A COMBINATORIAL PROBLEM IN THE SYMMETRIC GROUP

Oscar Rothaus and John G. Thompson

If G is a group and T is a nonempty subset of G, we say that T divides G if and only if G contains a subset S such that every element of G has a unique representation as $t s$ with t in T, s in S, in which case we write $T \cdot S=G$. We study the case where G is Σ_{n}, the symmetric group on n symbols and T is the set consisting of the identity and all transpositions in Σ_{n}.

The problem may be given a combinatorial setting as follows: For x, y in Σ_{n}, let $d(x, y)$ be the minimum number of transpositions needed to write $x y^{-1}$. One verifies that d converts Σ_{n} into a metric space, and that T divides Σ_{n} if and only if Σ_{n} can be covered by disjoint closed spheres of radius one.

We use the irreducible characters of Σ_{n}, together with judiciously selected permutation representations of Σ_{n}, to prove the following result.

Theorem. If $1+(n(n-1)) / 2$ is divisible by a prime exceeding $\sqrt{n}+2$, then T does not divide Σ_{n}.

The proof depends on properties of Σ_{n} (see [1] and [2], pp. 190-193). If $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}$ are the parts of the partition σ in decreasing order and μ_{1}, \cdots, μ_{t} are the parts of the partition τ in decreasing order, we write $\sigma>\tau$ provided the first nonvanishing difference $\lambda_{i}-\mu_{i}$ is positive. We say that σ dominates τ provided $\lambda_{i}-\mu_{i} \geqq 0$ for $i=$ $1,2, \cdots, s$. Let σ^{\prime} be the conjugate partition to σ with parts $\lambda_{1}^{\prime} \geqq$ $\lambda_{2}^{\prime} \geqq \cdots \geqq \lambda_{s^{\prime}}^{\prime}$, and set

$$
\pi(\sigma)=\sum_{i=1}^{s} \frac{\lambda_{i}\left(\lambda_{i}-1\right)}{2}-\sum_{i=1}^{s^{\prime}} \frac{\lambda_{i}^{\prime}\left(\lambda_{i}^{\prime}-1\right)}{2}
$$

The function π has a simple interpretation. Namely, in the dot diagram of σ, the number of unordered pairs of dots in a common row minus the number of unordered pairs of dots in a common column equals $\pi(\sigma)$. However, it will become apparent that $\pi(\sigma)$ has a group theoretic interpretation too.

Lemma 1. If σ dominates τ, and $\sigma \neq \tau$ then $\pi(\sigma)>\pi(\tau)$.
Proof. Let the parts of σ be $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{s}$ and those of τ be $\mu_{1} \geqq \mu_{2} \geqq \cdots \geqq \mu_{t}$. By the hypotheses, we may suppose that $\lambda_{1}=\mu_{1}$, $\lambda_{2}=\mu_{2}, \cdots, \lambda_{r-1}=\mu_{r-1}, \lambda_{r}>\mu_{r}$ and $\lambda_{r+1} \geqq \mu_{r+1}, \cdots, \lambda_{s} \geqq \mu_{s}$, for some
integer r less than s. A straightforward computation shows that $\pi(\tau)$ increases if μ_{r} is increased by 1 and μ_{t} is decreased by 1 . With this observation made, the result is clear.

For any subset A of Σ_{n}, \dot{A} denotes the sum of the elements of A in the group algebra of Σ_{n} (over the rationals), while

$$
\ddot{A}=\sum_{a \in A} s g(a) \cdot a
$$

Lemma 2. If $R=R_{\sigma}$ is the irreducible representation of Σ_{n} associated to the partition σ, then $R(\dot{T})$ is singular if and only if $\pi(\sigma)=1$.

Proof. Since \dot{T} is in the center of the group algebra, $R(\dot{T})$ is a scalar matrix, say $(1+c) I=R(\dot{T})$. Thus, $R(\dot{T})$ is singular if and only if $c=-1$. Let Y be a Young tableau associated to σ, that is, the dot diagram of σ with a label on each dot, the labels coming from and exhausting the set $\{1,2, \cdots, n\}$. Let A be the subgroup of Σ_{n} permuting the columns of Y and B the subgroup of Σ_{n} permuting the rows of Y, and let

$$
E=\frac{\dot{A}}{|A|} \cdot \frac{\ddot{B}}{|B|}
$$

Then E is a primitive idempotent and has the property that $R_{\tau}(E)=0$ for $\tau \neq \sigma$. We have $R_{\sigma}(E) R_{\sigma}(\dot{T})=(1+c) R_{\sigma}(E)$. As E vanishes in each R_{τ} with $\tau \neq \sigma$, we have trivially, $R_{\tau}(E) \cdot R_{\tau}(\dot{T})=(1+c) R_{\tau}(E)$ for all $\tau \neq \sigma$. Hence

$$
\begin{equation*}
E \cdot \dot{T}=(1+c) E \tag{4}
\end{equation*}
$$

Let T_{0} be the set of transpositions in Σ_{n}. Then (4) implies

$$
\begin{equation*}
E \cdot \dot{T}_{0}=c E \tag{5}
\end{equation*}
$$

Since $A \cap B=1$, to determine c, it suffices to determine the multiplicity (i.e., coefficient) of 1 in $E \cdot \dot{T}_{0}$. It follows readily that $c=$ $\Sigma s g(b)$, the summation ranging over all triples (a, b, t) with a in A, b in B, t in T_{0}, such that $a b t=1$. Since $a b t=1$ if and only if $a b=t$, it is easy to see that whenever $a b t=1$, then either $t \in A$ or $t \in B$. Hence, $c=-\pi(\sigma)$, as required.

In the following discussion, σ, Y, A, B, E have the same meaning as above.

We next consider a family of permutation representations of Σ_{n}. Let X be a Young tableau for the partition τ and let C be the subgroup permuting the columns of X. Then P_{τ} denotes the permutation representation of Σ_{n} on the cosets of C. Thus, for x in Σ_{n},
$P_{\tau}(x): C g \rightarrow C g x$. It is clear that P_{τ} depends only on τ and not on X. As is customary, we view P_{τ} as a representation of the group algebra.

Lemma 3. If $\sigma>\tau$, then R_{σ} is not a constituent of P_{τ}.
Proof. Since E is a primitive idempotent, $\operatorname{tr}\left(P_{\tau}(E)\right)$ is the multiplicity of R_{σ} in P_{τ}. Consider a coset $C g$. A contribution to $\operatorname{tr}\left(P_{\tau}(E)\right)$ occurs each time $C g a b=C g$ with a in A, b in B, the contribution being

$$
\frac{s g(b)}{|A| \cdot|B|}
$$

Thus, from the coset $C g$, we get

$$
\frac{\Sigma s g(b)}{|A| \cdot|B|}
$$

the summation being over those pairs (a, b) with a in A, b in B and $a b$ in $g^{-1} C g$. As $\sigma>\tau$, it is easy to verify that there is a row of Y which has at least two symbols in common with some column of $X g$, that is, $B \cap g^{-1} C g$ contains a transposition $t=t(g)$. This implies that whenever a pair (a, b) occurs in the above summation, so does the pair $(a, b t)$, so $\operatorname{tr}\left(P_{\tau}(E)\right)=0$, as required.

Now let p be a prime divisor of $1+(n(n-1)) / 2$ with $p \geqq \sqrt{n}+2$. Let $n=(p-1) q+r$ with $0 \leqq r<p-1$. Hence $q<p-2$. Let τ be the partition of n with r parts equal to $q+1$ and $p-1-r$ parts equal to q. We see that τ^{\prime} has q parts equal to $p-1$ and one part equal to r. Hence

$$
\begin{aligned}
\pi(\tau)= & \frac{(q+1) q}{2} r+ \\
& \frac{q(q-1)}{2}(p-1-r) \\
& \quad-\left\{\frac{(p-1)(p-2)}{2} q+\frac{r(r-1)}{2}\right\} \\
= & \frac{q(p-1)}{2}\{q+1-(p-2)\}-\frac{r(r-1)}{2}-q(p-1-r) .
\end{aligned}
$$

Since $q+1 \leqq p-2$, it follows that $\pi(\tau)<-1$.
By Lemma 3, if R_{σ} is a constituent of P_{τ}, then $\sigma \leqq \tau$. The structure of τ now yields that whenever $\sigma \leqq \tau$, then τ dominates σ.

By Lemma $1, \pi(\sigma) \leqq \pi(\tau)<-1$, and hence by Lemma $2, R_{\sigma}(\dot{T})$ is nonsingular. Thus $P_{\tau}(\dot{T})$ is nonsingular.

Let $d=d_{\tau}$ be the degree of P_{τ}. Since $d=\left|\Sigma_{n}: C\right|$, we see that d is divisible by the same power of p as $\left|\Sigma_{n}\right|$, since $|C|=(p-1)!{ }^{q} r$! is prime to p. Now suppose $T \cdot U=\Sigma_{n}$. Then $P_{\tau}(\dot{T}) P_{\tau}(U)=P_{\tau}\left(\dot{\Sigma}_{n}\right)$.

It is clear that $P_{\tau}\left(\dot{\Sigma}_{n}\right)$ is the matrix with $|C|$ in every entry, so is of rank 1. Since $P_{\tau}(\dot{T})^{-1}$ is a polynomial in $P_{\tau}(\dot{T})$, and since $P_{\tau}\left(\dot{\Sigma}_{n}\right)=$ $P_{\tau}(\dot{x}) P_{\tau}\left(\dot{\Sigma}_{n}\right)$ for all x in Σ_{n}, it follows that $P_{\tau}(\dot{U})=a P_{\tau}\left(\dot{\Sigma}_{n}\right)$ for some rational number a. This implies that $\alpha(1+(n(n-1)) / 2)=1$, so that

$$
P_{\tau}(\dot{U})=\frac{1}{1+\frac{n(n-1)}{2}} P_{\tau}\left(\dot{\Sigma}_{n}\right)
$$

does not have integral entries, which is a contradiction, since $P_{\tau}(\dot{U})$ is a sum of $|U|$ permutation matrices.

Remark 1. The integers $1,2,3,6,91,137,733$ and 907 are the only integers less than 1,000 which fail to satisfy the theorem.

Remark 2. As the referee has noted, essentially the same proof yields: If $(n(n-1)) / 2$ is divisible by a prime exceeding $\sqrt{n}+2$, then T_{0} does not divide Σ_{n}.

References

1. D. E. Littlewood, The theory of group characters, Oxford at the Clarendon Press.
2. B. L. van der Waerden, Modern algebra, Vol. II.

Received December 22, 1964.
Institute for Defense Analyses
Princeton, New Jersey
University of Chicago

