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WEAK-STAR GENERATORS OF H~

DONALD SARASON

Let H" denote the algebra of bounded analytic functions
in the unit disk D = {z: \ z \ < 1}. A function ψ in H °° is called
a generator if the polynomials in ψ are weak-star dense in H°*.
The problem to be considered here is that of characterizing
the generators of H°°.

The weak-star topology of H°° can be thought of as arising in the
following way. By Fatou's theorem, each function ψ in H°° has radial
limits at almost every point of the unit circle C = {z: \ z \ = 1} and thus
gives rise to a bounded measurable function ψa on C. The map ψ —• ψσ

sends H°° isomorphically and isometrically onto a certain subspace of
L°°(C); we denote this subspace by H°°(G). (We regard C as endowed
with normalized Lebesgue measure.) The space H°°(C) is the dual of
a quotient space of L\C) and as such has a weak-star topology (which
is simply the topology induced on H°°(C) by the weak-star topology of
L°°(C)). Because of the natural correspondence between H°° and H°°(C)y

the weak-star topology on the latter induces a topology on the former,
and this is what we mean by the weak-star topology of H°°. The
convergent sequences of this topology are easily characterized.

LEMMA 1. A sequence {ψn}T in H°* converges weak-star to the
function ψ if and only if it is uniformly bounded and converges to
ψ at every point of D.

Proof. This is of course well-known; however we include a proof
for the sake of completeness. To simplify the notation we shall write
φ(eu) in place of φo(eu) for any φ in H°* For each point a in D let
Pa denote the corresponding Poisson kernel, i.e.,

11 — az I

We then have

2;

for all φ in if00 and all a in Zλ
Now suppose the sequence {ψn} in H°° is uniformly bounded and

converges to the function ψ at each point of D. Then it follows from
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(1) that

( 2 ) ^ ψ(eιt)h{eu)dt = lim Γ ^n(eu)h(eu)dt
JO Jo

for every function h in the linear hull of the functions Pa (aeD).
But the linear hull of the functions Pa is dense in L\C) (since, by
Fatou's theorem, no nonidentically zero function in L°°(C) is orthogonal
to every Pα). This together with the uniform boundedness of {ψn}
implies that (2) holds for all h in L\C), and thus ψn —* ψ weak-star.

Conversely, if τjrn —»ψ weak-star, then the sequence {ψn} is uni-
formly bounded by the principle of uniform boundedness, and ψn(ά) —>
ψ(a) for all a in D because the functions Pa belong to Lι(C).

The problem of characterizing the weak-star generators of H°° was
suggested in the preceding paper [9]. It is proved there that every
generator is univalent. From now on we let G denote a fixed but
arbitrary bounded simply connected domain and we let φ be a conformal
map of D onto G. We seek necessary and sufficient conditions on G
in order that φ be a generator. Eventually we shall obtain such
conditions. Although they are not particularly simple, this seems, at
least to the author, to be an unavoidable concomitant of the complexities
of the weak-star topology. Perhaps it is worth mentioning at this
point that there are domains G for which φ is not a generator. In
fact, we know from Proposition 2 of the preceding paper that if φ is
a generator then φc is univalent almost everywhere, and it is a triviality
to construct domains G for which this condition is violated.

Before treating our problem in its full generality we consider a
specialization. We shall say φ is a sequential generator if every
function in H" is the weak-star limit of a sequence of polynomials in φ.
In view of Lemma 1 the following assertion is immediate.

PROPOSITION 1. For φ to be a sequential generator it is necessary
and sufficient that G have the following property: for every bounded
analytic function / in G, there is a sequence of polynomials which is
uniformly bounded on G and converges to / at every point of G.

The domains with this property have a simple topological charac-
terization which was discovered by 0. J. Farrell [5], [6], Before stating
FarrelΓs result we need a few definitions.

If 2? is a bounded domain in the plane, then the Caratheodory
hull (or ^-hull) of B is the complement of the closure of the unbounded
component of the complement of the closure of B. We denote the
^-hull of B by JB*. Loosely speaking, i?* can be described as the
interior of the outer boundary of B, and in analytic terms it can be
defined as the interior of the set of all points z0 in the plane such that

I p(z0) I ^ s u p I p(z) I
zβB
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for all polynomials p. The components of J3* are simply connected;
in fact, it is a simple matter to show that each of these components
has a connected complement. We denote by B1 the component of B*
that contains B. We can now state:

FARRELL'S THEOREM. Let B be a bounded domain in the plane
and let f be a bounded analytic function in B. Then in order for
there to exist a sequence of polynomials which is uniformly bounded
on B and converges to f at each point of B, it is necessary and
sufficient that f be the restriction of a function bounded and analytic
in B1.

This result was recently rediscovered and extended from domains
to arbitrary bounded open sets by Rubel and Shields [8]. An interesting
proof of Farrell's theorem based on the theory of Dirichlet algebras
has been given by Hoffman and Wermer; see [10, p. 27].

FarrelΓs theorem tells us immediately that our domain G satisfies
the condition of Proposition 1 if and only if G — G1. The sequential
generators of H°° can thus be characterized in the following terms.

PROPOSITION 2. The function φ is a sequential generator if and
only if G is a component of its ^-hull.

But FarrelΓs theorem tells us even more; it enables us to identify
the functions in H°° that are weak-star limits of sequences of polynomials
in φ.

PROPOSITION 3. A function ψ in H°° is the weak-star limit of a
sequence of polynomials in φ if and only if ψoφ-1 is the restriction
of a function bounded and analytic in G1.

We now take up in its full generality the problem of characterizing
the generators of ίί°°. Let M° be the set of polynomials in φ, and
for each countable ordinal number a define Ma inductively to be the
linear manifold in H°° consisting of all functions that are weak-star
limits of sequences of functions in \Jβ<a M

β. It is a well-known property
of weak-star topologies [1, p. 213] that the manifolds Ma eventually
become constant, i.e., there is a least countable ordinal α' such that
M"' — Ma'+1. Moreover Ma' is the weak-star closure of M°, and so is
the weak-star closed subalgebra of H°° generated by φ and the identity.
Thus φ is a generator if and only if Ma' = H°°, in which case we call
φ a generator of order a\ Above we used Farrell's theorem to identify
the functions in the manifold M1. A more refined application of FarrelΓs
theorem will enable us to identify the functions in Ma for every a.
First a number of preliminaries are necessary.

From now on let B denote a bounded domain in the plane. (In
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our applications B will be simply connected.) For any simply connected
domain E containing B we define the relative hull of B in E, or the
i?-hull of B, to be the interior of the set of all points z0 in E such that

I /(*„) I ̂  sup | / ( 2 ) |
zeB

for every function / bounded and analytic in E. The crucial step in
our reasoning will be to show that if B is contained in the open unit
disk D, then the Z>-hull of B coincides with £*, the ^-hull of B. For
this we need:

LEMMA 2. Let f be a bounded analytic function in a bounded
simply connected domain A. For each point a on dA define

m(f A, a) = lim sup {[ f(z) |: z e A, \ z — a \ < 1/n}
n—>oo

(in other words m(f, A, a) is the maximum of the moduli of all
cluster values of f at a). Let ac(A) denote the set of points on dA
that are accessible from A. Then

(3) sup I f(z) I = sup m(/, 4, a) .
zSA aEac(A)

Proof. Although this is well-known we include a proof for the
sake of completeness. Let w be a conformal map of the unit disk D
onto A. Let S be the set of points on the unit circle C at which both
w and fow have radial limits. Fatou's theorem implies that C — S
has measure zero. Since fow is the Poisson integral of its boundary
values, it follows that:

sup I f(z) I = sup lim | f(w(rb))
zβA bβS r-+l

g supm(/, A, w{b)) .
bes

But if b is in S then w(b) is in ac(A), and thus the right side of the
preceding inequality is no greater than the right side of (3). This
proves the lemma.

REMARK 1. With the notations of the preceding lemma, let α0 be
any point in ac(A). Then the supremum on the right side of (3) is
equal to

sup m(/, A, a) .
aβac(A)

a=£a0

This follows from the fact that the set of points on C at which the
radial limit of w equals a0 is a null set [7, p. 52],
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REMARK 2. The conclusion of Lemma 2 remains true if one drops
the assumption that A is simply connected. To show this, take a
uniformizer w of A and repeat verbatim the above proof, using the
easily proved fact that all radial limits of w are boundary points of A.
In our application the domain A will be simply connected.

LEMMA 3. Let the domain B be contained in the unit disk D.
Then the D-hull of B is equal to B*.

Proof. The D-hull of B is obviously contained in J3*. To prove
the reverse inclusion we must show that if z0 is any point of JB* and
if / is any bounded analytic function in D, then

( 4 ) l/(so)l

This is obvious if z0 is in JB, and so we may suppose that z0 is in
B* — B. Let A be the component of £>* — B containing zQ. We assert
that at most one point of ac(A) lies on the unit circle C. In fact, if
ac(A) Π C contained two distinct points b± and b2j then we could join
δi and b2 by a Jordan arc / lying except for its end points in A. The
arc J would then separate D into two disjoint nonempty domains D1

and D2, and since B is connected it would have to lie either entirely
in D1 or entirely in D2. But this is absurd because A meets both D1

and D2 and B separates A from oo, This contradiction proves our
assertion that ac(A) Π C contains at most one point.

Now it is easy to verify that A has a connected complement, i.e.,
A is simply connected. Therefore by Lemma 2 and Remark 1 following
it, for any function / bounded and analytic in D we have

I /Oo) I ̂  sup m(/, A, a)
aβdAΠB

= sup I f(a)I .
aedAΠD

This implies (4) because dA c dB. The proof of the lemma is complete.

COROLLARY. Let the domain B be contained in the bounded simply
connected domain E. Then the components of the E-hull of B are
simply connected.

Proof. Let w be a conformal map of E onto D. By Lemma 3 w
sends the i?-hull of B onto the ̂ -hull of w(B). Hence the corollary
follows from the already observed fact that the components of a ΐ^-hull
are simply connected.

Lemma 3 yields the following extension of FarrelΓs theorem.

THEOREM 1. Let the domain B be contained in the bounded simply
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connected domain E, and let B he the component of the E-hull of B
that contains B. Let f be a bounded analytic function in B. Then
in order for there to exist a sequence of functions bounded and
analytic in E which is uniformly bounded on B and converges to f
at every point of B, it is necessary and sufficient that f be the
restriction of a function bounded and analytic in B.

Proof. If a sequence of functions bounded and analytic in E
converges to / in the manner described, then by Vitali's theorem [3,
p. 186] this sequence converges uniformly on compact subsets of B to
a bounded analytic function /, and we have f = f\B. To prove the
converse we may by a conformal map reduce the general case to the
case where E = D. But when E — D the desired conclusion follows
immediately from Lemma 3 and FarrelΓs theorem.

It might be worth while to try to find a more direct proof of
Theorem 1, one that does not use FarrelΓs theorem and conformal
mapping. Such a proof could conceivably be illuminating.

Before applying Theorem 1 to the problem at hand we obtain a
topological description of relative hulls. This description will be in
terms of the notion of a crosscut. If E is a domain then a crosscut
of E is a Jordan arc contained in E except for its end points. If E
is simply connected and J is a crosscut of E, then E — J consists of
two disjoint nonempty domains E1 and E2, and we say that J separates
the points of E1 from the points of E2 [2, pp. 328-329].

PROPOSITION 4. Let the domain B be contained in the bounded
simply connected domain E and let F denote the relative closure in E
of the JSMiull of B. Then E - F consists of those points of E that
can be separated from B by a crosscut of E.

REMARK. This proposition really does give a description of the
E-hull of B, because the E-hull of B is the interior of F.

Proof. We first show that it suffices to consider the case where
E — D. For this let w be a conformal map of E onto D and let z0 be
a point of E. We must show that z0 can be separated from B by a
crosscut of E if and only if w(z0) can be separated from w(B) by a
crosscut of D. The implication in one direction follows from the fact
that w maps crosscuts of E onto crosscuts of D; see [2, p. 353, Satz
XVII]. To obtain the reverse implication, suppose J is a crosscut of
D separating w(z0) from w(B). It may not be true that w~\J) is a
crosscut of E. However by modifying J slightly we can replace it by
a crosscut J' of D which still separates w(z0) from w(B) and has the
additional properties:
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( i ) the radial limits of w~x exist at the endpoints a and b of J';
(ii) w~\a) Φ w-\b);
(iii) J' approaches a and 6 radially.

The map w~γ then sends J' onto a crosscut of E, as desired.
We may thus suppose that E = D. By Lemma 3 the Z>-hull of B

is B*. If the point z0 of D can be separated from B by a crosscut of
.D, then zQ obviously belongs to the unbounded component of the
complement of B and therefore is in D — F. Suppose on the other hand
that z0 is in D — F. Then we can join z0 to oo by a polygonal arc
that does not meet B. Let a be the first point at which this arc meets
the unit circle C, and let Jx denote that portion of the arc between z0

and a (inclusive). The point a, and therefore some circular neighbor-
hood of α, is contained in the unbounded component of the complement
of B. Therefore, from some point b on C, near but distinct from α,
we can draw a segment into D which is contained except for 6 in the
same component of D — F as is Jx —• {a}, and which moreover does not
meet J1% We can now continue this segment so as to obtain a polygonal
arc J 2 joining b to z0, not meeting B, and not meeting Jx except at zQ.
Then J = JΊ U c/a is a crosscut of D which does not meet B. This
crosscut separates D into two disjoint nonempty domains and the set
B Π D, being connected, lies entirely in one of them. Thus by modifying
J slightly in the vicinity of z0 we can produce a crosscut of D which
separates z0 from B.

COROLLARY. Let B and E be as in Proposition 4. Then the
E-hull of B equals E if and only if every crosscut of E meets B.

After these preliminaries we are prepared to discuss generators of
H°°. Recall that we are letting G denote a bounded simply connected
domain and φ a conf ormal map of D onto G. We have already defined
G1 to be the component of the ^-hull of G that contains G. We now
define inductively for every countable ordinal number a a simply con-
nected domain Ga containing G as follows. If a has an immediate
predecessor we let Ga be the component of the Gα-1-hull of G that
contains G. (Ga is then simply connected by the corollary to Lemma 3.)
If a has no immediate predecessor we define Ga to be the component
of the interior of Γiβ<a Gβ that contains G. (It is easily verified that
Ga then has a connected complement, and so is simply connected.) By
Proposition 4, if the inclusion Ga+1 a Ga is proper then Ga — Ga+1 contains
interior points. Hence the inclusion is proper for at most countably
many a, and so there is a least countable ordinal 7 such that Gy = Gy+1.
We call 7 the order of G. Obviously Ga = Gy for a > 7.

THEOREM 2. The manifold Ma consists of all functions ψ in H°°
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such that ψ o φ-1 is the restriction of a function bounded and analytic
in Ga.

Proof. The case a — 1 is given by Proposition 3. We proceed by
induction, assuming that the theorem holds for all ordinals less than a.
If a has an immediate predecessor the desired conclusion follows
immediately from Theorem 1. We pass on to the case where a has
no immediate predecessor. Suppose first that ψ is a function in Ma.
Then by our induction hypothesis, there is a sequence of functions
{/»}Γ with the following properties:

( i ) each fn is a bounded analytic function in Gβ for some β < a
(perhaps a different β for each n);

(ii) the sequence {fn} is uniformly bounded in G;
(iii) limπ_:co fn(φ(z)) = ψ(z) for all z in D.

But then the sequence {fn} is uniformly bounded on Ga, so that by
Vitali's theorem it converges on Ga to a bounded analytic function /,
and we have ψoφ-1 = f\G. This takes care of one half of the induction.
For the other half we choose a strictly increasing sequence of ordinals
{an}T such that a is the least ordinal exceeding every an. By our
induction hypothesis it will suffice to show that if / is a bounded
analytic function in Ga, then there is a sequence of functions {fn}
with the following properties:

( i ' ) each fn is a bounded analytic function in Gan;
(ii') the sequence {fn} is uniformly bounded on G;

FIGURE 1
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(iii') limn^ fn(z) = f(z) for all z in G.
To do this, choose a point z0 in Ga and for each n let wn be the
conformal map of Ga onto Gan satisfying wn(z0) — z0 and w'n(z0) > 0.
Since the sequence of domains {Gan} converges to Ga in the sense of
Caratheodory it follows that lim%_;oo wn(z) = z for all z in Ga [4, p. 76].
Hence, given a bounded analytic function / in Ga, we can achieve
conditions (i')-(iii') by defining fn = fow~\ (This reasoning is of course
well-known.) The proof of the theorem is complete.

COROLLARY 1. // the function φ is a generator of H™ of order
7 then the domain G has order 7 and Gy = G. Conversely, if G has
order 7 and Gy — G, then φ is a generator of order 7.

COROLLARY 2. The function φ fails to be a generator if and
only if there is a domain B containing G properly such that

sup|/(s)| = sup|/(s)|

for every function f bounded and analytic in B.

Proof. If such a domain B exists then it is contained in every
Ga and so φ is not a generator. Conversely, if φ is not a generator
and G has order 7, then the domain Gy has the -required property.

FIGURE 2
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COROLLARY 3. If φ is a generator then G is the interior of its
closure.

Proof. If G Φ int (G) then int (G) satisfies the condition of
Corollary 2.

COROLLARY 4. The weak-star closed subalgebra of H°° generated
by φ and the identity is isometrically isomorphic to H°°.

Proof. Let φ0 be a conformal map of D onto Gγ, where 7 is the
order of G. Then the map

ψ* —> ΊJΓ O qp~x o cp

is an isometric isomorphism of H°° onto the weak-star closed subalgebra
generated by φ and the identity.

In conclusion we give two examples of generators of orders greater
than one. The reader can convince himself that for the domains G of
Figures 1 and 2 the corresponding mapping functions φ are generators
of orders two and three respectively. It is easy to see how, by
compounding the method used to obtain the domains of Figures 1 and
2, one can produce a generator of infinite order, for example of order ω.
However the author has been unable to construct generators of arbitrary
order.

The author is indebted to Professors Allen Shields and Lee Rubel
for helpful discussions.
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