by a perfect
map, and conversely.
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Moreover, we show
(J) The adjunction space X \Jf Y of two stratifiable spaces X

and Y is stratifiable (§ 6).
We also characterize stratifiable spaces by continuous functions

{§ 5) and consider perfect inverse images of stratifiable spaces (§ 8).
The above results show that stratifible spaces combine many of

the desirable properties of metrizable spaces ((B),(C),(D),(G),(F')) and
paracompact spaces ((£"), (G', H'), (J))

The following are some problems that remain unsolved:

1. If X is compact Hausdorff and Y is stratifiable, is the func-
tion space Yx (compact-open topology) again stratifiable? (It is not
even known whether Yx is normal when X is the unit interval and
Y is a simplicial C "^-complex). We strongly suspect that the answer

2. Must a regular space, which is a continuous image of a separable
stratifiable space, be stratifiable? (It is not even known whether a coun-
table regular space must be stratifiable).

3. Is every separable stratifiable space a continuous image of a
separable metrizable space?

For the reader's convenience, we observe that all sections, after
§ 2, are independent of each other.

We end this section by stating a very crucial consequence of
Definition 1.1, the proof of which appears in the next section:

To each pair (̂ 4, Z7) of subsets of a stratifiable space, with A
closed, U open and A c U, one can assign an open set UA satisfying

and

UAa VB whenever Z7c V and AcB .

2. Preliminary lemmas* Throughout this section, let X be a
stratifiable space.

LEMMA 2.1. To each pair (A, U) of subsets of X, with A closed
and U open, we can assign an open set UΛaU such that

(a ) UAczVB whenever A c B and U aV,
(b) AnUaUtCiiUJ-ciAvU,
(b') AdUAci( UA)~ c U whenever AaU.
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Proof. Let U~> {Z7J be a stratification of X To each pair (̂ 4, U)
of subsets of X, with A closed and U open, assign the set

n=l
n - (X - A)-) .

Clearly, UΛ is open and UΛ c U. Let us check the other require-
ments:

( a ) Immediately, UΛ c VB whenever AaB and UaV.
(b) ^4nZ7czZ74: Let xeAnU; then x e Uk1 for some fc, and

x e (X - A); thus a? 6 Uk - (X - ^)j" c UΛ.
Also (J7J- c A u 17: If a? g 4 U Ϊ7, pick w so that x e ( I - A)Λ;

then (X — A)n Γ) (X — C7,r) is a neighborhood of x disjoint from UΛ.
(b') This is an immediate consequence of (b), since A c £7 implies

The following lemma is needed in § 7.

LEMMA 2.2. Let A be a closed subset of X. If U->{Un} (U
relatively open in A) is a stratification of A, then there exists a
stratification V—*{Vn} (V open in X) of X such that

( a ) VnΓ\A = (VnA)n,
(b) V-ΠA = (VΠA)-.

The preceding lemma is an immediate consequence of the follow-
ing more detailed result, which is also needed in § 6.

LEMMA 2.3. Let A be a closed subset of X. To each open VaX
and stratification {an(V Cϊ A)} of V f) A (relative to A) one can assign
a stratification {an(V)} of V such that

(a) an(V)ΠA = an(VΓίA),
(b) [an(V)]-nA=[an(VnA)]~,
( c ) an( V) c βn{ W) whenever an( V Γϊ A) c βn( W Π 4) and VaW.

Proof. Let U —> {Un} be a stratification of X. For each open
F c l , each stratification {an(V f] A)} of V f] A (relative to A), and
all n, let

«n(V) = (V- A)n U [(V -A)Uan(VΠ A)][an(V Π 4)]~ .

By Lemma 2.1 (b) and by the definition of UAi

(1) (7-4Uff , (Fn4)c«»(F)c(F- i )Uα,(Fn4) ,
(2) aΛ{V ΠA)cz [an(V)Y <z(V-A)\j [an(V f] A)]~ c V.
Now all requirements of this lemma easily follow from (1), (2),

and the fact that V= \Jζ=ιan(V) (since {jZ=ian(VΓiA) = V f) A and
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3* Closed continuous maps*

THEOREM 3.1. The closed continuous image of a stratifiable space
is stratifiable.

Proof. Let /: X —> Y be a closed continuous map from the strati-
fiable space X onto F, and let U —> {Un} be a stratification of X. For
each open subset V of Yf let

Q»=[f-\V)]SU, Vn=[f(Qn)]\

Then
(a) Vn is a neighborhood of f(T~): By Lemma 2.1 (b')> QΛ is a

neighborhood of the (inverse) set Sn; since / is closed, f(Qn) is a neigh-
borhood of f(T~).

(b) 7 ; c 7 : 7 , - c [ / ( Q J ] - = / ( Q ; ) c 7 , since / is closed, and
Q-df-\V) by Lemma 2.1 (b')

( c ) U»=i V* = ̂  % (a) a n d t h e definitions, Vi)VnZ)f(Tn) and

Clearly, if V and TF are open subsets of Y, and F c W, then
Fw c Wn, since all preceding operations are order-preserving. Thus
V —> {F%} is a stratification of Y.

In [4], Ceder defined the class of Nagata spaces (see Definition
3.1 in [4]) which he showed to be the same as the class of stratifiable
first countable spaces. We have thus established:

COROLLARY 3.2. The closed continuous image of a Nagata space
is a Nagata space if and only if it is first countable.

REMARK 3.3. Morita and Hanai [13], and Stone [15] indepen-
dently proved that if /: X—* Y is a closed continuous map from the
metrizable space X onto the T^-topological space Y, then the follow-
ing are equivalent:

( a ) Y is metrizable,
(b) Y is first countable,
(c) bdry f~\y) is compact for each yeY.
Corollary 3.2 shows that part of above result remains valid for

Nagata spaces. However, it is worthwhile noting that a complete
duplicate of Stone's result cannot be obtained for Nagata spaces, since
the subspace S = [0, 1] x {0} of the Nagata space X, constructed in
Example 9.2 in [4] {X — {(x, y) \ x and y are real and y ^ 0}; the
topology on X has a base consisting of disks missing the .τ-axis and
sets of the form Un(p) = {(x, y) \ s — p \ < 1/n and y lies below the
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graph of (x — pf + (y — nf — n2} (J {p}), can be shown to be compact,
but the quotient space obtained by identifying all points of S is a
nonfirst countable closed continuous image of X.

Another application of Theorem 3.1 is to prove that Theorem 2
of Stone [15], which he proved for metrizable spaces, remains valid
for stratifiable spaces. We first need the following lemma, which
Stone also proved for metrizable spaces.

LEMMA 3.4. Let f\X-*Y be a monotone quotient map from the
locally peripherally compact^ space X onto the Hausdorff space Y such
that, for each p e Y, bdry f~\p) is compact. Then f is closed and Y
is locally peripherally compact.

Proof. For each p e Y, let Fp — f~\p). Given any open set
Uz)Fp, we must find an open set R, with Fpc RczU, such that
FqdU whenever Fq intersects R.

Cover bdry Fp by a finite number of open sets Uu , Um such that
Ui c U and bdry U, is compact ( l g i g m). Let V = (LJΓ=i^) U (Fp)\
Then Fp(zVaU and bdry V is compact.

Since /(bdry V) is compact, and hence closed in Y, the set W —
f~\Y — /(bdry)] is an open neighborhood of Fp. If now Fq inter-
sects R = W ΓΊ V, then Fq c W, and hence Fq Π bdry V = φ. Thus,
since Fq is connected, Fq c V.

To prove that Y is locally peripherally compact, we proceed as in
proof of Theorem 2 of Stone [15].

COROLLARY 3.5. Let /: X~> Y be a monotone quotient map from
the locally peripherally compact stratifiable space X onto the Haus-
dorff space Y. Then Y is a locally peripherally compact stratifiable
space.

4* Dugundji's extension theorem* After a couple of prelimi-
naries, we will show that the well-known extension theorem of Du-
gundji for metric spaces (Theorem 4.1 in [5]) remains valid for strati-
fiable spaces.

DEFINITION 4.1. For each open subset U of X and x e U, let
n(U, x) be the smallest integer n such that x e Un, and let

Ux = Un{U)X) - (X - {x})-ίU)X) .

6 A topological space X is locally peripherally compact if, for each x 6 X and neigh-
borhood U of x, there exists a neighborhood V of x such that V c U and bdry V is
compact. For any set S, "bdry S" means "the boundary of S."
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Observe that Ux and U{x} (§ 2) are not necessarily the same sets.

LEMMA 4.2. For U, V open subsets of X, x e U and y e V, we
have the following:

( i ) Ux is an open neighborhood of x,
(ii) Ux Π Vv Φ φ and n(U, x) ^ n(V, y) implies y e U,
(iii) Ux n Vy Φ φ implies x e V or y e U.

Proof. Clearly, Ux is an open neighborhood of x, by the defini-
tion of Ux; also (iii) is an immediate consequence of (ii), since either
n(V, y) g n(U, x) or n(U, x) ^ n(V, y).

Therefore, we proceed to prove (ii): Assume y £ U. Then

for each n\ therefore

(X - {y})n{v,y) =3 ( X - {y})n{u,x) =) Un{u,x) .

Consequently, by Definition 4.1, UxΓ\Vy = Φ, a contradiction. Thus
yeU.

THEOREM 4.3. Let X be a stratifiable space, A a closed subset
of X,E a locally convex linear topological space, C(X, E) the linear
space of continuous functions from X into E, and similarly for
C(A, E). Then there exists a mapping

φ:C(A,E)->C(X,E)

satisfying the following conditions:
(a) φ{f) is an extension of f for every feC(A,E),
(b) the range of φ(f) is contained in the convex hull of the

range of /, for every f e C(A, E),
(c ) φ is a linear transformation.7

Proof. Let W= X- A, and let W = {x e W\ x e Uy for some
ye A and open U containing y}. For each x e W, let

m(x) — max {n( U, y) \ y e A and x e Uy} .

Note that m(x) > co and, in fact, m(x) < n(W9 x): If not, there
exists ye A and open neighborhood U of y, such that x eUy (thus

7 In [1] and [10], it is shown that Theorem 4.3 is not valid for compact Haus-
dorίϊ (hence paracompact) spaces. It seems to be unknown whether Theorem 4.3 is
valid for perfectly paracompact spaces.
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WxV\UyΦ Φ) and n(U, y) ^ n(W\ x); hence y e W, by Lemma 4.2 (ii),
which is impossible.

Using the paracompactness of W, let ^ be an open locally finite
(with respect to W) refinement of {Tΐ^lsce W}. For each Ve 3̂ *,
pick xv e W such that VaWxv. If xv e W\ pick aveA and open
Sv containing av such that xv e (Sv)av and n(Sv,av) — m(xv); if xv g W ,
let av be the fixed point aoeA.

Let {pF I F e 5̂ *} be a partition of unity subordinated to 3̂ 7 and
define g: X—>E by

#0) = /(α) if α e A ,

and

sr(ίc) = Σve^(x)f(av) ifxeW.

Then, clearly, gr(X) c convex hull of /(A) and g is continuous on W.

To show that g is continuous at b e A, let 0 be any open subset
of E containing /(&). By the local convexity of E, there exists a
convex open subset K of E such that f(b)aK(zO and, by the con-
tinuity of /, there exists an open neighborhood N of b such that
f(Af]N)(zK(zO.

Now we show that g((Nh)b) c 0: If x e (Nh)b ΠAaNnA then
g(x) = f(χ) e 0. Let x e (Nb)b — ^4. Consider any V e 3^ with a; e F.
Since 6 ί TFίCF and XG (Nb)b f] WXv, we get that xve Nb, by Lemma 4.2
(iii); hence xF G W and π(ΛΓ, 6) ^ m(xv) = n(Sr, av). By Lemma 4.2
(ii), av G N, since xF G iV6 Π (S 7 ) β f . Consequently /(αF) G if and, by the
convexity of K, g(x) e KaO. Hence g((Nb)b) c 0, establishing the con-
tinuity of # on 4 .

To complete the proof, we simply let φ(f) — g.

In [10] (Theorem 7.1), it is proved that, for any metrizable space
X, φ can be chosen to be continuous whenever both C(A, E) and
C(X, E) have the compact-open topology, the topology of pointwise
convergence, or the topology of uniform convergence. Let us show
that this remains valid for stratifiable spaces, using the function φ
constructed in the proof of our Theorem 4.3 (We will need to assume
that for each V e 3^, V~ c WXv, where V~ denotes the closure of V
with respect to W, which is easily done). As in the proof of Lemma
7.2 in [10], it suffices to show that the function u: X—+2A, defined by

u(x) = {x} if xe A ,
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u(x) = {av I V e y and x e V~} if x e W,

is upper semi-continuous8 at points of A:

Let p e A and U be an open subset of X containing ιι(p) — {p}.
We show that, for each x e (Up)p, u(x) czU: If xe A Π (Up)p then
u(x) = {x} aU. If x e (Up)p — A, consider any F G 7 with x e V~;
since pg WXv and xe (Up)p p\WXv, we get that xv e Up, by Lemma
4.2 (ii); hence xv e W and n(U, p) ^ m(xv) = n(Sv, av). By Lemma
4.2 (iii), av e Z7, since xv e Up Π (S F ) α F . Hence

{av\V e y and a? e V~} c Z7

and thus u(x) c ?7, completing the proof.

5* Characterization by continuous functions* Throughout this
section, let / be the closed unit interval.

THEOREM 5.1. Let X be a stratίfiable space. To each pair (A, U)
of subsets of X, with A closed, U open, and AaU, one can assign a
continuous function fUtA: X-+I such that fUtJL{A) = 0, fU)Λ(X— U) — 1,
and fu>Λ ^ fv,B whenever AczB and UaV.

Proof. It suffices to reproduce Urysohn's lemma (Lemma 4, p.
115, [9]), using Lemma 2.1 (a) and (b') Thus we will simply display
the first steps of the required induction. We let

M(0) = UΛ M(ΐ) = U

Jlf ( 1 ) =

M ( τ ) = M DL
Continuing in this fashion, we define M(r) for all dyadic rationals in
I such that

rx < r2 implies [M(r?)\- c M(r2) .

Also, let M(r) = X for r > 1.
Now we define the function fUtΛ by

fuM) = inf {r I x e M(r) and r > 0}

8 If X and Y are topological spaces, a function %: X ^ 2F is upper semi-continuous
at a point xeXiί, for every open subset £7 of Ycontaining1 u(x), there exists a neigh-
borhood W of x in X such that u(x') c C7 for every α/ G W; % is called upper semi-
continuous if it is upper semi-continuous at every xβX.
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for all xe X. By Lemma 3 (p. 114) in [9], fU)A is continuous. Clearly,
fUiA(A) = 0 and fUfJi{X — U) — 1. Finally, Lemma 2.1 (a) and our
definitions (of the sets M(r)) imply that fUtΛ ^ fVtB whenever AaB
and UdV.

THEOREM 5.2. A topological space X is stratifiable if and only if
to each open UaX one can assign a continuous function fπ:X—>Iy

such that fϋ\fy — X — U, and fπ ^ fv whenever UaV.

Proof. To prove the " i f assertion, assume that to each open
Uc X one can assign a continuous function fσ: X —>I such that

fϋ\Q) = X - U, and fπ S fv whenever Ua V. For each open UaX
and all n, let

n

It is easily checked that U —> {Un} is a stratification of

UdV implies UnaVni since /^ ^ / F ) .
To prove the "only i f assertion, let X be a stratifiable space and

let fUfA be as in Theorem 5.1. Let

fu = Σi Z~nfx-u~,x-u .

It is well-known that fπ is continuous and, clearly, fΰ\fy — X — V.
Finally, one easily sees that fπ ^ fv whenever UdV.

6. Adjunction spaces. The concept of adjunction space was
first introduced by J. H. C. Whitehead, and later used by Hanner |7]
in connection with extension and retraction properties of topological
spaces.

DEFINITION 6.1. Let X and Y be topological spaces, A a closed
subset of X and /: A —> Y a continuous function. Let X{jY denote
the topological disjoint union of X and F, and let Z be the quotient
space which we get from identifying each xe A with f(x) e Y. Then
Z (commonly denoted by X \Jf Y) is called the adjunction space of
X and Y (see [8]).
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THEOREM 6.2. Let X and Y be stratifiable spaces, A a closed
subset of X and f: A —> Y a continuous function. Then X \Jf Y is
stratifiable.

Proof. Let Z = X\Jf Y and let h: X-> Z, k: Γ-> Z be the natural
projections. As indicated by Hanner [7], OczZ is open (closed) if and
only if h~\0) and k~\0) are open (closed); furthermore, k and h \ X — A
are homeomorphisms into. Note that for any subset B of Z,

f^k"\B) = hr\B) Π A .

For convenience, for any open subset 0 of Z, we let

Or = k-\0) , Ox = h-\0) ,

o 4 = ox n A = f-\θτ).

Let F->{VΛ} be a stratification of Γ. Then, letting (Oγ)n = OF,U

and f~\OTti) — OΛ,n, we see that {O4,J becomes a stratification of O4,
for each open 0 c Z. By Lemma 2.3, for each open 0 c 2 there ex-
ists a stratification {Ox>n} of Ox, satisfying

(a) Ox,nΓιA = OA,n,
(b) Oϊ, w nA = O ^ ,
(c ) 0 c 0' implies Ox,n c Oi,n: If 0 c 0', then 0 ^ c O'Λ>n (since

0 Γ > f t c 0 r J and 0xa0x, and hence 0 I ( W c 0 ^ by Lemma 2.3 (c).
Now we let

On - Λ(0Xιn) U k(OYJ .

To prove that 0—>{On} is a stratification of Z, we will repeatedly
use that

= S[J f-'fiS f]A) if S c X,
i ) if S c l .

We now show
(1) Ow is an open subset of i?: It suffices to show that h~\On)

and k"\On) are open. But, using (a),

h~\On) - hr*h(OZt%) U A-

= Oχ.. U f-JiO^ ΠA)Ό

= ox>n u f-V(θΛj u o ^
= O χ f W U OΛtn

- Oχ f, .

Similarly,
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J U k

,. n A) u o r

= /(Oκ, J U O r,B

(2) 0^ c 0: Let C = fe(Ox,,) U fc(O?,,); it follows that O . c C c O
and thus it suffices to show that C is closed (i.e. h~\C) and k~\C)
are closed). But, using (b),

h-\C) = h-%(Oi.u) U h

= 0;.. U f-'ΛOi,, f)A){J f-\OrJ

= Oi,. U f-\f(07,n) U 0?.,)

= Oϊ,. U /^(O?.,) .

Similarly,

A ^ C ) khiOJ U k-'kiOrJ

?,, n A) u o?,,

= /(Ol,,) U Oy,n

( 3) U On =;0: U On = U [Λ(Oχ.») U k(OrJ)

= h(0θx,n) Uk({j Or..) = h(Ox) U k(Qr) = 0 .

(4) If 0,0' are open subsets of Z and OcO', then 0na0'Ά:
immediate from (c) and the fact that OcO' implies 0Ytnc O'r,n.

Consequently, from (l)-(4), 0 •—> {OJ (0 open in Z) is a stratifica-
tion of Z.

COROLLARY 6.3. Let Y be a stratifiable space. Then Y is an
AR (stratifiable), resp. ANR (stratifiable), if and only if Y is an
AE (stratifiable), resp. ANE (stratifiable)*

Proof. This follows from Theorem 6.2, using the same method
of proof of Theorem 8.1 in [7].

7* Spaces dominated by stratifiable subsets* We start by re-
producing Definition 8.1 in [11],

DEFINITION 7.1. Let X be a topological space, and a collection of
9 AR — absolute retract, ANR — absolute neighborhood retract, AE = absolute

extensor, ANE = absolute neighborhood extensor.
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closed subsets of X. Then & dominates X if, whenever Ad X has
a closed intersection with every element of some subcollection ^ of
& which covers A, then A is closed.

As examples of covers of a topological space X which dominate
X, we mention the following:

( 1 ) locally finite closed covers of X,
( 2 ) the family of finite subcomplexes of a C ψ-complex (more

generally, the family of chunks of a chunk-complex).
In [11], it is then shown that a topological space is paracompact

if and only if it is dominated by a collection of paracompact spaces
(this result was also proved by K. Morita). We prove the following:

THEOREM 7.2. A topological space is stratifiable if and only if
it is dominated by a collection of stratifiable subsets.

Proof. The "only i f assertion is obvious. Let us, therefore,
prove the "if" assertion.

We begin by noting that the special case of two closed sets was
already obtained by Ceder (Lemma 2.7 in [4]), a fact that will be
used later.

Now let ^ be a dominating collection of stratifiable subsets of
X. Consider the class G of all pairs of the form (^ α , Sα), where
^ c ^ , and Sa is a stratification of Ca = \J ^ a which will be de-
noted by V-+{Va,n} (V relatively open in Ca). (Throughout this
proof, U ^ Y wi^ b e denoted by Cy for any ^ycz^). We partially
order G by letting (<g*α, Sa) g (ίfβ, Sβ) whenever <ĝ  c <ifβ and, for
each relatively open U in Cβ,

( a ) Uβ,nnCa = (UnCa)β,n,

(b) uβ>nf)Ca = (uncayβ>n

for all n.

We now show that any simply ordered subfamily {^α, Sa}aeΛ of
G has an upper bound (<g=p, Sβ). Let ^β = [JaβA^a. For each rela-
tively open U in Cβ, and all n, let

uβ,n= \j(unca)a,n,
cύEA

and let us show that U—+{Uβ,n} is a stratification Sβ on Cβ which
satisfies (a) and (b) for every a e A.

Clearly UaUf implies Uβin(zUβ,ni and \jZ=1Uβ,n = U. It remains
to verify (a) and (b) for every aeA, and to check

( c ) Uβ.nczU.
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Now (a) is clear from the definitions. To prove (b) and (c), let

Clearly Uβ,n c U* c Uf,n. For each α e A, U* Π C = (17 n C β)- n,
since {(^a9Sa)}aeΛ is simply ordered. Hence U*czU, and that implies
both (b) and (c).

By Zorn's Lemma, let (^ 0, SQ) be a maximal element of G. To
complete the proof we need only show that ^ 0 = <&. Suppose not.
Then there exists Ee & - <if0. Let ^ = <gf0 U {#}. Now Co and JS7
are closed stratifiable subspaces of Cx — Co U ί7, and hence Cx is strati-
fiable by the remark at the beginning of the proof. Thus, by Lem-
ma 2.2, one may obtain a stratification Sλ of Cl9 say U—>{UUn}, such
that

(a') ϋifnΠCo = (l7nCo)β f n

Consequently (^ 0, SQ) < (&Ί, Sj), contradicting the maximality of
, So). Hence ^ = ^ , and X is stratifiable.

8* Perfect inverse images. It is well-known that the inverse
image of a paracompact space, under a perfect map, is paracompact.10

Clearly, the same cannot be said of metrizable spaces or of stratifiable
spaces. However, we have the following (Upon completion of this work,
we were informed that Okuyama [14] has an independent and quite dif-
ferent proof of the following Theorem 8.1. However, our proof is shorter
and more elegant than his):

THEOREM 8.1. Suppose there exists a perfect map f from the
topological space X to the metrizable space Y. Then X is metrizable
if and only if the diagonal in X x X is a Gδ.

To prove the preceding theorem, we need the following lemma,
which appears to be known, but we cannot find it in the literature.

LEMMA 8.2. Let X be a paracompact space with the diagonal a
G8 in X x X. Then there exists a metrizable space M and a con-
tinuous one-to-one map j from X onto M.

Proof. Let Δ be the diagonal of X x X, and let A — ΠΓ=i Vn such
that each Vn is open in X x X.

By Theorem 28 and Lemma 30 (pp. 156-157) in [9], we can find

io A perfect map /: X-* Y is a closed continuous function, such that f~1(y) is com-
pact for each y£Y.
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a sequence {ϊ7w}Γ=i of symmetric neighborhoods of Δ such that, for
each n,

Un+1oUn+1oUn+1cUnf)Vn.

By Theorem 12 (p. 185) in [9], letting <%f be the uniformity of X for
which {Z7Λ}n=1 is a base, (X, ^ ) is pseudometrizable. However, since

is Tu and hence metrizable.

To complete the proof, denote (X, ^) by ikf and let j : X->M be
defined by j(x) = x, for each x e X; the continuity of j follows from
Theorem 12 (b) on p. 185 in [9].

Proof of Theorem 8.1. The "if" assertion is obvious. Let us,
therefore, prove the "only if" assertion.

By Lemma 8.2, there exists a metrizable space M and a con-
tinuous one-to-one map j:X—*M. Now we define maps h and k such
that

h:X->Mx Y, k:Mx Γ-*Γ,

with k o h = /, by letting

a n d

Jc(m, y) = y , m e Λί, y e Y .

Clearly, h and fc are continuous.
Hence, since / is perfect, h is a perfect map, by Proposition 5

(§10) in [3], Therefore, since h is one-to-one, h is a homeomorphism
into the metrizable space M x Y. Consequently X is metrizable.

The following is an immediate consequence of Theorem 8.1.

COROLLARY 8.3. If X is stratifiable and there exists a perfect
map from Y to a metrizable space, then X is metrizable.

K. Morita [12] and ArhangeΓskii [2] have extensively studied
inverse images, under perfect maps, of metrizable spaces. By our
Theorem 3.1, the corollary to Theorem 11 in [2], as well as Theorems
20 and 21 in [2], become immediate corollaries to our Theorem 8.1.

We now state the analogue of Theorem 8.1 for stratifiable spaces.
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THEOREM 8.4. Suppose there exists a perfect map f from the
topological space X to the stratίfiable space Y. Then X is strati-
fiable if and only if the diagonal in X x X is a Gδ.

Proof. The same as the proof of Theorem 8.1 since, by (A) and
(B) in the introduction, stratifiability is productive and hereditary.
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