ON REAL NUMBERS HAVING NORMALITY OF ORDER k

Calvin T. Long

Abstract

This paper contains three theorems concerning real numbers having normality of order k. The first theorem gives a simple construction of a periodic decimal having normality of order k to base r. After introducing the notion of c-uniform distribution modulo one, we prove in the second theorem that α has normality of order k to base r if and only if the function αr^{x} is r^{k}-uniformly distributed modulo one. In the third theorem we show that α has normality of order k to base r if and only if, for every integer b and every positive integer $t \leqq k$,

$$
\lim \frac{N(b, n)}{r}=r^{-t}
$$

where $N(b, n)$ is the number of integers x with $1 \leqq x \leqq n$ for which

$$
\left[\alpha r^{x}\right] \equiv b\left(\bmod r^{t}\right)
$$

Let α be a real number, $0<\alpha<1$. Let r be a positive integer greater than one and construct the "decimal" representation of α to base r. Suppose that a certain sequence of digits occurs $N(n)$ times among the first n digits in the representation of α. If $N(n) / n$ tends to a limit f as n tends to infinity, then f is called the relative frequency with which the sequence occurs in α. If the sequence has k digits and appears in α with relative frequency r^{-k}, then it is said to occur with normal frequency. If every sequence of k digits appears in α with normal frequency, then α is said to have normality of order k. If α has normality of order k for every integer $k \geqq 1$ then it was proved by Niven and Zuckerman [7] and later by Cassels [2] that α is a normal number as defined by Borel [1]. Borel proved that almost all real numbers are normal. We also note that α has normality of order one if and only if it is simply normal to base r. This notion is also due to Borel.

The expression "normality of order k " is due to I. J. Good who gave a method [5] for constructing decimals of period r^{k} having normality of order k for any $k \geqq 1$. The problem was also studied by Rees [8], de Bruijn [4] and Korobov [6] who gave a variety of methods of constructing such decimals. In Section 2 of this paper we give yet another construction for a periodic decimal having normality of order k. While the method does not yield a decimal of minimum period, it has the advantage of being extremely simple.

In addition to the problem of constructing numbers having normality of order k, it is of interest to ask what characteristic properties such numbers possess. For example, D. D. Wall [9] proved that a real number α is normal to base r if and only if the function αr^{x} is uniformly distributed modulo one. Wall also showed that α is normal to base r if and only if, for every positive integer c and every integer $b,\left[\alpha r^{x}\right] \equiv b(\bmod c)$ with relative frequency $1 / c$ where $\left[\alpha r^{x}\right]$ denotes the largest integer less than or equal to αr^{x}. In Section 3 we introduce the notion of c-uniform distribution modulo one and show that a real number α has normality of order k if and only if αr^{x} is r^{k}-uniformly distributed modulo one. We also show that α has normality of order k if and only if for every integer b and every integer t with $0<t \leqq k$,

$$
\left[\alpha r^{k}\right] \equiv b\left(\bmod r^{t}\right)
$$

with relative frequency r^{-t}.
2. Construction of a number having normality of order k. Perhaps the simplest example of a normal number was given by D. G. Champernowne [3] who showed that the decimal

$$
\alpha=.12345678910111213 \cdots
$$

is normal to base 10 where α is formed by writing the decimal representations of the natural numbers in order after the decimal point. Analogously, we prove the following theorem.

THEOREM 1. Let r and k be integers with $r \geqq 2$ and $k \geqq 1$. Working to base r^{k} form the periodic decimal

$$
\alpha=. \dot{0} 12 \cdots\left(r^{k} \dot{-} 1\right)
$$

Written to base r, α has period $k r^{k}$ and normality of order k.

Proof. Let Y_{n} denote the block $a_{1} a_{2} \cdots a_{n}$ of the first n digits of the representation of α to base r and let $B_{k}=b_{1} b_{2} \cdots b_{k}$ denote an arbitrary sequence of k digits to base r. Let C_{i} denote the i th digit in the representation of α to base r^{k}. We will also use C_{i} to denote the block of k digits in the representation of α to base r which corresponds to the digit C_{i} in the representation of α to base r^{k}. Thus, we use C_{1} to denote 0 and also to denote the block of k zeros with which the representation of α to base r begins. In any given instance the intended meaning will be clear from the context.

Since the representation of α is periodic, it clearly suffices to show
that every B_{k} appears precisely k times starting in $Y_{k r k}$. We note that B_{k} appears precisely once starting in $Y_{k r}$ as one of the C_{i}; i.e., starting in $Y_{k r^{r}}$ in a position congruent to one modulo k. The problem is to determine how many times B_{k} appears starting in $Y_{k r} k$ in a position congruent to $k-j+1$ for each $j=1,2, \cdots, k-1$. This is equivalent to asking how many times B_{k} appears with the mid-point of two adjacent $C_{i}^{\prime} s$ coming between the j th and $(j+1)$ st digits of B_{k} for each j. And this occurs when and only when, for some i,

$$
C_{i}=c_{1} c_{2} \cdots c_{k-j} b_{1} b_{2} \cdots b_{j}
$$

and

$$
C_{i+1}=b_{j+1} b_{j+2} \cdots b_{k} d_{1} d_{2} \cdots d_{j}
$$

Case 1. Suppose that at least one of $b_{1}, b_{2}, \cdots, b_{j}$ is different from $r-1$. Then, for some i,

$$
C_{i}=b_{j+1} b_{j+2} \cdots b_{k} b_{1} b_{2} \cdots b_{j}
$$

and

$$
C_{i+1}=b_{j+1} b_{j+2} \cdots b_{k} d_{1} d_{2} \cdots d_{j}
$$

where $d_{1} d_{2} \cdots d_{j}$ is the successor to $b_{1} b_{2} \cdots b_{j}$ in the sequence of j tuples

$$
\begin{equation*}
00 \cdots 0,00 \cdots 01, \cdots,(r-1) \cdots(r-1) \tag{1}
\end{equation*}
$$

Thus, in this case, B_{k} does appear starting in $Y_{k r k}$ in a position congruent to $k-j+1$ and this is the only way it can appear in this position.

Case 2. Suppose that $b_{1}=b_{2}=\cdots=b_{j}=r-1$ and that at least one of $b_{j+1}, b_{j+2}, \cdots, b_{k}$ is different from zero. If $d_{j+1} d_{j+2} \cdots d_{k}$ is the predecessor of $b_{j+1} b_{j+2} \cdots b_{k}$ in the sequence of $(k-j)$-tuples

$$
\begin{equation*}
00 \cdots 0,00 \cdots 01, \cdots,(r-1) \cdots(r-1) \tag{2}
\end{equation*}
$$

then, for some i,

$$
C_{i}=d_{j+1} d_{j+2} \cdots d_{k} b_{1} b_{2} \cdots b_{j}
$$

and

$$
C_{i+1}=b_{j+1} b_{j+2} \cdots b_{k} 00 \cdots 0
$$

Thus, in this case, B_{k} again appears starting in $Y_{k r r}$ in a position congruent to $k-j+1$ modulo k and this is the only way it can appear in this position.

Case 3. Finally, suppose that $b_{1}=b_{2}=\cdots=b_{j}=r-1$ and that $b_{j+1}=b_{j+2}=\cdots=b_{k}=0$. The only way such a B_{k} can appear starting in $Y_{k r^{k}}$ in a position congruent to $k-j+1$ is for

$$
b_{j+1} b_{j+2} \cdots b_{k}=00 \cdots 0
$$

to have a predecessor in the sequence (2). Thus, in this case, B_{k} cannot appear in the desired position entirely contained in $Y_{k r}$. However, it clearly does appear starting in a position congruent to $k-j+1$ modulo k in $Y_{k r k}$ and overlapping the mid-point between $Y_{k r}$ and the next sequence of $k r^{k}$ digits in the representation of α to base r.

Therefore, for each $j=1,2, \cdots, k, B_{k}$ occurs in the representation of α to base r starting in $Y_{k r^{k}}$ in a position congruent to $k-j+1$ modulo k precisely once. Since B_{k} was arbitrary, it follows that each sequence of k digits to base r appears in the representation of α to base r equally often. Thus, α has normality of order k as claimed.

Since the α of the preceding theorem is simply normal to base r^{k}, it is natural to ask if normality of order k to base r is implied by simple normality to base r^{k}. However, since $\beta=. \dot{102 \dot{3}}$ is simply normal to base 4 but does not have normality of order 2 to base 2, this is clearly not the case.
3. Properties of numbers having normality of order k. Let $(\alpha)=\alpha-[\alpha]$ denote the fractional part of the real number α. A real valued function $f(x)$ is said to be uniformly distributed modulo one if, for every real λ with $0 \leqq \lambda \leqq 1, \lim n_{\lambda} / n=\lambda$ where n_{λ} denotes the number of values of $x=1,2, \cdots, n$ for which $(f(x))<\lambda$. Analogously, for any integer $c>1$, we say that $f(x)$ is c-uniformly distributed modulo one if the preceding definition holds for all λ 's which are positive rational fractions with denominator c. It then follows that $f(x)$ is uniformly distributed modulo one if and only if it is c-uniformly distributed modulo one for every integer $c>1$. We also have the following result concerning numbers having normality of order k.

Theorem 2. The real number α has normality of order k to base r if and only if the function αr^{x} is r^{k}-uniformly distributed modulo one.

Proof. Let αr^{x} be r^{k}-uniformly distributed modulo one. Let $b_{1} b_{2} \cdots b_{k}$ denote an arbitrary sequence of digits to base r and let

$$
\varepsilon=b_{1} r^{-1}+b_{2} r^{-2}+\cdots+b_{k} r^{-k}
$$

It then follows that $\varepsilon \leqq\left(\alpha r^{x}\right)<\varepsilon+r^{-k}$ with relative frequency r^{-k}.

But this simply says that the sequence $b_{1} b_{2} \cdots b_{k}$ appears in the representation of α to base r with normal frequency so that α has normality of order k.

Conversely, suppose that α has normality of order k to base r. Let $\lambda=b r^{-k}$ where b is an integer and $0<b<r^{k}$. Then λ can be written in the form

$$
\lambda=b_{1} r^{-1}+b_{2} r^{-2}+\cdots+b_{k} r^{-k}, 0 \leqq b_{i}<r
$$

and $\left(\alpha r^{x}\right)<\lambda$ if and only if

$$
a_{1+x} r^{-1}+a_{2+x} r^{-2}+\cdots+a_{k+x} r^{-k}<b_{1} r^{-1}+b_{2} r^{-2}+\cdots+b_{k} r^{-k}
$$

This inequality is equivalent to

$$
a=a_{1+x} r^{k-1}+\cdots+a_{k+x}<b_{1} r^{k-1}+\cdots+b_{k}=b
$$

and it follows that $\left(\alpha r^{x}\right)<\lambda$ if and only if $a<b$. Clearly there are just b nonnegative integers a having this property and, by hypothesis, each k-tuple corresponding to such an a appears in the representation of α to base r with frequency r^{-k}. Therefore, $\left(\alpha r^{x}\right)<\lambda$ with frequency $b r^{-k}=\lambda$ and α is r^{k}-uniformly distributed modulo one.

As noted above the following theorem is also analogous to a result of Wall.

Theorem 3. The real number α has normality of order k to base r if and only if, for every positive integer $t \leqq k$ and every integer b, we have $\left[\alpha r^{x}\right] \equiv b\left(\bmod r^{t}\right)$ with relative frequency r^{-t}.

Proof. There is no loss in generality in assuming that $0 \leqq b<r^{t}$.
Suppose first that α has normality of order k to base r. Then αr^{-t} also has normality of order k. Therefore, by Theorem 2, αr^{x-t} is r^{k}-uniformly distributed modulo one and it follows that

$$
b r^{-t} \leqq\left(\alpha r^{x-t}\right)<(b+1) r^{-t}
$$

with relative frequency $r^{-t}=r^{k-t} r^{-k}$. Thus, there exist positive integers n_{x} with relative frequency r^{-t} such that

$$
n_{x}+b r^{-t} \leqq \alpha r^{x-t}<n_{x}+(b+1) r^{-t}
$$

or, equivalently, such that

$$
n_{x} r^{t}+b \leqq \alpha r^{x}<n_{x} r^{t}+b+1
$$

But this says that

$$
\left[\alpha r^{x}\right] \equiv b\left(\bmod r^{-t}\right)
$$

with relative frequency r^{-t}.
To prove the converse, we simply reverse the preceding argument reading k for t at each step.

References

1. É. Borel, Les probabilités dénombrablés et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.
2. J. W. S. Cassels, On a paper of Niven and Zuckerman, Pacific J. Math. 2 (1952), 555-557.
3. D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254-260.
4. N. G. de Bruijn, A combinatorial problem, Proc. Nederl. Akad. Wetensch. 49 (1946), 758-764.
5. I. J. Good, Normal recurring decimals, J. London Math. Soc. 21 (1946), 167-169.
6. N. M. Korobov, Normal periodic systems and their applications to the estimation of sums of fractional parts, Amer. Math. Soc. Trans. Ser. (2) 4 (1956), 31-38.
7. I. Niven and H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math. 1 (1951), 103-109.
8. D. Rees, Note on a paper by I. J. Good, J. London Math. Soc. 21 (1946), 169-172.
9. D. D. Wall, Normal numbers, Thesis, Univ. of California, Berkeley, California (1949).

Received February 4, 1965.
Washington State University

