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WHICH WEIGHTED SHIFTS ARE SUBNORMAL

J. G. STAMPFLI

Let H be a Hubert space with orth ©normal basis {fj}JLi.
If the operator T is defined on H by Tfi = djfi+1 for i =
1, 2, , where | α< | £ \ ai+ί \SM for i = 1, 2, , then T
will be called a monotone shift. The first section of the paper
examines some of the elementary properties of such operators.

Every monotone shift is hyponormal. The central portion
of the paper aims at discovering which monotone shifts are
subnormal. Necessary and sufficient conditions are given in
terms of the {α*}. These conditions make it easy to show that
even the first four coefficients (ax < a2 < a3 < a*) may *'prevent"
a shift from being subnormal. However, for any aγ < α2 < a3

there does exist a monotone shift with these as its initial terms.
In fact, the unique minimal one is constructed.

A complete description is given of subnormal monotone
shifts for which | a3 Q \ = \ djo+i \ for some jOm The paper
concludes with counter-examples constructed from the machi-
nery developed.

We are tacitly assuming that lim^^l aό | exists, i.e., T is a bounded

operator. If | α, | = | aj+1 | for j = 1, 2, , then T is (up to unitary

equivalence) simply a multiple of the justly famous unilateral shift.

We recall that an operator T on a Hubert space H is subnormal

if it is the restriction of a normal operator to an invariant subspace.

The terms " p o i n t " , "continuous" and "residual spectrum" have their

usual meaning and are designated by #>(•), 0V( ) and oβ{ ) respectively.

THEOREM 1. Let T be a monotone shift on H where A =

_«, \a,j\, then

( i ) \\T\\ = A

(ii) σR{T) = {z: \z\ < A}

(iii) σP(T*) = {z:\z\<A]

(iv) t

Proof. Surely (i) is clear.

For I z01 < A, consider the vector g = X~=1 zfflnfn where bk — 1 if

&*_! = 0, ak Φ 0 and bn+1 = zobjan for n > k. Since | zo/an \ g r < 1

for n sufficiently large, ge H. But (T* — zl)g — 0 so g is the desired

eigenvector, proving (iii). The relation bn+1 = zobjan is necessary which

implies the eigenvalue z0 is of multiplicity one.

For any z, it is clear that (T — zl)h ^ 0 for he H, and h Φ 0.
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Now for an arbitrary operator, zoeσP(T*) implies zoe σP(T) \J σR(T)
and (ii) follows.

It is not hard to see that

σP(T) Π {z: I z \ = A} = ψ = σP(T*) n {z: \ z | = A}

and hence (iv) is proved.

REMARK. If one considered a two-sided monotone shift Tfd =
βy/y+i for j " = 0, ± 1 , , then the above theorem is easily modified,
the spectrum of T now being the annulus B ^ | z | ^ A where A =
lim^^ I a3- | and B — limί _>_001 as |.

THEOREM 2. If T is a monotone shift then T is hyponormal;
that is || TV || 2̂  | |T*</ | | for geH.

Proof. Clear.

THEOREM 3. If T is a monotone shift then T is not a spectral
operator, (for T Φ 0).

Proof. Assume T is a spectral operator; then ϊ7* is also a spectral
operator which can be written as S + N where S is a scalar operator
and N a commuting quasi-nilpotent. By Theorem 1 we know that every
point in the disc | z | < 11 T \ \ is an eigenvalue of T *. Invoking Corollary
5 to Theorem 1 of [2] every point in the disc \z\ < || T\\ is an eigenvalue
of S. But S is similar to a normal operator which must have an
uncountable number of distinct eigenvalues. Thus our original assump-
tion was ill founded.

Next we would like explicitly exhibit a normal extension B of T
assuming T to be subnormal. The normal extension we construct will
be minimal, (see [1], [3] for a discussion of subnormal operators).
From now on we will assume a^ Φ 0 for i = 1, 2, •••. There is no
real loss in generality if we do so. For if ax — a2 = = an — 0,
then the subspace M spanned by {<Pi, ,<pn} is a reducing sub-
space of T and moreover T is normal on M. Hence we are really
only concerned with what takes place in M1. Let us designate the
original basis for H = H{1) by {φf]}°°=l9 We shall use the terms aά

and aψ interchangeably as a notational convenience. It will be to our
advantage to assume that αjυ > 0, for j — 1, 2, , and we may do
this by simply rotating the <pj1)?s of the original basis by eiθκ

Now set B*φ?] = afl&fli + hγ]φf] where || φf \\ = 1 and φf is
orthogonal to H(1) for j = 1, 2, . -. Since || B*φ^ ||2 = {a'^f + | δf |2 =
|| Bφf ||2 = « ) 2 we may conclude that | hf |2 = (aψf - {af\)\ (a^ =
0). We claim that the φj2)?s are orthogonal, for

b?W](ψ?\ ^f) = (B*φ?\ B*φ?) = (Bφ?\ Bφ?) = 0,
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when iφj. We are assuming for the moment that bf] Φ 0 for j = 1,2, .
Since the φj2)'s are determined up to a scalar of modulus one we may
take b'/] = [(αf)2 - (a^)2]11*. Now let us consider the possibility that
b% = 0. This would mean αjj> = a^Lτ or that || T*φ% || ~ || T φ ^ | |.
But by Theorem 4 of [5] the set of vectors {/: |] Γ*/ll = II Γ/11} forms
a closed invariant subspace of 2\ Thus || Tφi15 || = a!15 = ajj} for k ̂  i 0

and thus bf = 0 for fc ̂  j 0 .
We will designate by i ϊ ( 2 ) the space spanned by {<pψ) for bψ Φ 0.

So far we know that (Bφf, φf) = 6f = [(αf )2 - (af.,)2]1'2. Now

&, JB^>) - (BφfU, Tφf) - δ ^ α j " - (I

= (B*φfU, bfφf) = bΠφfl

thus {Bφf, φfU) = afbfjbf. We set af = afbfljbf. Since
B*Bφί1)) = 0 tor k Φ j - 1, it follows that

0 = (B*φf, B*φl») = ( 5 > Γ , α i 1 ! ^ ! + δ[>ί2))

or (S^ 2 ) , φf) = 0 for Λ Φ j - 1. Thus Bφf = afφfU + bfφf + f,
where fs is orthogonal to Hm φ Hm. We now wish to show that
ft = 0 for j = 1, 2, . We observe that (Bf,, Bφ^) = αίυ(/,, B*^1!!) = 0
for all j, k since ^Vi+i e Hm 0 iί12'. But then

Λ)

0 = (B*fit B*φf) =

Thus we have Bφf=afφflι
flι+bfφf

is bounded by assumption, B
from which we may conclude f, = 0.
and since {φf} is a basis for iϊ<2> and
is now defined on Hw φ Hm.

It is perhaps worth while to write it down in matrix form on

0
α'ί'O

α(i» 0

•

0

δ(i>

0
o(? 0

α'?0
α'f

•
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where bf = ((afψ - (α^) 2 ) 1 ' 2 and bfaf = bfUaf. We have assumed
that all the af's Φ 0 and have shown that if bψ0 = 0 then ¥k

2) = 0 for

In this case, H{2) would be finite dimensional.
We will now assume B has been defined on H{1\ •• ,£Γ ίw) where

{<PΪ]}> , M w ) l a r e t h e respective bases and Bφ(Jc) = af]φflx + bf]φf-χ)

for fc = 2, , n. We also note that all bf) ^ 0. That is, if b[k\ , δ< *>
are nonzero and 6J-*Vi = 0 then &< fc) = 0 for j ^ j k + 1 and if(A;) is
spanned by {φ[k\ , φfj). Further af] Φθ for j = 1, . . , yfc - 1.
The above can be considered to be the induction hypothesis.

We set B+φW^aϊlφ^ + VpVφϊ™ for i = l ,2 , •••, where'
| | ^ + 1 ) | | = 1, and cp^+1) is orthogonal to H{n) 0 0 Hin). Since
|| B*φf || = || S ^ 1 || we have | δ^+ 1 ) |2 - {aff + (δ^) 2 ~ ( a £ i ) * « J = 0'
by definition). Now

) = 0 for i ^ i .

Thus ^ % + 1 ) and <£>̂ +1) are orthogonal for we may assume b\n+1\ 6^+1)

are nonzero else φ^ov1} would not be defined. Thus bf+1) may be taken,
positive. Consider

(φftϊ\ B*Bφf) = (φϊ£\ B*(aγψ& + bfψr1'))

This implies 5 ^ + l i = δ ^ + 1 ) ^ + a^+1)φ^ + fό where (/,-, φ^VO = 0'
and af+1) satisfies the relation af+1)bf+1] = a{?Ψgΐ\ for j = 1, 2, .

Now let us clear up the zero, nonzero relation between the a's
and the b's. By the induction hypothesis either all αjn)'s Φ 0 for
j = 1, 2, , or there are a finite number and all but the last is non-
zero. In either case assume b{

k

n+1) = 0 and bkVi1] Φ 0; then a{

k

n+1Ψk

n+1) =
0 = a^Ψiί+Ί^ Φ 0 (for there are at least k nonzero αjn)>s since the
dim£Γ (n+1) ^ dim jffίn)). This is impossible. Now assume bf+1) Φ 0 for
j = 1, 2, , k, and 6f+1) = 0 for j > k, i.e., H{n+1) is ^-dimensional.
Then af+1) = afΨR?jb?+1) is well defined for j ^ fc and since ffίn) was
at least A -dimensional, a^ Φ 0 for i = 1, , k — 1; hence α^+1) Φ 0
f or i = 1, , k — 1 as we wished to show.

Let us go back to the defining relation

Since

(<pf+1),B*Bφ{?)) = 0 for

we have
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{φ^\ BB*φf) = {φt+1\ V?™WΓ'Ψfi? + bγ™φW + fs))

+ (φln+1), Ba^φfl,) = (φ?+1), fj) = 0 for i Φ j + 1.

Now {φψ+i\fj) = 0 by definition and hence f5 is orthogonal to
£Γ ( 1 ) 0 0 ί Γ ( + 1 ). But

= 0 -

I Λ and since 0

we conclude /,- = 0. Thus J5^Λ + 1 ) = α ^ 1 ' ^ 1 1 + l^φf where 6i%+1) ^ 0
for i = 1, , (dim iί (-+ 1 ) and α^+1) =£ 0 for i = 1, . . . , (dim H{%+1) - 1).
It should help to present B as an infinite matrix with respect to the
basis {φ^} where j = 1, 2, , dim iί ( % ) and n — 1, 2, .

0 F
0 0

0

0
) G ( 3 )

J P ( 3 )

where

0
αiw ) 0

[n) 0

and

Now that we have a normal extension of T in concrete form it
is not difficult to read off some necessary conditions for the sub-
normality of T. In fact, it is clear that:

( I ) {aff + (bpγ ^ (a&Y for rc = 2, 3, ••., and i = 1, 2, ••-,
(otherwise it would not be possible to define 6Jn+1> compatibly
with the normality of B).
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( I I ) If bf = 0 then V& = 0 for j = 1, 2, . , and n = 2, 3, . . . ,
(else the equation affVp — af^Ψ-1^ could not be satisfied).

(III) There exists a constant M such that | a^ | ^ M and | 6^ | S M
for n — 2,3, , and j" = 1, 2, , (else the normal extension
would not be bounded). These conditions are also sufficient.
More precisely:

THEOREM 4. Let {af]} be a sequence such that 0 < a[1} ^ a(

2

l) ^ •
and define Tφψ — afφf+λ for j — 1, 2, , where {φf}~=1 is an or-
thonormal basis for Ha). The operator T is subnormal if and only if

( I ) (αf )2 + {bfj - (a&γ ^ 0
(II) by = 0=> b{;^ = 0
(III) there exists a constant M such that | a^ \ g M and \ bf] \ ̂  M

for n — 2,3, , and j — 1, 2, , where

and aγ+1) = afΨR?lb{?+1) (if b^ = 0 ίfcβπ α^} i s ta&ew to δe

Proof. The necessity of (I), (II) and (III) has already been proved.
In the other direction, since conditions (I) and (II) are satisfied the
recursive definitions of the af+1) and δ^+ 1 ) make sense. We now set

+ b^φf-v where {φ^} is an orthonormal basis for H{n).
If bfj — 0 then <p(v is omitted from the basis. With this definition it
should be clear from the former construction that

(B<pl?\ Bφ{

k

w)) = (β*φf\ B*φ{

k

m)) for all n, m, j , k.

(Here as elsewhere all should be interpreted as vacuously covering the
case when φψ* has been omitted from the basis.) Thus B is defined
and satisfies || Bx ]| — || B*x || on finite linear combinations of the basis
elements. From (III) we may infer that B is bounded: certainly
|| B || ^ 2M. Hence B is defined and is normal on all of H = Σ Θ H{n).

We remark that the af)ys were taken to be real only as a nota-
tional convenience. To modify the theorem for an arbitrary monotone
shift one need only add absolute value signs in the appropriate places.

Let a1, « ,α w be given. If there exist elements αΛ+1, αΛ+2, •••,
such that Tφό = α J 9>ί + 1 for j = 1, 2, , is a subnormal operator, we
will call T SL subnormal completion of au , an.

In Theorem 5 we will show that for any au a2, a3 where
I «i I < I σ21 < I Oa I, there exists a subnormal completion. However, one
can specify au a2, a3, α4, where a1 < α2 < a3 < a4, in such a manner
that they can not be completed to form a subnormal monotone shift.
This can be easily done by making use of necessary condition (I),



WHICH WEIGHTED SHIFTS ARE SUBNORMAL

Consider (α<2))2 + (bfψ ^ (α<2))2 which is equivalent to:

373

r,2

a3 at — a; ai — αί

or

(1) l ^ αj +
a\ (a\ - aξ)2

 x

a\ — af

If α4 is chosen so as not to satisfy (1) then clearly no choice of the
remaining a/a will make the resulting shift subnormal. For example,
if α, = 1, α2 = 21/2, α3 = 31/2, then for 31/2 ̂  α4 < (10/3)1/2 there exists
no subnormal completion.

THEOREM 5. Given αu α2, α3 where 0 < | αλ \ < | α21 < | α3

exists α subnormal completion of au α2, α3. - Moreover, if S is
any subnormal completion of au a2, α3,

1 ^ 2 I
a,

Further there is, up to unitary equivalence, exactly one subnormal
completion for which equality holds.

Proof. We may take au α2, α3 to be positive. The an's for the
minimal completion are given by the following rule:

(2)

Since αi_i/(α^_2 — α^_2) > 1 the right side is strictly positive and
an+1 > an. The defining relation (2) is simply the necessary condition
(af Y + (bf γ - (af^Y ^ 0 with equality holding.

Next we will find a more convenient expression for an. From (2)
we have:

(3) άί
< - <_χ

and so by induction,

(4)
al al al _

aί al al al al a~.

1 Note that α2,- means (α/)2 not
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by definition of C. Thus

(5) αi+1 = a\ +

and again by telescoping:

- - 4-1
α 2 _x aί J

(6) <+1 = α2 + cΓ-i- -

From (6) we can see that {αj converges and we will shortly compute
the limit.

Is the operator T defined from the an'& actually subnormal? Let
us write down its normal extension.

0
ck 0

d2 0

α 3

b[2)

bf

•

0
α| 2 ) 0

a? 0

6ίs»
0
0

0
αS 3 '

0
bf*
0

0
0

b[*
0
0
αί4

Ό
" 2

0
>0

6ί 5 )

0
0

0

0
0

δί 6 )θ
0 0 ^

[/y2 _ _ /y2"ll/2

~2 2 >

We see from (2) that

dl-l

and hence the αi2 ) ?s are bounded and obviously the 6i2)>s are. Now if

it can be shown t h a t a[k), b[k), tyk), for k = 3, 4, •••, can be defined

to satisfy the normality relations and moreover remain bounded then

we are finished. The defining relations are:

and

( i ) a[n)b[n) = a[n'1]bi
( i i ) (b[n+1))2 = (a[n))2

(iii) (b(

2

n+1))2 = (6ie))2
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There is no difficulty in defining a[n) from (i) and b[n+1) from (ii). From

(ii) we see t h a t b[n+1)'s are increasing and b[n+1) > a[n). Hence from

(i) we have 1 < Mn)/aίn-1] = ¥2

n)/a[n) or (Mnψ - (a{

2

nψ - (a[n)Y > 0 so

there is no obstacle to defining b{

2

n+1) by (iii). Now to show bounded-

ness. From (iii) we see {b{

2

n)} is decreasing and thus converges which

also implies t h a t {a[n)} converges to zero. Combining (ii) and (iii) we

have

(&(»+!>)* _ (b[-γ = (b{

2

n))2 - (b{

2

n+1ψ .

Thus

which implies {b[n)} converges since {b{

2

n)} does. Now B the normal

extension of T must be a bounded operator.

We will compute the norm of this completion from (6). Let

A = l i m ^ I a3-12 = || T \\\ Then (6) yields

<7) A = ai + Cl-±Γ-^-

L a\

or

A2 - (at + C/aΐ)A - C = 0 .

Recalling t h a t C = α?α2[(α3 — al)f(a\ — af)] and selecting the proper root

of the quadratic equation yields

(8) A = -I.
2 L a] — a\ IL α2 — α^ J α2 — α?

{the expression inside the radical is positive).
Before we show that the subnormal operator T which we constructed

to complete au α2, α3 is minimal in norm, we will prove that it is an
efficient subnormal completion in another sense. Let Sφά ~ Cjψj+1 be
any subnormal operator with ct = α̂  for i — 1, 2, 3. Rather than be
inundated by absolute value signs we will assume that both the α/s
and the c/s are positive.

Now the necessary condition (I)

(aψγ + {bψγ - {afuγ ^ o

applied to the operator S yields the following analogue to (2):

and if we argue as before we can reduce this to



376 J. G. STAMPFLI

(10) cl+1 7>a] + CΓ-V - V I

If the completion cn is different from the one given above then for
some first k we have ck > ak (it can not be less by the necessary
condition (I)). But then we have

V V - VI =
Hence Cj > aό for j ^ k.

Now we will prove the last statement of the theorem. Let S and
Cj be as above. Let k be the smallest integer such that a]c+2 — ck+2

but ak+d < ck+2>a Using the necessary condition (I) we arrive at

(Ha) al+1 = al + D\-L- - -i-

and

(lib) al+1 ^ cl + DΪ-1- - V

for ^ ^ k + 3 where

These are obtained by a restricted telescoping of (3) and (9). Since
Cjc+i = ak+l9 ck+2 = ak+2 and ck+3 > ak+3, certainly D > D. Now from
(lla) and (lib) we obtain

(12a) aί+1 = a2

k+2 + £>Γ~V ~ V I
L ak+1 α; J

and

(12b) cl+1 ̂  d + -DΓ-V ~ V ] f o r n = fc + 3 -

If we let ^ —»co in (12a) and (12b) we obtain

(13a) A = α2

fc+a + Z)Γ-V - V I

and

(13b) A ^ c\+2 + JδΓ-V- - -4-1
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or

Now in (13a) the solution A is a strictly increasing function of D and
since D > D we must have A > A. But || T ||2 = A < A = || S ||2 and
thus we have shown there is exactly one subnormal completion of
aly α2, a3 with the norm given by (8) (again we note that operators
are specified up to unitary equivalence only).

REMARK. The above construction of a subnormal completion of
au a2i α3 can be used in slightly more general circumstances. It has
been pointed out that au α2, α3, α4 may not have a subnormal comple-
tion. If however α4 satisfies the necessary condition

a] — a\

then one can obtain a subnormal completion by defining an for n ^ 5
as in (2). When one has au •••, α5 this definition does not work for
reasons sufficiently complicated to remain unmentioned here.

THEOREM 6. Let T be a monotone shift, Tφό = a^j+1. Assume
further that

(i) α ^ 0 / o r i = l,2,..
(ii) T is subnormal
(iii) I ak I = | αfc+11 for some k

then I aά \ — | αi+11 /or j = 2, 3, , αtid αx is arbitrary.

Proof. We will assume that the α/s are positive. Let k be the
smallest integer such that ak = αfc+1. If & ̂  2 then by Theorem 4 of
[5] we are through. For the case ί ; ^ 3 w e now make use of Theorem
4. We observe that

Γ π2 — π2 Ί 1 / 2

f ~ al~ι T Φ 0

and

*\ ~ aϊ-i Ύ

and

Now a necessary condition for the subnormality of T is just that
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0 ^ (<42))2 + (Ψf - (αi2-li)2

{a\ -

But that implies (a|-i)A4-i(&I-2) ^ l o r ^ -̂2 = 0 contrary to hypothesis.
This still leaves the existence of monotone shifts unsettled for aλ < α2 = aό

for j = 2, 3, . We will show that these are all subnormal by
writing down the subnormal extension. (The reader may do this by
simply following the "direct ions" in Theorem 4.)

0
a, 0

a2 0

a, 0
0 p
0 0

0 0
p 0

a2

0
0 α2

•

COROLLARY. The space H{2) is either infinite dimensional or
dimiϊ ( 2 ) ^ 2. This is just another way of stating Theorem (6).

REMARK. This corollary has an analogue for the spaces H{n).
We state without proof that either H{n) is infinite dimensional or
dim Hin) <£ n. In the proof of Theorem 5 we constructed a sub-
normal operator where dim iϊ ( 3 ) = 2. Given al9 α2, α3, α4, where α4

satisfies the necessary condition (I), the construction yields an operator
where dim Hi3) = 3.

Using the last theorem we can construct several counter-examples.
In [4] we encounter the following:

THEOREM. If T is hyponormal and Tn is normal for some integer
n then T is normal.

The question arises whether the theorem remains valid with normal
replaced by subnormal (in both hypothesis and conclusion). The answer
is no. Define Tφ, = (l/4)<p8> Tφ2 = (l/2)<p8, TΨi - φi+1 for i ^ 3.
Clearly T is hyponormal, but not subnormal by the previous theorem,
We claim Tn is subnormal for n ^ 2. For T2φ, = (l/8)^3, T2<p2 =
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and T2φi = φi+2 for i ^ 3. Thus if we let gό — φ2j^ and h5 = <p2i

for j = 1, 2, , then we may write T2 as the direct sum of operators
acting on ΈLγ — {span of g3) and H2 = {span of /^}. Now if ify* = (1/8) g2

and F±gj = ^ + 1 for j" Ξ> 2, then F1 is subnormal on Hλ. Similarly, if
FJi! = (l/2)h2 and ί y ^ = λ i + 1 for j " = 2, then F2 is subnormal on iϊ 2 .
But T2 on H equals 2^ 0 F2 on iϊ x 0 i ϊ 2 and hence T 2 is subnormal.
For n ^ 3, T% can be shown to be subnormal by a similar argument.

We will now exhibit two subnormal operators which are similar
but whose (minimal) normal extensions are not. Let {φj}J=1 be an
orthonormal basis for H. Define Tφά — φj+1 for j = 1, 2, 3, , and
Sφ, = (l/2)^2, Sφs = 9?i+1 for j = 2, 3, . Then S and Γ are sub-
normal by Theorem 6, they are similar and, in fact, the operator Q
given by Qφx = (1/2)^ Q ^ = ^ for i Ξ> 2, effects the similarity. We
claim that the minimal normal extensions are not similar. If they were,
they would have to be unitarily equivalent since they are normal.
The normal extension of T is unitary while the normal extension of
S clearly is not which completes the argument.
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