ASYMPTOTIC PROPERTIES OF GROUP GENERATION

O. S. Rothaus

Let G be a finite group, A and B two elements of G, which generate a subgroup L of order λ. We call an expression of the form $A^{\alpha_{1}} B^{\beta_{1}} A^{\alpha_{2}} \cdots B^{\beta_{2}}$ with $\alpha_{i}, \beta_{i} \geqq 0$ a word in A and B and $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)$ the weight of the word. For any $g \in G$ define $f_{m}(g)$ as the number of words of weight m which are equal to g. Our purpose in this paper is to investigate the asymptotic dependence of $f_{m}(g)$ on m. Subject to some simple side conditions, it turns out that the elements of L all occur with relative equal frequency as m approaches infinity. We also have an estimate of the smallest weight for which all elements of L can be realized.

Now define the matrix F_{m}, whose rows and columns are indexed by the elements of G, for which the entry in the g th row and h th column is $f_{m}\left(g^{-1} h\right)$. By virtue of the obvious identity:

$$
f_{m+n}(g)=\sum_{h \in G} f_{m}(h) f_{n}\left(h^{-1} g\right)
$$

we have $F_{m+n}=F_{m}, F_{n}$, more particularly $F_{m}=F_{1}^{m}$. Note that F_{1} is the sum of the permutation matrices of A and B in the regular representation in G.

The matrix $P=(1 / 2) F_{1}$ is doubly stochastic, and may be thought of as the matrix of transition probabilities of a Markov chain. In its study then, we take over the language of Markov chains as found in [1]. The irreducible sets of states are now easily described; they are the left cosets of L in G. A state is periodic if and only if the weights of all words equal to the identity have a greatest common divisor other than one. It is possible to have periodicity; if the symmetric group is generated by two odd permutations then all representations of the identity will have even weight.

Let us agree to call two generators A and B periodic of period d if the weights of all words in A and B equal to the identity have greatest common divisor $d>1$. If $d=1$, we will say A and B are aperiodic. (A simple way to insure aperiodicity is to have the periods of A and B relatively prime.)

Theorem. Let A and B be periodic of period d. Then the group
generated by A and B has a normal subgroup for which the factor group is cyclic of order d. Moreover, A and B both belong to a coset of the normal subgroup which generates the cyclic factor group.

Proof. Imagine the group generated by A and B presented in terms of the generators A and B and relations. Without loss of generality we may suppose that the exponents in all these relations are positive. Since the weight of every relation is a multiple of d, the mapping $A \rightarrow w, B \rightarrow w$, where w is a primitive d th root of unity is a homomorphism of the group onto a cyclic group of order d. The theorem follows.

The following converse is also clearly true; i.e., if A and B are both selected from the same coset of a proper normal subgroup for which the factor group is cyclic, then A and B are periodic.

As immediate consequences we have the following facts. A and B generating the symmetric group are periodic if and only if both odd, and then the period is 2. A and B generating a noncyclic simple group are aperiodic. Hence A and B generating an alternating group are aperiodic except for the alternating group on 4 letters. In that case (123) and (134) give a periodic generation of period 3.

We are now in a position to invoke the familiar statements about the limiting behavior of finite irreducible aperiodic doubly stochastic matrices.

Let M be the λ by λ matrix all of whose entries are $1 / \lambda$. Then we have:

Theorem. Let aperiodic A and B belonging to G generate a subgroup L of order λ. Construct the matrix P as before, but ordering the indices sequentially within the left cosets of L in G. Then we have:

$$
\lim _{m \rightarrow \infty} P^{m}=\left[\begin{array}{lll}
M & & 0 \\
& M & \\
0 & & M
\end{array}\right]
$$

where the number of M blocks on the diagonal is the index of L in G. In particular if $L=G$, we have:

$$
\lim P^{m}=M
$$

An alternative statement is that the elements of the group generated
by aperiodic A and B are asymptotically equidistributed over the words of weight m.

Corollary. For some weight m (and all larger weights) the elements of the group generated by aperiodic A and B are all realized by words of weight m. (There are corresponding statements for periodic generation.)

It is some interest to know the first m for which the above conclusion is true. Subsequently, we give a direct proof of the above corollary, which supplies us with an upper bound for the first such m.

It is known [2] that an irreducible doubly stochastic matrix has but a single real eigenvalue of absolute magnitude one, this clearly belonging to the eigenvector all of whose entries are one. So we have:

Theorem. A necessary and sufficient condition that A and B belonging to a group G shall generate all of G is that the associated matrix P shall have but a single eigenvalue one, and this with eigenvector $[1,1, \cdots, 1]$.

This last results admits a simple restatement in the group algebra of G over the complex numbers. For if $\left[v_{g}\right]$ is an eigenvector of eigenvalue one of the matrix P, we simply read in the group algebra:

$$
\left(\sum_{g} v_{g} g\right)(A+B-2 I)=0
$$

Our conclusion above then says that essentially the only element R of the group algebra for which $R(A+B-2 I)=0$ is $R \equiv \sum_{g} g$. For a semi-simple ring, if the right ideal J_{1} is properly contained in the right ideal J_{2} then the left annihilator of J_{1} properly contains the left annihilator of J_{2}. We conclude:

Theorem. A necessary and sufficient condition that A and B belonging to a group G shall generate all of G is that the right ideal generated by $A+B-2 I$ in the group algebra of G over the complex numbers consists of all elements of the group algebra whose coefficient sum is zero.

Let now aperiodic A and B generate a group G of order λ. Let the minimum of the periods of A and B be p. We now prove directly that every element of g is realized by a word of weight $(\lambda-2) p+1$. To this end, note first that the number of distinct group elements
realized by words of weight m is a nondecreasing function of m. Let $g_{1}, g_{2}, \cdots, g_{k}$ be the distinct group elements of weight m. To say that the number of distinct group elements of weight $m+1$ is still k means that the sets $\left\{g_{i} A\right\}$ and $\left\{g_{j} B\right\}$ are the same, or put another way that the set $\left\{g_{i}\right\}$ and $\left\{g_{j} B A^{-1}\right\}$ are the same. To say that the number of distinct group elements of weight $m+v$ is still k means more generally that the sets $\left\{g_{i}\right\},\left\{g_{i} B A^{-1}\right\},\left\{g_{i} B^{2} A^{-2}\right\}, \cdots,\left\{g_{i} B^{v} A^{-v}\right\}$ are all the same, or put another way, that the set $\left\{g_{i}\right\}$ is invariant under multiplication on the right by any element of the group H generated by $\alpha_{1}=B A^{-1}, \alpha_{2}=B^{2} A^{-2}, \cdots$, and $\alpha_{v}=B^{v} A^{-v}$. Put $v=$ period of A. Then $\alpha_{v}=B^{v}$ and $\alpha_{v+b}=\alpha_{v} \alpha_{b}$ so that the group H generated by $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{v}$ includes all elements of the form $B^{u} A^{-u}$. Furthermore:

$$
\begin{aligned}
& A \alpha_{u} A^{-1}=\alpha_{1}^{-1} \alpha_{u+1} \\
& B \alpha_{u} B^{-1}=\alpha_{u+1} \alpha_{1}^{-1}
\end{aligned}
$$

so that the group H is normal in G.
Again, since $\alpha_{1}=B A^{-1} \in H$, we have that A and B belong to the same coset of H in G. And finally any element of G, written in terms of A and B, may be reduced modulo H to a power of A. Thus the factor group of G by H is cyclic. Since A and B are aperiodic we are forced to conclude that $H=G$. All of which implies of course that either $k=\lambda$ or there are more distinct group elements of weight $m+v$ than of weight m. Since the situation is symmetric in A and B we may assume that $v=$ period of $A=P=$ minimum of the periods of A and B. Starting then with the two distinct group elements of weight one, there are at least 3 distinct group elements of weight $P+1,4$ of weight $2 P+1$, and finally at least λ of weight $(\lambda-2) P+1$. We have proved:

Theorem. Every element in the group G of order λ generated by aperiodic A and B is realized by a word of weight $(\lambda-2) P+1$, where P is the minimum of the periods of A and B.

References

1. W. Feller, Probability Theory and its Applications, Wiley, 1957.
2. F. R. Gantmacher, Applications of the Theory of Matrices, Interscience, 1959.
