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THE BEHAVIOR OF SOLUTIONS
OF THE DIFFERENTIAL EQUATION

y'" + P(χ)y + qίχ)y = o

A. C. LAZER

This paper is a study of the oscillation and other properties
of solutions of the differential equation

(L) y"> + p(x)yf + q(x)y = 0 .

Throughout, we shall assume that p(x) and q(x) are con-
tinuous and do not change sign on the infinite half-axis
I: a ̂  x < + o°. A solution of (L) will be said to be oscillatory
if it change sign for arbitrarily large values of x.

Our principal results will be concerned with the existence,
uniqueness, (aside from constant multiples) and asymptotic
behavior of nontrivial, nonoscillatory solutions, and criteria
for the existence of oscillatory solutions in terms of the be-
havior of nonoscillatory solutions. Other results are concerned
with separation properties and the question of when the ampli-
tudes of oscillatory solutions are increasing or decreasing.

The general properties of linear homogeneous thirdorder differential
equations were first studied by Birkhoff [1], Other investigators have
been Gregus [2-11], Hanan [12], Mammana [14], Rab [15-20], Sansone
[21], Svec [22, 23], Villari [24, 25], and Zlamal [26]. In this paper
we shall study successively the cases

( i) p(x) ̂  0, q(x) > 0,
(ii) p(x)^0, q(x)^0,
(iii) p(x) § 0, q(x) ^ 0,

and shall show that under certain conditions the solutions of (L) have
similar qualitative properties as in the cases when p(x) and q(x) are
nonzero constants. It is for this reason that we list the following
remarks which characterize these cases when p(x) and q(x) are nonzero
constants.

A* If p(x) = p < 0 and q(x) — q > 0, (L) has oscillatory solutions
if and only if.

Received June 2, 1964. This paper was the author's Ph.D. dissertation at the
Carnegie Institute of Technology. This research was partially sponsored by the
U. S. Air Force Office of Scientific Research.

435



436 A. C. LAZER

When this condition is satisfied all solutions of (L) are oscillatory
except constant multiples of one solution vjhich does not vanish on
I, and which together with all of its derivatives is monotonic on I
and approaches zero as x tends to infinity.

B. If p(x) and q(x) are both negative constants p and q, (L)
has oscillatory solutions if and only if

- q - -2 (-j))«">0.

When this condition is satisfied, (L) has two independent oscillatory
solutions and the zeros of any two oscillatory solutions separate on
I. Moreover the absolute values of the successive maxima and minima
form a decreasing sequence.

C. When p(x) and q(x) are both positive constants p and q, all
solutions are oscillatory except constant multiples of one solution
which does not vanish on I, and which together with all of its
derivatives approaches zero as x tends to infinity.

I* We first consider the case where p(x) ^ 0 and q(x) > 0. For
this case the following lemma will be of fundamental importance.

LEMMA 1.1. If p(x) ^ 0, q(x) ̂  0 and u(x) is any solution of
(L) satisfying the initial conditions

(1) u(c) ̂  0 , u'{c) ̂  0 , u"{c) > 0 ,

(where c is an arbitrary number greater than a), then

(2) u(x) > 0 , u\x) < 0 , u"(x) > 0 ,

for x e [α, c).

Proof. From (1) it is clear that the inequalities (2) hold in an
interval (6, c), b < c. If the inequalities (2) failed to hold in the
interval [α, c) there would be a first point e', to the left of c, where
the function u(x)u\x)u"(x) vanished. On the other hand

u{x)u\x)u"(x))' = (u'(x))2u"(x)-\-u(x)(u"(x)Y

— u(x)u'(x)(~ p(x)u\x) — q{x)u(x)) > 0 ,

for x e (e', c).
On integrating the above inequality from c' to c we would have

0 < Γ {u(t)u\t)u"(t))fdt = u{c)u\c)u"(c)
J '
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which is a contradiction.
The following theorem can be derived from a result due to Hartman

and Winter [13]. For completeness, we shall present an elementary
proof based on Lemma 1.1.

THEOREM 1.1. // p(x) g 0 and q(x) > 0, then (L) has a solution
w(x) with the following properties:

w"\x)w"(x)wf{x)w(x) Φ 0 xe[a, °o)9

sgn w(x) — sgn w'\x) Φ sgn w\x) — sgn w"\x),

lim w"(x) — lim. w\x) — 0 ,

and w(x) is asymptotic to a finite constant.

Proof. For every positive integer n greater than α, let yn(x) be
a solution of (L) satisfying the initial conditions

Vn(n) = 0 , y'n(n) = 0 , y9i(n) > 0 .

By Lemma 1.1, we have

( 3 ) yn(x) > 0 , y'n(x) < 0 , y';(x) > 0

for x e [α, n). Let z^x), z2(x), z3(x) be a set of three linearly independent
solutions of (L). By multiplying each yn(x) by a suitable constant we
may assume that

Vn(x) = c^z^x) + c2nz2(x) + c3nzd(x)

with

{ 4 ) c\n + c\n + c\n = 1 .

Since the three sequences {cin}, i — 1, 2, 3, are bounded, there exists
a sequence of integers {%} such that the subsequences {cinj} converge
to numbers cif i = 1, 2, 3. From (4) we see that

( 5 ) c\ + c\ + ĉ  = 1 .

We now consider the solution

{ 6) w(x) = ^^(x) + c2̂ 2(x) + csz3(x) .

Since the sequences {ynj(x)}f {y^x)}, {y"j(x)} converge uniformly to the
functions w(x), w'(x), w"(x) on any finite subinterval of [a,^), it
follows from (3) that

( 7) w(x) ^ 0 , w'(x) ^ 0 , w"{x) ^ 0 ,

and
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w"\x) = -p(x)w'(x) -q(x)w(x) ^ 0

for xe[α, oo). If equality held at a point x in the first inequality

(7), then

w(x) = 0 for xe[x, °o) y

which contradicts (5) and (6).

Thus

( 8 ) w(x) > 0 , xe[a, °o) m

By a similar argument

( 9 ) w\x) < 0 , w"(x) > 0 , w'\x) < 0 , for all x e [α, oo) .

From (8) and (9), it follows at once that

lim w'(x) = lim w"{x) — 0

and tt (ίc) is asymptotic to a finite constant.

LEMMA 1.2. / / p($) ^ 0, q(x) > 0 απcί ^(a;), y2(x) are two inde-

pendent solution of (L) such that either

(10) 2/i(a?0) = 2/2(»o) = 0 ,

or

(11) y[(χo) = vΊ(χo) = 0

(xQe[a, oo), arbitrary) then

W(yu y2) = y^ylix) — y2(x)yl(%) ̂  0 /or .τ > £0 .

Proo/. If

2/i(»)2/5(̂ ) - 2/2(£)2/I(£) = 0

held for a point α; > x0, there would exist constants cλ and c2 such that

cxy0) + c2τ/2(x) = 0

CiV'S) + C27/̂ (X) = 0

with c\ + c\Φ 0.

By Lemma 1.1, if w(x) is the nontrivial solution

w(x) = Cyy^x) + c2y2(x)

then w(x) w'(x) Φ 0 for x < x0. But this contradicts (10) or (11).

REMARK. It follows immediately from the above that if p(x) ^ 0,
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q(x) > 0 and yx{x) and y2(x) are two independent solutions satisfying
either (10) or (11), then the zeros of yx{x) and y2(x) separate to the
right of xo; i.e., between any two zeros of yx{x) to the right of x0,
there is precisely one zero of y2(x).

LEMMA 1.2'. Suppose p(x) ̂  0 and q(x) > 0. // u(x) and v{x)
are two nontrivίal solutions of (L) such that

u(x0) = v(xQ) = 0

and u(x) is oscillatory, then v(x) is also oscillatory.

Proof. If u(x) and v(x) are dependent there is nothing to prove.
If u(x) and v(x) are independent the result follows easily from the
above remark.

LEMMA 1.2". Suppose p(x) ̂  0 and q(x) > 0. // (L) has one
oscillatory solution and u(x) is any nontrivial solution with either

u(x0) = 0 , or u'(x0) = 0 ,

(x0 arbitrary) then u(x) is also oscillatory.

Proof. Let v(x) be an oscillatory solution of (L) which vanishes
at xx and suppose u(x0) = 0. Construct a solution z(x) of (L) such that
z(x0) — z(x^) — 0, z(x) ^ 0. Applying Lemma 1.2' first to the solutions
v(x) and z(x) at the point xu we see that z(x) is oscillatory. Next,
applying Lemma 1.2' to the solutions z(x) and u(x) at the point x0, we
see that u(x) is oscillatory. If u'(x0) = 0 and u(x0) Φ 0, consider the
solution y(x) such that y(x0) = y'(x0) = 0 and y"(x0) = 1. By the above
argument y(x) is oscillatory and from Lemma 1.2,

W(u(x)y(x)) = u(x)yr(x) — y(x)u\x) Φ 0 for x > x0

consequently w(α ) is oscillatory.

The above result shows that whenever p(x) 5g 0, q(x) > 0 and (L)
has one oscillatory solution, then for any nontrivial nonoscillatory
solution u(x), u(x)ur(x) Φ 0, xe[α, oo). The following theorem will
place even stronger restrictions on the nonoscillatory solutions in the
event that (L) has oscillatory solutions.

THEOREM 1.2. Suppose p(x) <* 0 cmd q(x) > 0. A necessary and
sufficient condition for (L) to have oscillatory solutions is that for
any nontrivial nonoscillatory solution u(x),
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(12) u(x)u\x)u"(x) Φ 0 , sgn u(x) — sgn u"(x) Φ sgn u\x)

for all xe[a, oo), and

(13) lim u\x) = lim u"(x) = 0 , lim u{x) — c Φ ± oo .

Proof. The sufficiency is immediate; indeed if any nontrivial non-
oscillatory solution u(x) satisfies (12), any nontrivial solution which
vanishes once is oscillatory. To prove the necessity, let us assume
that (L) has oscillatory solutions and that u(x) Φ 0 is a nonoscillatory
solution. By the above Lemma 1.2" u(x)u\x) Φ 0 for all xe[a, oo).
Let us assume without loss of generality that u(x) is positive. Suppose
u'(x) were positive. Then for a suitable positive constant 6,

u(a) — bw(a) — 0 .

Here w(x) is the nonvanishing solution whose existence was shown in
Theorem 1.1 which we also take to be positive. We now consider the
solution

v(χ) = u(x) — bw(x)

as sgn w(x) Φ sgn w\x) — — 1, v\x) — u\x) — bw'(x) > 0 for all x e [α, co).
On the other hand, v{a) = 0 and thus by Lemma 1.2" v(x) would be
oscillatory. This contradiction shows that u\x) is always negative.
Since u(x) satisfies (L) and p(x) S 0, q(x) > 0, u'"(x) = —p(x)u'(x) —
q(x)u{x) < 0 for all xe [α, oo). Hence, u"(x) is eventually of one sign.
It is impossible that u"(x) < 0 from a certain point on, for if u'(x) < 0
and u"(x) < 0 from a certain point on, u(x) would eventually be nega-
tive. Thus for a certain number xe [α, oo).

u{x) > 0 , u\x) < 0 , u"(x) > 0

for x ^ x. By Lemma 1.1

u{x) > 0 , u\x) < 0 , u"{x) > 0

for xe [α, x). Hence for all xe [α, oo)? u(x)u\x)u"(x) Φ 0, sgnu(x) =
sgnu"(x) Φ sgnu'(x) = sgnu'"(x). The relations (13) follows at once
from the above.

LEMMA 1.3. If p(x) ^ 0, q(x) > 0 and u(x) φ 0 is a nonoscillatory
of (L), there exists a number ce[ay co) such that either

(i) u{x)u\x) ^ 0 for x^ c or
(ii) u{x)u\x) ^ 0 for x ^ c, αtid w(α?) ̂  0 /or a; ^ c. // (i)

then

u{x)u\x)un{x) Φ 0 ,
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sgn u(x) — sgn u"(x) Φ sgn u\x) ,

for all xe [α, oo),

lim u"(x) — lim u'(x) = 0 ,

and u(x) is asymptotic to a finite constant.

Proof. If u(x) Φ 0 is a nonoscillatory solution of (L), it follows
from Lemma 1.1 that u(x) cannot have more than one double zero;
thus there exists a number b such that u(x) Φ 0 for x ̂  b. Without
loss of generality let us assume u(x) > 0 for x ̂  b. We assert that
u\x) cannot change signs more than twice in [δ, oo). In fact, if we
assume that x1 and x2 are two consecutive points in [6, °o) where u\x)
changes sign, then by multiplying (L) by u\x) and integrating by
parts between xι and x2, we have

S xo Γ x2 C x2

"u"(x)u'(x)dx + I p(x)ur(xfdx + \ q(x
X1 J Xγ J Xχ

= %"(a?K(a;)

( x 2

g(x^r(x)t6(x)dx

Co C X2

q(x)u(x)u'(x)dx .

Since p(x) ̂  0 and q(x) > 0, it follows from the above that n{x)u\x)
is positive in (xu x2)> and from this condition the assertion follows
easily. Thus there exists a c such that either u(x)u\x) ^ 0 for x > c,
or u(x)u'(£)u'(x) ̂  0, for x > c. If the first alternative holds then

u'"{x) = -p{x)u'{x) - q(x)u(x) < 0 ,

for x ̂  c and by essentially repeating part of the argument given in
the above Theorem 1.2, one can show that

u{x)u\x)u"{x) Φ 0 , sgn u'\x) Φ sgn u'(x) φ sgn u(x)

xe [a, oo), and

lim u\x) = lim %"(a?) = 0 .
X—> + oo χ-^ + oo

We now derive an oscillation condition for (L) under the conditions
p(x) ^ 0 and q(x) > 0.

THEOREM 1.3. / / p(x) S 0, g(x) > 0 and
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then (L) has oscillatory solutions.

We note (see Synopsis) that this condition is necessary as well as
sufficient if p and q are nonzero constants.

Proof. Suppose u(x) is any nonoscillatory solution of (L). By the
above Lemma 1.3, there exists a number c such that either

(41a) t(x) = u'(x)/u(x) ^ 0 , x ^ c

or

(41b) t(x) = u'(x)/u(x) S 0 , x ^ c .

We assert that (41a) is impossible. To prove this we assume the
contrary and observe that t(x) satisfies the second-order nonlinear
Riccati equation

(15) «"(&) + Zt\x)t{x) = ~{t{xf + p(x)t(x) + q(x)) .

If t(x) ^ 0, for x ^ c, then by considering the minimum of the function

F(y, x) — yz + p(x)y + g(x) for y ^ 0 ,

and substituting this minimum in (15), we would find that

(16) 4-

From the condition of the theorem it would then follow that

- i> - s -̂
—> — oo a s x —> + co '

consequently t(x) would eventually become negative. Hence (41a) is
impossible and u(x)u\x) ^ 0 for x ^ c.

By Lemma 1.3,

u(x)u\x)u"{x) Φ 0 , and sgn u(x) Φ sgn u'(x) Φ sgn u"(x)

for all x e [a, oo). Since %(a?) was taken to be any nonoscillatory solution
it now follows from Theorem 1.2 that (L) has oscillatory solutions.

Gregus [11] has shown that if p(x) <* 0, q(x) ^ 0, 2q(x) — p\x) > 0



THE BEHAVIOR OF SOLUTIONS OF THE DIFFERENTIAL EQUATION 443

except at isolated points, and (L) has one oscillatory solution, then all
solutions oscillate except constant multiples of one nonvanishing solution.
In Theorem 1.4 below we shall establish another condition which will
insure this type of behavior. Although Gregus' method of obtaining
the nonvanishing solution is based on the inequality 2q — pr ^ 0, his
construction is similar to that used in Theorem 1.1. As the following
example shows, the condition 2q — pf Ξ> 0 is not necessary for oscillation
when p(x) <̂  0 and q(x) > 0.

EXAMPLE 1.5. Consider the differential equation

(17) y'" - (2 - sin xψ*y' + (^*= + b)y = 0 , b > 0 .

Here p(x) = -(2 - sin xψ3 < 0 , q(x) =4/3i/ΊΓ + b > 0 and

\'.(b -wts

and thus by Theorem 1.3, the equation has oscillatory solutions.
On the other hand

2q(x) - p'(x) = (2b + - 4 = ) + — x cos x\2 - sin x2)-1" ,

which is negative for arbitrarily large values of #. Therefore we
cannot use Gregus? condition to show that all nonoscillatory solutions of
equation (17) are constant multiples of one nonvanishing solution.
However Theorem 1.4 below will show that this is still true for this
example.

LEMMA 1.4. / / q(x) > 0 (< 0) and

2 44 + T^(^))^0 (̂ °)q(x) dx2

the absolute values of a solution at its successive maxima and minima
form a nondecreasing (nonincreasing) sequence.

Proof. If u(x) is any solution of (L), then as can be verified
through differentiation, we have the identity

H[n(x)} = u\x) + 2u'(^''W *(Φ'(*Yx) + ^
q(x)

= H[u(a)) +
q(t) JαL q(t) at
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By the conditions of the theorem H[u(x)] is a nondecreasing (non-
increasing) function of x. At a maximum or minimum point of u(x)
where u\x) — 0, H[u(x)] — u\x); hence the squares of the maxima and
minima of u(x), and hence the corresponding values of | u(x) | form a
nondecreasing (nonincreasing) sequence.

THEOREM 1.4. If q{x) > 0, p(x) g 0

q(x) dx2

and (L) has one oscillatory solution then all solutions oscillate except
constant multiples of the nonvanishing solution whose existence was
proven in Theorem 1.1.

Proof. Suppose that (L) had an oscillatory solution and that in
addition to the nonvanishing solution w(x) of Theorem 1.1 there was
a second independent nonoscillatory solution v(x). By Theorem 1.1 and
Theorem 1.2 there would exist constants cx and c2 such that

lim w(x) = c1 and lim v(x) — c2 .

Let b be a number such that v(a) — bw(a) — 0 and consider the non-
zero solution

u(x) — v(x) — bw(x) .

Since u(a) — 0, we see by Theorem 1.2 that u(x) would be oscillatory.
On the other hand

lim u(x) = Co — bcι .
-++O

This c2 ~ hc1 — 0 and lim u(x) = 0, otherwise u(x) could not be oscillatory.

But, by Lemma 1.4 and the hypothesis on p(x) and q(x), the absolute
values of the successive maxima and minima of u(x) form a nondecreas-
ing sequence and consequently

lim sup u(x) > 0 and lim inf u(x) < 0 .

Thus contradiction proves the theorem.

By considering the case of constant coefficients, one might be led
to conjecture that whenever p(x) ^ 0, q(x) > 0, and (L) has one oscil-
latory solution, then every nonoscillatory solution tends to zero as x
tends to infinity. Whether or not this conjecture is true still remains
an open question, although Svec [22] Villari [25] have proved it for
the case when p(x) is identically zero. In the following theorem we
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will prove it with the added restriction

I x2q(x)dx — + oo .

Ja

THEOREM 1.5. // p(x) ^ 0, q(x) > 0, [°x2q(x)dx = + oo, and (L)
Ja

has one oscillatory solution, then any nonoscillatory solution tends
to zero as x tends to infinity.

Proof. Let u(x) and v{x) be the solutions of (L) defined by the
initial conditions

u(a) = u"{a) = 0 , u'(a) = 1

v{a) = v\a) = 0 , v"(a) = 1 .

By Lemma 1.2

W(u(x), v(x)) = u(x)v\x) — v(x)u\x) Φ 0 for x > α, and since

(18) W(u(a), v(a)) = 0 , W'(u(a), v{a)) = 0 , W"(u(a), v{a)) = 1 ,

we see that

(19) W(u(x), v(x)) > 0, for x > a .

Furthermore, as can be shown through differentiation,

(20) u\x)v"(x) - v\x)u'\x) = 1 + \Xq{t)W(u{t), v(t))dt
Ja

and

(21) W"(u(x), v(x)) = 1 +['q(t)W(u(t), v(t))dt - p(x)W(u(x), v(x)) .
Ja

From (19), (21) and the fact that p(x) g 0, we see that

W"(u(x), v{x)) ^ 1 for x ^ a

therefore by (18) and (20),

(22) W'(u(x), v{x)) = u{x)v"{x) - v{x)u"(x) > x - a ,

W(u(x)f v(x)) = u(x)v'(x) - v(x)u'(x) > (χ " α ) 2 ,

Δ
u'(x)v"(x) - v\x)u"(x) > 1

for x > a .
Hence by the conditions of the theorem

(23) u{x)v\x) - v{x)u\x) > 0 , uv'\x) - v(x)u"(x) > 0 ,
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u'(x)v"(x) - v{x)u'\x) > 0

for x > α, and

(24) lim u(x)v'(x) — v(x)u'(x) — lim u(x)v"(x) — v{x)u"(x)

— lim w'(α?)v"(:c) — v\x)u"(x) = + oo .

Suppose now that z(x) is any nontrivial nonoscillatory solution of
(L). By Theorem 1.2 and the assumption that (L) has oscillatory
solutions it follows that

z(x)zf{x)z"(x) Φ 0 , sgn z(x) = sgn z"(x) Φ sgn £'(#)

for all xe[a, °°), and we may assume without loss of generality that

(25) z(x) > 0 , z'(x) < 0 , z"(x) > 0

for all xe [α, oo).
We now consider the Wronskian

z(x) u(x) v(x)

z'(x) u\x) v'(x)

z"(x) u"(x) v"(x)

where u(x) and v(x) are the solutions studied in the above. By
Liouville's identity,

z(x) u(x) v(x)

z'(x) u\x) v'(x)

z'\x) u"{x) v"(x)
z(a) 0 0

z(a) u(a) v(a)

z\a) u'(a) v\a)

z"{a) u"(a) v"{a)

z\a) 1 0 = z(a) .

z"{a) 0 1

Thus, on expanding the determinant, we have

z(x)(u'(x)v"(x) - v\x)u"(x)) - z'(x)(u(x)v"(x) - v(x)u"(x))

+ z"(x)(u(x)v'(x) - v(x)u'(x)) = z(a) .

According to (23) and (25) all the terms in the left hand side of the
above equation are positive and consequently,

0 < z(x)(u'(x)v'\x) - v'(x)u"(x)) < z(a) .

From (24) and the above inequality, it follows immediately that

lim z(x) = 0 .
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2Φ In this section we shall first investigate some rather general
properties of the solutions of (L) for the case p(x) ^ 0 and q(x) <: 0.
By placing stronger conditions on p(x) and q(x) we shall then give
two conditions under which the zeros of two linearly independent
solutions of L separate. Finally we shall give an oscillation condition
for the case p(x) ^ 0 and q(x) — p'(x) < 0.

LEMMA 2.1. If p(x) ^ 0, q(x) ^ 0 and y(x) is any solution of
(L) satisfying the initial conditions

y(Xo) ̂  0 , y'(x0) ^ 0 , and y"(x0) > 0

(xoe[a, oo) arbitrary), then

y(x) > 0 , y'(x) > 0 , y"(x) > 0 , y'"(x) ^ 0

for x > x0 and

lim y(x) — lim y\x) — + oo .
X—> + oo x—>-\-oa

Proof. We assert that y"(x) > 0 for x ^ x0. To prove this we
consider the function

w(x) = y(x)y'(x)y"(x) .

If y"(x) vanished for some value of x greater than x0 there would be
a smallest number xx > x0 such that y"(x^ = 0. Since y(x0) ^ 0,
y'(x0) 0, y"(x0) > 0 we would have y(x) > 0, y\x) > 0 for xε(x0, x1)1

w(x0) ^ 0, and w(x1) = 0.

Moreover, since p(x) ^ 0 and q(x) ^ 0 it would follow that

' = (y"(x)Yy(x) + y"(xW(x)T - p(x)y'(xfy(x)
U/'JG

-q(x)y(x)Y(x) > 0 for x e (x0, xQ) .

But, by integrating the above inequality between x0 and xly we would
obtain the impossible inequality

ί
x l

w\t)dt > 0 .
x0

Thus y"{x) > 0 for x ^ xQ and since y(x0) ^ 0 and y'(x0) ^ 0, we see
that y(x) > 0, y\x) > 0, and y"(x) > 0 for x > α0. Finally τ/'"(x) =
—p(%)y'(%) — Q(x)y(x) ^ 0 for x > x0, and from the above inequalities
it follows easily that

lim y(x) = lim y'(χ) = + oo .
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LEMMA 2.2. / / p(x) ^ 0, q(x) ^ 0, and u(x) ΐ 0 is any non-

oscillatory solution of (L) then there exists a number ce[a, °o) such
that either

u{x)u\x) > 0 for x Ξ> c ,

or

u(x)u'(x) g 0 for x ^ c .

Proof. If %($) is any nontrivial, nonoscillatory solution of (L)
then by Lemma 2.1, it follows that u(x) can have at most one double-
zero. Without loss of generality we may suppose that u{x) > 0 for
x ^ b. To prove the lemma it is sufficient to show that u\x) can
change from negative to positive values at most once in the interval
[6, oo). Let c be a point such that u(c) > 0, u'{c) > 0, and u"(c) > 0.
By Lemma 2.1, u(x) > 0 and u\x) > 0 for x > c and the proof is
complete.

THEOREM 2.1. // p(x) <Ξ 0 q(x) ^ 0 and (L) has one oscillatory
solution, then for any nonzero, nonoscillatory solution u(x) there
exist a number ce[af °o) such that

sgn u(x) = sgn u\x) — sgn u"(x) Φ 0

for x ^ c, and

lim I u(x) I = lim | u\x) | = + °° .

Proof. If (̂a;) ^ 0 is any nonoscillatory solution then by the above
lemma there exists a number de [a, oo) such that either u{x)u\x) > 0,
or u(x)ur(x) ^ 0, for x ^ d. Thus, lim u(x) exists finite or infinite.
Let v(x) be an oscillatory solution of (L) and consider the Wronskian
W(v(x), u(x)) — v{x)u\x) — v\x)u{x). W(v(x), u(x)) must certainly
vanish for some values of x in the interval [α, co), otherwise the zeros
of u(x) and v(x) would separate and u(x) would be oscillatory. If b is
a zero of W(v(x), u(x)), there exist constants cx and c2, both not zero,
such that

Civ(b) + c2u(b) = 0 ,

c,v\b) + c,u\b) = 0 ,

and

Cχv"{b) + c2u"(b) > 0.

We now consider the solution
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z(χ) — C{v{x) + C2u(x) .

Since z(b) = z\b) = 0, and z"{b) > 0; it follows from Lemma 2.1 that

(26) lim z(x) = lim z'(x) = + oo .

As remarked above lim u(x) exists finite or infinite. If the limit were
X-Ϊ + OO

finite, we would have

lim cλv{x) — lim (z(x) — c2u(x)) = + oo f

and v(x) could not be oscillatory. Thus lim u(x) = ± oo and from

Lemma 2.2 we see that there must exist a number ce[α, oo) such
that u{x)u\x) > 0 for x ^ c. Without loss of generality let us suppose
that u(x) > 0 and u'(x) > 0 f or x ^ c so that

v/"{x) = —p{x)u'(x) - g(α;)u(x) ^ 0

for α; ̂  c. From this it follows that for some d ^ c either u"{x) > 0,

or u"(x) g 0 for x ^ d. If the second alternative held lim v/(x) would

be finite since vf(x) > 0 for x ^ d ^ c. But in this case by (26)

lim c2v'(x) — lim (z'(x) — c^'(x)) = + oo

and tf(α ) could not oscillate.
Hence

sgn u(x) — sgn u'(x) — sgn u"(x) ^ 0

for x ^ d, and

lim I u(x) I = lim | u\x) | = + co .

Whether or not the converse of this theorem is true remain an
open question. In the next theorem we will give a condition under
which the converse holds.

THEOREM 2.2. / / p(x) ^ 0, q(x) ^ 0, p(x)' - 2q(x) ^ 0, and

- 2q(t))dt = + oo

then a necessary and sufficient condition for (L) to have oscillatory
solutions is that for every nonoscillatory solution u(x) ^ 0, there
exists a number ce[a, co) such that

(27) sgn u(x) = sgn vf(x) = sgn u"(x) Φ 0

for x ^ c,
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(28) lim l u(x) | = lim | u\x) | =
X-*-\-o

Proof. The necessity follows from Theorem 2.1. To prove the
sufficiency we will employ the identity

(29) F[y(x)] = y\xf - 2y(x)y"(x) - p(x)y\x)

= F[y(a)] - \\p'(t) - 2q(t))y\t)dt
Ja

which holds for any solution y(x) of (L). This identity, which has
played an important role in most of the previous investigations of (L),
is originally due to Mammana [14]. It may be verified through
differentiation.

We assume that (27) and (28) hold for any nonoscillatory solution
u(x) of (L). Without loss of generality we may assume that u(x) > 0,
u\x) > 0, u"(x) > 0, and v,"' = — p(x)u\x) - q(x)u(x) ̂  0 for x > c;
otherwise consider — u(x). It follows that

u(χ) > ^^-{x - c)2

for x > c, and hence by (29)

\X { t c ) \ 2?(ί))dί

for x > c. Thus, by the hypothesis of the theorem,

lim F[u{x)]

This must be true for every nontrivial, nonoscillatory solution and
therefore, to prove the existence of an oscillatory solution, it is sufficient
to prove the existence of a nonzero solution y(x) for which

lim F[y(x)] Φ - oo .

To this end, we choose a basis of solution of (L) z^x), z2(x), and zz(x),
and consider the sequence of solutions of (L){yn(x)} defined by the
initial conditions

yjn) = y'n{n) = 0 , γ'ϊ(n) Φ 0 ,

and the normalization

yn(x) = c^z^x) + c2nz2(x) + c2nz2(x) + c3nz3(x) ,

with c\n + c\n + c\n = 1. Here n is any integer greater than a. By
using the same type of argument that was used in the proof of
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Theorem 1.1, we can show the existence of a sequence of integers {n{}
such that the sequences

{yH(χ)}' {y'4χ)ϊ> a n d {<(*)}

converge uniformly on any finite subinterval of [α, oo) to y(x), y\x), and
y"(x), where y(x) is a nonzero solution of L. Since p'(x) — 2q(x) ̂  0,
it follows from (29) that F[yn.(x)] is a nonincreasing function of x.
Therefore, since F[yn.(nτ)] = 0, F[yn.(x)] i> 0 for xe[a, %). Letting
w* approach infinity, we see that F[y(x)] ^ 0 for all xe[a, oo) and
hence, lim F[y(x)] Φ — co. By the above remark the nonzero solution

?/(&) must be oscillatory.
We now turn to the question of when the zeros of two different

oscillatory solutions separate.

LEMMA 2.3. // p(x) <Z 0 and p\x) — 2q(x) ̂  0 then the derivative
of any oscillatory solution of (L) is bounded on \a, co).

Proof. Let us suppose that y(x) is an oscillatory solution of (L)
and that be [a, co) is a zero of y"(x). Since the function

F[y(x)] = y'\x) - 2y(x)y"(x) - p{x)y\x)

= F[y(a)] - (V(*) - 2q(t))y\t)dt

is nonincreasing and (&) g 0, we see that

y\bf £ yW ~ Pφ)y2(b) = F[y(b)] ^ F[y(a)] .

Thus the values of y\x) are bounded at its relative maxima and minima
and furthermore, since y(x) is oscillatory, y\x) vanishes for arbitrary
large values of x. From these two conditions we see once that y'(x)
is bounded on [α, oo).

THEOREM 2.3. // p(x) ^ 0, q(x) ̂  0, and 2q(x) - p\x) S 0, then
the zeros of any two linearly independent solutions of (L) separate
on [α, co).

Proof. It is sufficient to show that if u(x) and v(x) are any two
linearly independent solutions of (L), then their Wronskian W(u(x), v(x))
does not vanish for any x e [α, co). If we assumed on the contrary that

W(u(b), v(b)) = u{b)v\b) - v{b)u\b) = 0

for some δe[α, oo), then there would exist constants c1 and c2, both
not zero, such that
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c^b) + c2v(b) = 0 ,

Clu\b) + c2v\b) = 0 ,

and

c^'φ) + c2v"{b) > 0 .

On considering the solution z(x) = c^x) + c2v(x), it would follow from
Lemma 1.1 that

lim z(x) = lim zf{x) = + co .

On the other hand, the assumptions that p'(x) — 2q(x) ̂  0, p(x) ^ 0,
and that u(x) and ?;(x) are oscillatory, would imply, by Lemma 2.3,
that both u\x) and v'{x) and hence 2'(#) = c^'(x) + c2 '̂(^) are bounded
as x tends to infinity. From this contradiction it follows that W(u(x),
v(x)) Φ 0 for all xe [α, oo).

THEOREM 2.4. // p'(x) — 2q(x) ^ d > 0, p(x) ^ 0, απc? u(x) is any
oscillatory solution of (L), then u(x)eL2[a, oo) ami Iimt6(a?) = 0.

+

Proof. Since w(cc) is oscillatory the function

F[u(x)] = u\xf - 2u{x)u"{x) - p(x)u\x)

is nonnegative for arbitrarily large values of x, namely, those values
of x for which u(x) vanishes.
Thus,

[Xu2(t)dt ^ λ-[*[p'(t) - 2q(t)]u\t)dt < F^a^ for all xe[a, oo) .

Hence

S oo

U2(t)dt < + oo .
a

Since the conditions this theorem include those of Lemma 2.3, it follows
that u'(x) is bounded. Therefore, since u(x)eL2[a, co), it is easy to
see that

lim u(x) = 0 .

THEOREM 2.5. // p(x) ^ 0, g(α) < 0, and 2^- + -^-(q(x))~1 ^ 0,
q(x) dx2

then the zeros of any two linearly independent oscillatory solutions
of (L) separate.
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Proof. If u(x) and v(x) are two linearly independent oscillatory
solutions of (L) then by the above conditions and Lemma 1.4 the absolute
values of u(x) and v(x) at their successive maxima and minima points
form nonincreasing sequences. Since u{x) and v(x) vanish for arbitrarily
large values of x, it is easy to see that both u(x) and v(x) are bounded
on [α, °°). If the Wronskian W(u(x), v{x)) vanished at a point
be [a, oo), then by the same argument as was used in the proof of
Theorem 2.3, there would exist constants cx and c2 such that

lim Cju(x) + c2v(x) — + oo .
χ~>-foo

But this is impossible if both u(x) and v(x) are bounded. This con-
tradiction shows that w(u(x), v(x)) Φ 0 for all xe[a, oo), and hence,
the zeros of u(x) and v(x) separate.

We conclude this section by deriving a sufficient condition for (L)
to have two linearly independent oscillatory solutions under the con-
ditions p(x) ^ 0 and q(x) — p'(χ) < 0.

THEOREM 2.6. If p'(x) - q(x) > 0, p(x) ^ 0 and

- q(x)) - 2 (- p(xψ2]dx = + ̂  ,

then (L) has two independent oscillatory solutions.

Proof. By Theorem 1.3, if p\x) - q(x) > 0, p(x) ^ 0, and

then the adjoint of (L)

- g(»))2/ = 0

must have some oscillatory solutions. By considering two independent
solutions with a common zero and then applying Theorem 1.2 it is
easy to see that (I/) has two independent oscillatory solutions u(x) and
v(x). Furthermore, by Theorem 1.1, (L) has a solution w(x) which
does not vanish on [α, oo). It is well known (see for example [21])
and can be easily verified, that the Wronskians

V(x) = w(x)v'(x) - v(x)w\x) = w\x) JL/^MΛ ,
dx \w(xy

and

U(x) = w(x)u'(x) - u(x)w'(x) = w\x)-^(
dx \w(x
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are solutions of L. Moreover, they are linearly independent and
oscillatory.

3* In this final section, we will investigate properties of solutions
of (L) under the conditions p(x) ^ 0, q(x) ^ 0. In all of our theorems,
we will also require 2q(x) — p\x) ^ 0, and not identically zero in any
interval. The following lemma will serve as a basic tool in our
investigation.

LEMMA 3.1. Ifp(x) ^ 0, q(x) ^ 0, 2q(x) — p'(x) ^ 0 and not identi-
cally zero in any subinterval of [α, oo) and y(x) ί 0 is α non-
oscillatory solution of (L) which is eventually nonnegative with

0 ^ F[y(c)) = y'(cY - 2y(c)y"(c) - p(e)y\c) ,

(ce[a, oo) arbitrary) then there exists a number d^c such that
y(x) > 0, y\x) > 0, y"{x) > 0, and y'"(x) ^ 0, for x ^ d.

Proof. Since

F[y(x)] = F[y(c)] + \*(2q(t) - p\t))y\t)dt
JC

is strictly increasing, nonnegative at x — c, and vanishes at points
where y(x) has a double zero, it follows that if y(x) is any nonoscil-
latory solution which is eventually nonnegative, there exists a c1 ^ c
such that y(x) > 0 for x ^ c1# If b is any point in \cu oo) such that
y\b) = 0, then since

F[y(b)] = -y"{b)y{b) - p(b)y(bf > 0 , y"(b) < 0 .

Consequently y\x) cannot vanish more than once in [cu oo), and there
exists a c2 ^ cu such that y(x) > 0, y'{x) Φ 0, for x ^ c2. We will now
show that y'(x) > 0 for x ^ c2.

Suppose on the contrary that y\x) < 0 for x ^ c2. If (i), y'\x) ^ 0
for x ^ b ^ c2, then τ/'(x) ^ τ/'(6) < 0 for x ^ 6 so that τ/(α;) would
eventually become negative in [6, oo), which is a contradiction. If (ii)
y"(x) ^ 0 for x ^ 6 ^ c2, then since τ/'(x) < 0 for x ^ 6, we would have
lim y\x) — 0, and consequently

lim F[y(x)] = lim y\x)2 — 2yrt{x)y(x) — p(x)y(x)2

= lim — 2y(x)yrf(x) — p(x)y\x) ^ 0

which would contradict the fact that F[y(c)] is nonnegative and F[y(x)]
is strictly increasing. Finally, suppose (iii), y"(x) changed signs for
arbitrarily large values of x. Since for positive ε > 0, there would
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have to exist arbitrarily large values of x for which 0 > y'(x) > — ε,
there would exist relative maxima x of y(x) with

0 > y\x) > - ε , y"(χ) = 0 .

We would then have

F[y(x)\ g ε2 — p(x)y2(x) ^ ε2

for arbitrarily large values of x, which would imply that

lim F[y(x)] g 0 .
Z-H-oo

This, as in the above would be a contradiction. Thus, since the three
mutually exclusive and exhaustive possibilities all lead to a contradic-
tion when we assume y'{x) < 0 for x >̂ c2, we must have y\x) > 0
for x Ξ> c2.

From this it follows that

y'"(x) = -p(x)y'(x) - q(x)y(x) < 0

for x ^ c2 and hence, y"{x) must eventually be of one sign. If y'\x)
were eventually negative, say for x ^ d, then

y ' \ x ) ^ y ' \ d ) < 0 f o r x ^ d

so that lim y\x) — — w. Hence, i/"(αθ is eventually positive and there

exists a number d such that

2/(x) > 0 , y'(x) > 0 , y"(x) > 0

and y'"(x) < 0, for a; ^ d.

LEMMA 3.2. // i/(.τ) e C\a, c ), α#d τ/(α;) > 0, y\x) > 0, y"\x) ^ 0,
/or x ^ α, then

lim inf _ M ϊ L ^ 1/2 .
x r(a;)

Proof. Consider the function

G(x) = (x- a)y(x) -
Δ

G(a) = 0, and G'(x) = y(x) - ( x ~

= y(a) + y'(fl)(x - α) + ^

where α < c < a?. Since y"\x) ^ 0 for x >̂ α, ?/"(c) ^ y"(%), and hence,
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G'(x) > 0 for x > a. Thus since G(a) = 0, G(x) > 0, and hence,

- — v { x } > 1/2, for x > a .
(x - a)y\x)

From this, the assertion of the lemma follows immediately.

By means of the two preceding lemmas and the classical Sturm
comparison theorem we shall derive an oscillation condition for (L).

THEOREM 3.1. If p(x) ^ 0, q(x) ^ 0, 2q(x) - p\x) ^ 0 and not

identically zero in any interval, and there exists a number m < 1/2
such that the second-order differential equation

y"(x) + [p(x) + mxq(x)]y = 0

is oscillatory, then (L) has oscillatory solutions. In fact, if y(x) is
any nonzero solution of (L) with

0 ^ F[y(c)] = y\xf - 2y{x)y"{x) - p{x)y\x)

then y(x) is oscillatory.

Proof. Suppose that u(x) ̂  0 were a nonoscillatory solution of
(L), with F[u(c)] Ξ> 0. Without loss of generality, we could assume
u(x) to be eventually nonnegative. By Lemma 3.1, there would exist
a number d ^ c such that

(30) u(x) > 0, u\x) > 0, u"(x) > 0, and u"\x) ^ 0

for x ^ d.

Hence, by Lemma 3.2,

lim inf UW ^ 1/2 .
*-*+« xu\x)

Thus, since m < 1/2, there would exist a number dγ ^ d, such that
u{x)\u\x) > mx for x ^ dλ. By writing (L) in the form of a system

[61) U — W

w" + pw + qu — 0 ,

we could write the second equation in the form

(32) w" + \p{x) + q(x) ̂ ψ-~\w{x) = 0 .
L w(x) J

Since by the above,
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w(x)w(x) u(x)

> p(x) + mxq(x) for x ^ d± ,

it would follow from the Sturm comparison theorem that since

y" + \p(%) + mxq(x)]y — 0

is oscillatory, all nonzero solutions of

(33) y" χ) + q(χ)ψ

defined for x Ξ> du would oscillate. But this contradicts (30), for the
particular solution w(x) = u'(x). Thus, the assumption that u(x) is
nonoscillatory leads to a contradiction.

Hanan [12], has shown that if 2q(x) — p'(x) 2̂  0, and not identically
zero in any interval, and (L) has one oscillatory solution, then any
solution which vanishes once is oscillatory. The following theorem,
which generalizes this result, will be useful in the remainder of our
investigation.

THEOREM 3.2. // 2q(x) — p\x) ^ 0, and not identically zero in
any interval, and (L) has one oscillatory solution, then a necessary
and sufficient condition for a solution u(x) ^ 0 to be nonoscillatory
is that F[u(x)] < 0 for all xe [α, oo).

Proof. The sufficiency is trivial. Indeed, if

F[u(x)] = u\xf - 2u{x)u'\x) - p(x)u\x)

is negative for all x e [a, oo) it is clear that u(x) x Φ 0 for all x e [a, oo).
To prove the necessity we will show that if (L) has one oscillatory
solution and u(x) ξέ 0, F[u(c)] ^ 0, ce [α, oo) arbitrary, then u(x) is
oscillatory. If u(c) ~ 0, the assertion follows from Hanan's result. If
u(c) Φ 0, we consider a second solution defined by the initial conditions

v(c) = 0 , v\c) = u(c) , v'\c) = u'(c) .

Since v(x) is not identically zero and vanishes at c, we see from Hanan's
result that v(x) is oscillatory. Furthermore, for any constants cx and
c2 both not zero

(34) Flc^c) + c2v(c)]

= clF[u(c)]

+ 2c1clu\c)v\c) - u"{c)v{c) - v'\c)u{c) - p(c)u(c)v(c))

+ dF[v(c)]
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= cίF[(u)] + 2c1c2(u\c)u(c) - u'(c)u(c)) + c\u{cf

= c\F[u(c)] + clu(cf ^ 0 .

Consider the Wronskian

W{u(x)9 v(x)) = u(x)v'(x) — v(x)vf{x) .

If W(u(x), v(x)) vanished at a point d > c, then there would exist
constants c1 and c2 such that

cλu{d) + c2^(d) = 0 ,

cM\d) + c2v\d) = 0 ,

and

cί + c\Φ 0 .

If 2(ίc) were the solution cxu{x) + c2^(α;), then ./^[^(d)] = 0 and by (34),

F[z(c)] = clF[u(c)] + du(cf ^ 0 .

But

F[z{d)\ = F[«(c)] + j(2g(x) - p\x))z\x)dx

> F[z(c)] ^ 0 .

This contradiction shows that W(u(x), v(x)) Φ 0 for x > c. Hence,
since v(x) is oscillatory, u(x) is oscillatory.

The next theorem shows that solutions satisfying the conditions
of Theorem 3.2 actually exist. Since the method of construction has
already been given by Gregus [11], and is similar to the method used
in Theorem 1.1 and Theorem 2.2, we will only sketch the proof.

THEOREM 3.3. // 2q(x) — p'(x) ^ 0, and not identically zero in
any interval then (L) has a solution u(x) for which

F[u(x)] = u\xf — 2u(x)u"(x) — p(x)u\x)

= F[u(a)] + \\2q(t) - p\t))u\t)dt

is always negative. Consequently u(x) is nonoscillatory.

Proof. For each integer n α, we consider the solution yn(x) defined
by the initial conditions

V«(n) = y'n(n) = 0 , y'l(n) Φ 0 ,

and the normalization



THE BEHAVIOR OF SOLUTIONS OF THE DIFFERENTIAL EQUATION 459

Vn(x) = clnZj{x) + c2nz2{x) + c3nz3(x) ,

o\n + c\n + c\n = 1 ,

where zλ(x), z2(x), and z3(x) are a basis of solutions of (L). As in
the proof of Theorem 1.1 and Theorem 2.2, one can show the
existence of a sequence of integers {n{} such that the sequence {yni(x)},
{yή.(x)}9 and {y'ή^x)} converge uniformly on any finite subinterval of
[a, oo) to u(x), u\x), and u"(x) where u(x) is a nontrivial solution of
(L).

Let b be an arbitrary point in the interval [a, oo). Since
F[yn.{n%)] = 0, and F[yn.(x)] is strictly increasing, F\yn.(b)] < 0 for
Ui > 6. Thus, since

F[u(b)] ^ 0 . As 6 is arbitrary F\u(x)] ^ 0 for all x e [a, oo). Finally
if equality cannot hold at any point c, since this would imply that
F[u(x)] > 0 for x > c, as i*7[%(#)] is strictly increasing.

In Theorem 3.5 below we will need a result due to Hanan [12],
which we state as a separate theorem.

THEOREM 3.4. If p(x) ^ 0, q(x) Ξ> 0, and the second-order differ-
ential equation

y"(x) + p(x)y - 0

nonoscillatory, αmϋ (L) /&αs one oscillatory solution, then any non-
trivial, nonoscillatory solution does not vanish on [a, oo) and is
always decreasing in absolute value.

In case the oscillation criteria of Theorem 3.1 fails, the following
theorem gives a nonoscillation condition.

THEOREM 3.5. Suppose p(x) ^ 0, q(x) ^ 0, 2q(x) — p\x) ^ 0 and

S CO

q(x)dx < + oo y
a

then if the second-order differential equation

(35) y" + [p(x) + J£ff(t)ίί]y - 0
is nonoscillatory, (L) has no oscillatory solutions.

Proof. We will prove that if the first conditions are met, and
(L) possesses oscillatory solutions, then the equation (35) is oscillatory.

If the second-order equation
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(36) y" + p(χ)y = 0

is oscillatory the assertion follows trivially from the Sturm comparison
theorem. If (35) is nonoscillatory then, by Theorem 3.4, any nontrivial
nonoscillatory of L, and in particular the nonvanishing solution u(x) of
Theorem 3.3, is steadily decreasing in absolute value on the interval
[α, oo), Let us suppose that u(x) > 0 so that u(x) is asymptotic to a
nonnegative constant c as x tends to infinity.

It is clear that for any positive ε > 0, we must have

(37) 0 ^ u"(x) < ε

for arbitrarily large values of x. Indeed, if u"{x) were eventually
negative, then since u\x) S 0 for all xe[a, oo), u(x) would eventually
become negative; if u'\x) ^ ε > 0 from a certain point on, u{x) could
not be monotonically decreasing. Since p(°°) = 0, for sufficiently large
values of x,

(38) 0 g p(x) < ε .

Thus, since Km u(x) = c, it follows that for arbitrarily large values
X ^ + oo

of x,

(39) 0 g p(x) < ε , 0 < u(x) < c + 1

0 ^ u"(x) < ε ,

and hence, for arbitrarily large values of x,

(40) F[u(x)] = u\xf - 2u{x)u"{x) - p(x)u(x)2

^ - 2ε(c + 1) - ε(c + I)2 .

Since F[u(x)] is always negative (see Theorem 3.3) and strictly incre-
asing, (40) implies that

lim F[u(x)] = 0 ,

or

vJ{xf - 2u{x)u"(x) - p(x)u\x)

Thus, since u(x) Φ 0 for a <; x < + oo, we see that

2u"{x) __ u'jxf
ΊlyX) U \X)

= -p(χ) + 2 [°(2q(t) - p'(t))u\t)dt .
u(.τ)2 Jx
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Using the fact, established earlier in the proof that u(x) is decreasing
in absolute value and the assumption that p(oo) — 0, we may conclude
that

Γ
u(x) Jx

^ Wit) - p'(t)dt = 2 \~q(t)dt + p(x) .
Jx Jx

Hence, by (41)

(42)

for all xe [a,
Let

y(x) = u(x)\ z(t)dt ,
Jα

where z(x) is chosen so that y{%) is a solution of (L). We have on
substituting into (L),

u(x)

and after making the substitution

z(x) = w(x)u(x)~m

we obtain

(43) w»(x) + \p(x)
L 4 \ u(x) u(xf

= 0 .

Any nonzero solution w(#) of (43) must be oscillatory; otherwise the
solution

(44) y(x) = %(

would be a nontrivial, nonoscillatory solution of (L) which would vanish
for x = a, and this would contradict the assumption that (L) has
oscillatory solutions and Theorem 3.4. Since by (42), we have

+ (
4 \ u(x) u{%Y

g p(a ) + M~q(t)dt ,
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it follows from the Sturm comparison theorem, that since the differential
equation

4

is oscillatory, the equation

xn + p(x) + — I q(t)dt \y = 0

is oscillatory.
We conclude by proving a generalization of a theorem due to

Zlamal [26]. At the same time, we will derive a sufficient condition
for all nonoscillatory solutions to be constant multiples of one particular
nonoscillatory solution.

Zlamal has shown that if p(x) ^ d > 0, q(x) > d, and q(x) — p'(x) ^ 0,
then any nonoscillatory solution y(x) of (L) has the property that

y(x)e L2\a, oo) and

lim ?/(#) = lim y'(x) = 0 .

We relax the condition that p(x) be bounded below by a positive
constant.

THEOREM 3.6. / / p(x) ^ 0, q(x) ^ d > 0, g(.τ) — p'O) ^ 0, α^d

y(x) is any nonoscillatory solution of (L) then

y(x) e L\a, co) and

lim y(x) — lim y\x) = 0.
α;—> + oo a;—>+oo

Moreover, all nonoscillatory solutions of (L) are constant multiples
of the nonoscillatory solution u(x) whose existence was proven in
Theorem 3.3.

Proof. If y(x) is any nonoscillatory solution of (L) we may assume
that y(x) ^ 0 for x >̂ c. From the inequality

y"(x) + ί)(a?)y(a?)

- P\t))y{t)dt

which follows from integration of (L) and the conditions of the theorem,

we see that

y"(x) + p(χ)y(χ)
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is always bounded above and since p(x)y(x) ^ 0 for x ^ c, it follows
that y"{x) is bounded above for x Ξ> c. Hence there exists a positive
constant k such that

(45) 2y"(x) + p(x)y(x) ^ k

for x ^ c.

Since q(x) ^ d > 0 and p(x) ^ 0, there certainly exists a positive
constant m < 1/2 such that the second-order differential equation

u"(x) + [pO) + mxq(x)]u = 0

is oscillatory. Thus, since

2q(x) - p'(x) ^d + q(x) - p'(χ) ^ d > 0 ,

it follows from Theorem 3.1 that (L) has oscillatory solutions and hence,
from Theorem 3O2, F\y(x)\ < 0 for all xe \a, - ) or

(46) F\y(x)] - y\xf - 22/(.τ)ί/
//(aj) - p{x)y\x)

- ^[2/(α)l + \\zq{t) - p\t))y\t)dt < 0 , a; > a .

Therefore

d[°y*(t)dt ^ ( q(t)y\t)dt ^ Γ(2?(ί) - p'(t))y\t)dt
J a J a J a

^ -F[y(a)] < + - ,

from which it follows that :?/($) e L2[α, oo).
From (45) and (46), we see that

(47) y \ x f ^ ( 2 ? / " ( x ) + p(x)y(x))y(x) < k y ( x ) , x > c .

If τ/(x) did not tend to zero as x tended to infinity, the for some
ε > 0, we would have y(x) > 2ε for arbitrarily large values of x. On
the other hand, since y(x)e L2[a, co)f we could also find arbitrarily
large values of x for which y(x) < ε. Thus we could find sequences
{xn} and {xt} with xn < xt < xn+1 and

lim xn = lim x* = + oo

such that

y{%n) < ε , y(x*) > 2ε .

By elementary continuity considerations, we could then find sequences
{zn} and {2*} such that

Xn *\ Zn ^ ^?ι \ «̂% j
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(48) y(zn) = ε , y(z*) = 2ε ,

and

(49) ε < y(x) < 2ε for x e (zn, z*) .

Since y(x) Ξ> 0 for x ^ c and the intervals (zn, z%) are disjoint, it would
follow from (49) that

g faitγdt < + oo

and hence,

(50) limjz* - zn) = 0 .

By the mean value theorem, there would exist a sequence of points
cn such that zn < cn <2* and

(51) y'(cn) = ^v ^ _ ^ v " ; = _ ^

Hence, from (50)

lim #'(cn) = + oo .

But, from (47) and (49),

(52) y'(cn)
2 < 2kε .

Therefore the assumption that lim y(x) Φ 0 leads to a contradiction;
consequently

(53) lim y(x) = 0 ,

and from (47),

(54) lim y'(x) = 0 .

Suppose now, that in addition to the nonvanishing solution u(x),
whose existence was proven in Theorem 3.3, (L) had a second
independent nonoscillatory solution w(x). If we chose c such that
v(a) — cu(a) = 0, then the solution w(x) = v(x) — cu(x) would have
the property that

F\w(a)] - w'(a)2 - 2w(α)w"(α) - p(a)w(af = w'(af ^ 0 .

By Theorem 3.2 and the fact, established earlier in the proof, that
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(L) has oscillatory solutions, w(x) would be oscillatory. If x were any
zero of w(x) with x > a, then since F[w(x)] is strictly increasing,

F[w(x)] = {w\x)f = F[w(a)] + ["(2q(t) - p'(t))w2(t)dt

> F[w(a)] ̂  0 .

As w(x) would vanish for arbitrarily large values of x

lim sup I w'(x) \ > vF[w(x)] > 0 .

But, as u(x) and -?;(#) are nonoscillatory, it would follow from (54) that

lim w(x) = lim v'(x) cv/(x) = 0

which is a contradiction. Therefore every nonoscillatory solution must
be a constant multiple of u(x).

The author is grateful to Professor Richard A Moore for his warm
encouragement and many valuable suggestions.
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