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COHOMOLOGY OF CYCLIC GROUPS
OF PRIME SQUARE ORDER

J. T. PARR

Let G be a cyclic group of order p?, p a prime, and let
U be its unique proper subgroup. If A is any G-module, then
the four cohomology groups

HYG, A HXG, A) HYU, 4) HYU, A)

determine all the cohomology groups of A with respect to G
and to U. This article determines what values this ordered
set of four groups takes on as A runs through all finitely
generated G-modules.

Reduction. Let G be any finite group. A finitely generated G-
module M is quotient of a finitely generated G-free module L. The
kernel K is Z-free, and since the cohomology of L is zero with respect
to all subgroups of G, K is a dimension shift of M. The standard
dimension shifting module P = ZG/(S,) is Z-free, so K Q P is a Z-free
G-module having the same cohomology as M with respect to all sub-
groups of G.

PropoSITION 1. If G is any finite p-group and M any Z-free G-
module, the cohomology of M is that of R M where R is the ring
of p-adic integers.

Proof. Because M is Z-free, 0 > M —>RRQ M — R/ZQQM— 0 is
a G-exact sequence. R/Z & M is divisible and p-torsion free, so its
cohomology is zero, and M — R () M induces isomorphism on all eoho-
mology groups.

If M is Z-free and finitely generated, B & M is an R-torsion free,
finitely generated RG-module. So we see that if G is any finite
p-group, every finitely generated G-module has the same cohomology
as a finitely generated, R-torsion free RG-module.

2. Exact sequences. Let G be generated by an element g of
order p* and let U be its subgroup of order p. Heller and Reiner [2]
have determined all indecomposable finitely generated R-torsion free
RG-modules:

(a) R with trivial action

(b) B = R(w), w a primitive pth root of 1, gw’ = w'**

(e) C = R(@), 0 a primitive p*th root of 1, g§? = ¢7**
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(d) E = RH, H a cyclic group of order p generated by #,

th — ghf‘l‘l

(e)—(i) a module M such that there exists an exact sequence

(¢) 0-R—>M—C—0
(f) 0-E—M—C—0
(g) 0>B—M—C—0

(h) 0>RPE—>M—C—0
(i) 0-RPB—>M—C—0

We compute the cohomology of the modules in (a)—(d) directly,
and find their sets of four groups to be

(a) Zp 0
(b) 0 Z,
(e) O Z,
(d) Z, 0

Z,

(p - l)ZP
0

7,

The exact cohomology sequences arising from the exact sequences
(e)—() restrict the cohomology possibilities to

(e) Zp Z, Z,
/8 Z, 0
Z, 0 Z,
Z, 0 0
(f) o 0 na,
Z, Z, nz,
n =0, , D
(g) O 27, na,
0 Zp2 ’I’LZI,
n =0, , p—1
(h) Zp 0 (n + 1)Z,
27, 0 (n+ 1Z,
Zys+ Z, Z, n+ 1)Z,
n = 0, oo, D
( 1) sz sz nZ,,
Ly 2Z, nz,
Z, Z, nZ,
n = (), e, D

7,
(»p —1Z,
vZ,
(p - 1)Zp
nz

wZz,
(n+1Z,
(n + 1)Z,

nz

F4

nz

P

nZ,

nZz,
n,
nz,

In §4 we shall determine which of these combinations actually

occur,

3. Enlargements.

RG-exact sequence 0 — A — M —C — 0 [1].
ing M and M’ are equivalent if there exists an RG-homomorphism

w: M— M’ such that

An R-enlargement of C by A is an R-split

Two enlargements involv-
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M

N
0— A l.u C—0 commutes .
Ny

The R-split exact sequence gives M the R-structure of AP C.
The first summand is determined by the sequence, but the second is
not; choose any one of the possble R-submodules for the second sum-
mand., Because the sequence is a G-sequence, g(e, 0) = (ga, 0) and the
second component of g(0, ¢) is gc. Denote the first component of
9(0, ¢) by f(e); 9(0,¢) = (f(e), g¢). So f is a function from C into A,
and is an R-homomorphism because ¢ is an R-homomorphism. The
equation g7'(0, ¢) = ((Nyf)(e), ¢) = (0, ¢) gives us that fis a — 1-coeycle
of the G-module Hom,(C, A) where G acts by (gf)(¢) = ¢gf(g~c). Clearly,
every — l-coeycle defines an action by G on A @ € which makes an
R-enlargement of 0 - A—APC—-C—0. If two — 1l-cocycles f, and
f: differ by a coboundary, f, — f. = (g — 1)f,, then

ul(a, ¢) = (a + {(1 — 9)fel(g7'0), ¢)

defines an RG-isomorphism u of A& C with G-module structure given
by f. onto AP C with G-module structure given by f;; the RG-modules
corresponding to f;, and f; are isomorphic. So to investigate all enlarge-
ment modules M of C by A we need only look at those corresponding
to a set of representative coeycles of H-(G, Hom,(C, A)).

Since the modules R, B, C, and F are R-free, the exact sequences
(e)—(i) are R-split, and M is an enlargement in each case of C by
another module,

For the application of this section, we shall need the following
propositions.

PROPOSITION 2, If A is an RG-module on which U acts trivially,
then N Homg(C, 4) = 0.

Proof. Let fe Homg(C, A). We easily compute that (Ngf)(¢?) =
g/(Ngf)@Q), and using the facts that 0 satisfies

xp(p—l) + xp(p~2) _1_ oo P+ 1 — 0

and that g¢? aets trivially on A, we find by writing it out that
(Ngf)A) = 0, which then implies that Ngf = 0.

Abbreviate p(p — 1) = m. Since C is the R-direct sum of the
R-submodules generated by 0, ¢ =0,1, ---,m — 1, then HomyC, A)
is the direct sum of subgroups F';,, where F'; is the set of all R-homo-
morphisms from C to A which have value zero for all 67 except possibly
for 7 = 1.
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ProposIiTION 3. If A is any RG-module, every element of Hom,-
(C, A) is equivalent mod the — l-coboundary group (¢ — 1)Hom(C, 4)
to some element of F',_,.

Proof. If feF, then g'feF,,, and g'f—f=(@'—1)f=
(g — (g >+ oo +g+1f. If feF, then gfeF,, + F, differs
from f by (¢ — 1)f. The proof succeeds by repeated application of
these cases to the F',-components of an arbitrary f.

COROLLARY. If M 1is one of the modules described in (e)—(i), M
is an enlargement module of C by A (A=R,B,E,R©B,RDP L)
corresponding to an element of F,_,.

Because we are concerned only with indecomposable modules, the
following proposition will spare us some unnecessary computations
later on.

ProposITION 4. Let M be an enlargement module of C by A @ D
corresponding to fe Hom,(C, AP D) = Hom,(C, A) P Hom,(C, D), and
let f = f, + f. be the corresponding decomposition of f. Then if either
f, or f, represents a G-split enlargement of C by A or D, M is decom-
posable as a G-module.

Proof. Suppose f, represents an RG-split enlargement of C by A.
Let N be AP C with action of C defined by f,. Since the enlarge-
ment splits there is an RG-homomorphism w : N — A such that A —
N-— A is the identity of A. Let w be the restriction of w to the
given copy of C in N. That w is an RG-homomorphism right inverse
to the inclusion of A in N requires that gu(c) = fi(¢) + w(ge).

Let M be APDPHC with action of G defined by f. Then
v@ +d + ¢) = a + u(c) defines an RG-homomorphism right inverse to
the inclusion of A in M, so M is decomposable as an RG-module,

4. Computations. In this section we determine which of the
possibilities for the cohomology of (e)—(i) actually occur.

PropoSITION 5. Let A be an RG-module left fixed by U, and let
M be an enlargement module of C by A corresponding to feF,_..
Then

i) HYG, M) = A°/[(NgA + Ngzf(6™))

i) H%U, M) is isomorphic to the quotient of A/N,A with respect
to the eyclic G/U-submodule generated by the class of f(0™").

Proof. M¢ is just the copy of A¢ canonically (by the given exact
sequence) contained in M, M7 the copy of A”. Since A is a submodule,
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the norms of elements of the copy of A are the images of the norms
in A. Computation shows

N0, 6%) = N0, 1) = (Ngyz f(6™77), 0)
Ny(0, 0°) = g'Ny(0, 1) = g*(f(6™), 0)

whence the result,

We are now able to settle case (e).

(e) M is an enlargement module of C by R. By Proposition 5,
HG, M) is Z,. if f(6™") is a multiple of p and Z, if not; and H(U, M)
is Z, if f(0™ ) is a multiple of p and 0 if not. This, together with
the information in Section 3, shows that the only cohomology this
module M might have is

Z, Z, z, vZ,
or z, 0 0 (»-—127,.

For the remaining cases, we shall need one more proposition.

ProposITION 6. Let H be a group of order p generated by k.
Let A be a cycliec Z,H-module of Z,-dimension #. Then

(i) (b — 1)A has dimension n —j5, 7 =0, ---, n.

(ii) «a is a generator for A if and only if a¢(h — 1)A.

(ili) @ is a generator for A if and only if (2 — 1)*'a is nonzero.

Proof. (1) We have a properly descending chain
AD(h—1AD -+ Dh—1)"AD(h —1)"A =0

of Z,spaces, and we can see by counting that the dimension of
(h — 1) A is n — 3.

(ii) The above chain exhibits all submodules of A.

(iii) If a generates A, (h — 1)"'a generates (h — 1)*'A, which is
not zero. If not, ae(h — 1)A4, so (h — 1)»'a = 0.

(f) M is an enlargement module of C by E. E/pE=FE is a
eycelic Z,(G/U)-module of Z,-dimension p. Let M be represented by
feF, ., and f(6™') = e. By Proposition 5, H(G, M) is the quotient
of HYG, E) by the subgroup generated by N,,& = (g — 1)*'¢, hence
zero if Ny, € is not zero, Z, if it is. Using proposition 6 iii, we see

HG, M) = 0 if & generates E over Z,(G/U)
=~ Z, if not .

HU, M) is the quotient of HYU, E)= E by the Z,(G/U)-
submodule generated by ¢. Let n be the largest integer with
gc(g — 1)"E. By Proposition 6ii then, & generates (¢ — 1)"E, which
is of dimension p — n, so the quotient has dimension n». The coho-
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mology of M is
0 0 0 0 if n=0
Z, Z, nZ, nZz, if n=1,.--+,p.
(g) M is an enlargement module of C by B. N,Mc M¢= B° =

0. So HYG, M) =0 and HYG, M) = H (G, M) is the quotient of M
modulo (g — 1)M. Let M correspond to fe F,_, and denote f(0™*) = b.

Case 1. be(g —1)B. Then H'(G, M) = 2Z,
Case 2. be(g —1)B. Then HY(G, M) = Z,.

By Proposition 6 again,

HY{(G, M) =27, if b does not generate B/pR
= 7, if it does .

“p
Similarly as in (f), if % is the greatest integer with be (7 — 1)"(B/pB),
then H(U, B) = nZ,. The cohomology is thus
0 Z 2 0 Z, if =20
0 2Z, nZ, n+1Z, if n=1+.--,p—1.
(h) M is an enlargement module of C by R@ E. Let M cor-

respond to fe F,_, and write f(0™ ') =7r + e, reR, ec E. We may
assume 7 is not divisible by p, because if it were, M would be decom-

posable (Proposition 4).
Computation based on Proposition 5 shows
HG, M) =227, if Ngye is divisible by p
= Ly if not,
and that
HU M)y=(n-+1)Z, if n=20,--+,p—1
= pZ, if n=op
where n is the largest integer with ec (¢ — 1)"E. So the ecohomology
of M may be
Z,,:’ 0 Z,, 0 or
27, 0  (n+1Z, nZ, m=1,-,p—1.
(i) M is an enlargement module of C by R@ B. Let feF,_,
represent the enlargement and write f(6™ ") =»r+0b, reR, beB,

Again we may assume ¢ is not divisible by p.
H(G, M) = Z, by Proposition 5.
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Let j be the largest integer with be (¢ — 1)/B.

HWU,M) =G +1Z, if §=0,-v,p—2
=@-1)z, if j=p-—1.

So the cohomology of M is
Z, Z, nz, nZz, n=1 -, p—1,
5. Summary. If M is any finitely generated G-module, then the
cohomology of M is the direct sum of a finite number of the following:

HYG,A) HYG,A) H(U A) HYU, A

1. Z 2 0 z, 0

2. 0 Ly 0 Z,

3. Z, 0 2, 0

4. 0 Z, 0 Z,

5. Z, 0 0 (» —1)Z,

6. 0 Z, (p—1)Z, 0

7. Z, Z, nz, nZ, n=1+--p

8. 2z, 0 (n+1Z, nZ, n=1 ... p—1
9. 0 27, nz, nm+1DZ, n=1,.--,p—1

Given any direct sum of finitely many of the above, there is a
finitely generated G-module with that cohomology.
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