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ASYMPTOTIC VALUES OF A HOLOMORPHIC
FUNCTION WITH RESPECT TO
ITS MAXIMUM TERM

ALFRED GRAY AND S. M. SHAH

Let f(z)= 37 a.2” be holomorphic with radius of con-
vergence R(0 < R < ), and let x(r) denote the maximum
term and u(r) the central index of f(2). By definition for
r>0,p(r)=max{la,|r"|n=0,1,2,---}and v(r) = max {n | z(r) =
lan| 7"} so that p(r)=|a,n|r™. In previous papers we
have investigated the limiting values of the quotient x(r)/M(r)
as r— R. Here, as usual, M(r) denotes the maximum modulus
of f(z). Recently Clunie and Hayman have disproved a con-
jecture of Erdos that if x(r)/M(r) tends to a limit, the limit
must be zero,

In this paper we consider a more general problem. There
are two complex functions ¢(z) and m(z) which can be regarded
as complex extensions of x#(r) in a natural way. We are led
to investigate the limiting values of f(2)/p(z) and f(z)/m(z)
along curves tending to {z| = R, and we call these 2 and m
asymptotic values, We prove that for a class of functions
which are either of very slow growth, or have gap power
series, there are no u# or m asymptotic values, On the other
hand, for the admissible functions of Hayman, - is a ¢ and
m asymptotic value along the positive real axis, while 0 is a
¢ and m asymptotic value along any other path in an angle
excluding the positive real axis.

Definitions. First we extend g to a complex function by the
formula

prlre®) = p(r)e=e

for r>0and 0<0<2r. Then g(r)=|u(re®)| and mz)=/a.q.y|2""".
We also define a “complex maximum term” m(z) given by

m(re®) = p(r) exp {t(r)0 + ¢ arg a,}

for » >0 and 0 <0 < 27. Then m(z) = a,,2*"*" and as before p(r) =
| m(re®)|. Note that p(z) and m(z) are continuous in each annulus
where v(]z|) is continuous, but in general have discontinuities where
v(|#]) is discontinuous.

Let v(¢) be a (continuous) curve such that |¥(f)|— R as ¢t — oo,
It fOr@)/e(x®) (f(7(8)/m(¥(t))) tends to a limit @ (0 = |@| = =) as
t— oo we say that w is a p asymptotic value (m asymptotic value)
of f(z) and (¢) is a corresponding p asymptotic path (m asymptotic
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path). Further let v(¢) be a p(or m) asymptotic path written in polar
coordinates (7(t), 8(t)). Then (t) is nonessential if and only if there
exists € > 0 such that for all curves of the form (r(¢), #(f)) such that
| () — 6(t)| < & for sufficiently large ¢t we have that (r(¢), () is a
plor m) asymptotic path with the same pg(or m) asymptotic value as
(r(t), 6(t)). Otherwise ~(t) is essential. Note that f has p(or m)
asymptotic value o« (0) if and only if |f(z)|/u(]z]) — « (0) along a
curve ¥(t). Also if a, = 0 for sufficiently large n then the g and m
asymptotic values are the same, as are the p and m asymptotic paths.

Let {o(n)} be the sequence of jump points of v(r), counting mul-
tiplicity, and assume throughout this paper that p(r) — c as r—R
(so that o(n) — R as m — o). This last assumption avoids triviality
and implies that if a, =0 for n > n, then p(z) = m(z) for |z| suf-
ficiently near K. We denote by {n,} the range of v(r) (so that
y(o(n,)) = n;) and we define:

L= lim sup 01 1) (1)

S = lim sup (7,5, — %) .
k—oco

A} limsup ny, — M

a|  k— ocoinf M — M

@ lim sup 0Ty 11)
¢} b — (nk+1 n;) log < p(nk) ) .

THEOREM 1. If L >1 and S < o, then f(z) has mo p or m
asymptotic values. (The hypothesis L > 1 implies f(z) s a trans-
cendental entire function.)

2. Statement of theorems.

THEOREM 2. Suppose 0 < ¢ =0 < o and 1 a=A< «, and
that f(z) has the form

2"k

—14 > **
IO =1+ oD ot

Then f(z) has no p asymptotic values.

Next suppose that f(z) is real for real z and f(r) >0 for
R, <r<R. Let

_ rf'(r) —
a(r) = ) and b(r) = ra'(r) .

Following Hayman [9] we call f(z) admissible if b(r)— +oc as r—R
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and there exists a funection o(r) defined for R, < r < R and satisfying
0 < d(r) <  such that

2.1 F(re?®) ~ f(r)gitatn—tmenin

as r— R uniformly for |@| < d(r); while uniformly for d(r) < |0| = =,

(2.2) f(re’®) =0 (J%) as r—R.

THEOREM 3. (i) For admissible functions the positive real axis
18 an essential p asymptotic path with p asymptotic value . Any
path in an angle outside the positive real axis ts a nonessential p
asymptotic path with p asymptotic value 0.

(ii) Let f(z) be an admisstble entire function satisfying the
condition

b(r)
log b(r)

(2.3) alr) — v(r) = o( >”2 s r— oo,

and let 0 < c¢ < oo, Then ¢ s a p asymptotic value of f(z) along
the curve whose equation in polar coordinates is (r, 4(r)) where

¢(r) = {b(r)™" log 2mwe™"b(r)}'* .

(iii) Let g(z) = f(eVz) where 0 <+ < 27w and f(2) is an admissible
entire function for which (2.3) is satisfied and v(r) assumes every
integer as a value. If 0 < c < oo, then ¢ 18 a m asymptotic value
of 9() along the curve (r,s(r) — ) but g(z) has mo p asymplotic
values other than 0 and co.

In §7 we give some examples of functions illustrating our theorems.

3. Lemma 1. (cf. [6],[7]). Let 1 =<7 =< (o(nes)/o(n)). Then

M(o(n)r) ~ %(1 U

mo(nyr)
Proof. Let p(o(n)) = |a,, | o(m)™ = |a,,  |o(m)™". Then

a”k{(o(”k)rew}%k + a”k—l{lo(nk”'ew}nk—l

= 57 D e APE) (B

Hence

| @, fo(n)re™ + a,,_{o(n,)re " |
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M(P(’nk)”') S |1 + et |dg = 4M(o(n)r) .
27 T

Choose 6 = —(n, — m;_,)"'(arg a,, — arg a,,_,). Then

4M(0o(n)7) .
T

t(E)(n)r) (L + ™) <
and the lemma follows.

LEMMA 2. (cf. [9; pp. 71,83]). Let K>1 and 0<c¢< o, If
f(2) is admissible we may assume that 6(r) satisfies

{ log 2{7)23‘)26(4") }”2 <o) < { K 1;5 g)(r) }”2

for r(c) < r < R.

Proof. The first inequality must always be satisfied. Indeed
admissibility implies

Lf(re® )| _1 2| _ e
T exp{ ; b(r)@(r)} — O(b(r)~) .
Hence exp {1/2 b(r)o(r)*} = ¢ (2xb(r))"* for 7r(c) < r < R, and this is
equivalent to the first inequality.

For the second inequality suppose f(2) is admissible with a function
0(r). Let o(r) = min {0,(r), (K log b(r)/b(r))"*}. We show that f(z) is
admissible with d(). Let o(r) =8| < d.(r). Then by (2.1)

b(r)* |f(”'ew)| ~ b(r)"* exp {——6(7')02} < b(r)¥=K2 = O(1) .
f(r)

This is equivalent to (2.2). Thus we may replace d,(r) by d(r) without

destroying the truth of (2.2).

4, Proof of Theorem 1. Without loss of generality, we may
assume f(0)=1. Let 1<a<pB< L, <L, and a< (x/(4 — w))"5. There
exists a sequence {k,} = {k(p)} of integers such that o(1, +1)/0(My ) > L.
Then if ¢,() = F(O(Muip)W)/f(0(Myip ) for we 2, = fw] 1< |w| < L},
have, writing n,, = n, (cf. [6])

o(n)* IWI"
[ flo(mw)| =1+ Z {0 - o)

and

_ o jwir
o) | w) = B
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Henece
p(l) - - - p(n) S _pm)flwl*
[gp(w) | = W{l t X --- p(lg)}
@.1) o(n) ©
. i o(n) | wli 4 S om+g+1)-- o(n)
Apm41) -0 p(n+7)  iZn p(n)~ fw |~

§1+§<%>j+;lwl‘j.

Therefore {¢,(w)} is uniformly bounded on compact subsets of 2, and so
it is a normal family. Thus there is a subsequence of {¢,(w)} which
converges uniformly on compact subsets of 2,. We may therefore
assume that {k(p)} has been so chosen that {¢,(w)} itself converges
uniformly on compact subsets of 2, to a holomorphic function G(w).

We shall show that G(w) is nonconstant, for suppose G(w) = C
on £, The constant term in the Laurent expansion of ¢,(w) about
the origin is 1, and so for 1 < r < L; we would have

— 1,5 G(W>dw:11m_LS G gy — 1 .
2w Jiwi=r W p—e 2T Jlwl=r W

Thus G(w) =1 on 2,. But by the lemma
M(r, G) = lim M(r, ¢,) = %(1 +r), for 1<r<L,.

In particular for » = @ we have M(a, G) > 1. Hence G(w) must be

nonconstant.
Let 2 ={w|a < |w| = B} and suppose that f(z) has a asymptotie
value w. Then there exists a curve ¥(¢) with [v(t)|— ~ as t— o

such that f(v(¢))/pu(v(@)) —w as t — co.
There exists an unbounded set I with the following property: for

each te [ there is a unique integer p such that
(1) = 170 | < oMy + 1)

Write Y(t) = o(Mpp)7,(); then 1 = {7,(8)| =L + o), so {v,()} is
bounded. We now consider the set 7 of limit points of {v,(¢)} as
t—oo, te I, which lie in 2 and prove they are an uncountable set on
which G(w) is constant. In fact, let X be the intersection of 2 with
the positive real axis, and define y:3 — T as follows. For each
xe X, there exists ¢, I such that |v(t,)| = p(ny,)e; then [v,(t,) = 2.
Choose a limit point v of {7,(¢,)}, and define x(x) = v. Then } is one-
one since |¥(x)| = 2. Thus T is uncountable, since Y is.
Furthermore G(w) is constant on 7, for suppose 7,({,)—be T
for a sequence {t,} with ¢t,e I, By virtue of uniform convergence
&,(7,(t,)) — G(b). But we are assuming o is a p asymptotic value and
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so G(b) =w. Hence G is constant on 7. This is a contradiction;
therefore G has no ¢ asymptotic values.
For m asymptotic values we define

by (w) = L))

M(O(T)) W)

and we still have (4.1) holding with ¢, replaced by +,. Thus {y,(w)}
is a normal family and the rest of the proof goes through in exactly
the same manner as for g asymptotic values.

for we®,

5. Proof of theorem 2. Since f(z) has positive coefficients we
need only consider g asymptotic values. We again suppose that f(2)
has p asymptotic value w. Let () be a p asymptotic path corre-
sponding to w. For a given t take m to be the unique integer for
which p(n,) < |7()| < o(%,.,) and define v,(t) = C + ¢D where

() = p(n,) exp <_¢;C——— + D)

m+1 ™ Tom

and 0 <D < 27n. It is easy to see that 0 < Rev,(t) =1 + o(1) so
that {v,(¢)} is bounded.

Now write P,(w) = f(z)/¢(z) where z = p(n,,) exp (sW/(Np+1 — Mp)).
Then [8] P,(w) tends uniformly on A ={w|0 < Rew < 8},1/2< B<1,
to a nonconstant analytic function Q(w) as m — . For completeness
we sketch a proof of this. We have

<o { R ) e ()

Nmt1 — Mo mt+1 — Mom

For sufficiently large m

0 < gpRew < ¢8 < (s — 1) log L0ms)

o(n,) ’
and so
W )| =
o) = () [exp (22— )| = 21 < pnas)
Hence
V(| 2]) = N, pr(2) = ——2m
# p(1) + -+ o(ny,)
Write
p(nm+1)ﬂm+1~nm ces p(nm+j)nm+f—nm+j—-1 , j >0
g9 (m) = {1 , =0

{p(nm)’ﬂm"ﬂm-—l e p(nm+j+1)”m+j+1—‘"m+j}—1 y .7 < O 4
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Then

£O g o o (n
(5.1) 1z S o9(m) eXp{nm+1 — Ny, ¢w} )

Since 1 < a < A < o, and 4 >0, there exist numbers A,, 4,, ¢, so that
0< A < Pmis — P - 4, < oo |
m ™ W1

0< ¢ < (Mpys — M) log_@(_n_ml)_
o(n,,)

for m=1,2,..-.

Let = 2. Then
(s — Nn) log 0(7,,1,) — log 019 (m)

= "22 (s — Nmig) log _Onsg)

Ao(nm+q—1)
< — S Wmtq — Mg logL(nl"*'_q)_
2 (P +4-1) IO

= —(—1g.

Similarly we have for —j =k = 2, (n,+; — n,,) log p(n,) — log 09 (m) <
(7 + 1)¢,/A,. Hence
PRGN ji=2

=141 , —2<75<2
elitlidr/ 4z , .7 = -2

z"‘m+j—”m

O-(J')(m)

Hence by the Weierstrass M-test the series (5.1) converges uniformly
in both m and w. Hence we have

(.2) lim % — S lim { A eXp(”m+f — M ¢w)} :

mom (7)) Zmee U ot0(m) PR—

Further for 7 >0

(nm‘*'.i - nm) IOg p(nm) —_ log O‘(i)(m)

— -—i zjl <]ﬁl Pmtstr — Pmss log (p(nm+q)>”m+q"‘”m+q—1>

g=1p=q \s=¢ nm—{—s - nm+s—1 p(nm)
and so
lim {(%py; — 1) log p(n,) — log a'(m)
1.. . o
(5.3) 590+ g if A=a=1

_ @ —a(i+1) + )¢

fl<a=4<o.
(@ — 1) 1L <
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A similar argument shows that (5.3) is valid when j < 0. Hence we
have from (5.2)

(5.4)
iexp{—ﬂ(j +1-— 2w)} when A=a=1,
LG/ 2
D) | Sep{- L@~ (+ Da+i— (=D~ hw),
== (@ —1)
when A =a > 1.

It can be easily verified that the two expressions on the right of
(5.4) are not constant,

Just as in Theorem 1, we now can prove that the set T of limit
points of {7,.(¢)} is uncountable, and that Q(w) is constant on T,
contradicting the fact that Q(w) is nonconstant on A. Hence f(z)
has no p asymptotic values.

6. Proof of Theorem 3. (i) We may assume by Lemma 2
that 6(r) = o(1). Furthermore according to [9] a, >0 for = > n, and
so we need only consider p¢ asymptotic values, We have [9; pp. 68-69]

6.1) %—zg ~ V/ZTH(7) exp {i(a(r) — () — % 02b('r)}

uniformly for || < o(r), and

6
(6.2) F(re”) _ o(1) uniformly for o(r) < [0] <7 .
((re®)
It is immediate from (6.2) that any path in an angle outside the
real axis has p asymptotic value 0 and is nonessential. From (6.1)
we have

SO ey,
w(r)

and so the positive real axis has p asymptotic value . To prove
that it is essential it suffices to show that there exists a curve
(r, (1)) (in polar coordinates) such that for each ¢ > 0 there exists
r(¢) for which = > r(¢) implies | ¢(r)| < €, and (r, ¢(r)) does not have
¢ asymptotic value ., We take

¢(r) = {b(r)™" log (2me™?b(r))}''* ,
where 0 < ¢ < ., Then by Lemma 2, |¢(r)| < é(r) for » > r(c) and

fre)

~ —(1/2)$(r)2(r) —
p(ret) V2mb(r) e Tt =c,
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so that (7, ¢(r)) cannot have g asymptotic value co.
(ii) If (2.8) is satisfied for f(z) then (a(r) —v(r))¢(r) = o(1), and so

ST o ampy e — ¢
)u(,’,,eicb(r))
(ili) We have

g(/re“lb(r)—’&b)) _ f(/rei¢(7‘))
m(re® TV, g)  re ™, f)

NC,

so that ¢ is a m asymptotic value of g(z) along (r, 4(r) — ). However

g(re ")

: ~ e 1 Db eitetn—rirne—1j2n(r)6?
ret =", g) )

uniformly for 0 < |6| < d(r). Since p(r) assumes every integer as a
value, g can have no g asymptotic values other than 0 and co.

7. ExampPLES. (i) Theorem 1 shows that >z  A~(Wannibgiangn
where 1 < A< = and 0 < «, < 27, has no ¢ or m asymptotic values.
Here o(n) = A" and L =\, Similarly it follows from Theorem 2 that
if 0<a< o the functions

o zrﬂ oo zk2

kgo (k1) kzz‘o Ira+ ak? ’

and S7,2%/k** have no g or m asymptotic values. For each of
these funections ¢ = 4a.

(ii) The function e* is admissible with a(r) = b(r) = » and v(r) =

[7], so Theorem 3 (i), (ii) apply to it. More generally the Mittag-
Leffler funetion

E. () = ST A 0 2
(&) =3, Ta ) 0<a<?2)
is admissible with a(r) = a™'r * "+ o(1), b(r) = a™*r** + o(1), and y(r) =
a”r*" + 0(1), so that a(r) — v(r) = O(1). These facts follow from

E.(z) — ¢ = O(1/z) for |argz| < %air [1; p. 175] .

If f(z) is admissible so is ¢’* [9].

(iil) Let Lg(z) = >, {#/(log (n + B))}" where 8 >1. It is known
[3; p. 346] that Lg(z) tends to zero on every ray except the real axis,
where it tends to co. Hence e¢7%'® has ¢ and m asymptotic value 0
along every ray from 0 to oo.

(iv) Theorem 3 (ii), (iii) show that every positive real number is
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an m asymptotic value of some funection. If b is any complex number
we can construct a function having b as a g asymptotic value. We
take for example

b
2Vor

flz,b) = e + (" —1).

For r > (|b])/(V/2x) we have pu(r, f) = p(r, ') ~ (¢”)/(rV/'2x). 1t follows
easily that lim, . f(r)/u(r) = b.
We wish to thank the referee for his suggestions.

Added in proof. An application of these results may be found
in the authors’ paper ‘‘Asymptotic values of holomorphic fumctions
of irregular growth,”” Bull. Amer. Math. Soe. 71 (1965), 747-749.
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