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ASYMPTOTIC VALUES OF A HOLOMORPHIC
FUNCTION WITH RESPECT TO

ITS MAXIMUM TERM

ALFRED GRAY AND S. M. SHAH

Let f(z) = Σn=o &nZn be holomorphic with radius of con-
vergence R(Q < R ^ oo), and let μ(r) denote the maximum
term and v(r) the central index of f(z). By definition for
r > 0,μ(r) = max{| an I rn \ n = 0,1,2, •} and v(r) = max{n \μ(r) =
\an\rn) so that μ(r) = \avW I ^ v ( r ). In previous papers we
have investigated the limiting values of the quotient μ(r)/M(r)
as r-*R. Here, as usual, M(r) denotes the maximum modulus
of f(z). Recently Clunie and Hayman have disproved a con-
jecture of Erdόs that if μ(r)/M(r) tends to a limit, the limit
must be zero.

In this paper we consider a more general problem. There
are two complex functions μ(z) and m(z) which can be regarded
as complex extensions of μ(f) in a natural way. We are led
to investigate the limiting values of f(z)/μ(z) and f(z)lm(z)
along curves tending to \z\ = R, and we call these μ and m
asymptotic values. We prove that for a class of functions
which are either of very slow growth, or have gap power
series, there are no μ or m asymptotic values. On the other
hand, for the admissible functions of Hayman, oo is a μ and
m asymptotic value along the positive real axis, while 0 is a
μ and m asymptotic value along any other path in an angle
excluding the positive real axis.

Definitions* First we extend μ to a complex function by the
formula

μ(reiθ) = μ{r)eiHr)θ ,

for r > 0 and 0 ^ θ < 2π. Then μ(r) =• \ μ(reiθ) | and μ(z) = \ α v ( I f |, | z^z{\

We also define a "complex maximum term" m(z) given by

m(reίθ) = μ(r) exp {iv(τ)θ + i arg au{r)}

for r > 0 and 0 ^ θ < 2π. Then m(z) = av{{z[)z
v{ι*ι) and as before μ(r) =

\m(reiθ)\. Note that μ(z) and m(z) are continuous in each annulus

where v(\z\) is continuous, but in general have discontinuities where

v{\ z I) is discontinuous.

Let y(t) be a (continuous) curve such that | y(t) \ —> R as t —> oo.

If f(7(t))/μ(y(t)) (f(j(t))/m(j(t))) tends to a limit ω (0 ^ | ω \ ^ oo) as

ί —> oo we say that ω is a μ asymptotic value (m asymptotic value)

of /(z) and 7(ί) is a corresponding μ asymptotic path (m asymptotic

ill
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path). Further let y(t) be a //(or m) asymptotic path written in polar
coordinates (r(t), θ(t)). Then y(t) is nonessential if and only if there
exists ε > 0 such that for all curves of the form (r(t), φ(t)) such that
I φ(t) — θ(t) I < ε for sufficiently large t we have that (r(ί), θ(t)) is a
//(or m) asymptotic path with the same //(or m) asymptotic value as
(r(t), θ(t)). Otherwise y(t) is essential. Note that / has //(or m)
asymptotic value co (0) if and only if \f(z) \/μ(\ z |) --> co (0) along a
curve τ(t). Also if αw ̂  0 for sufficiently large n then the // and m
asymptotic values are the same, as are the μ and m asymptotic paths.

Let {p(n)} be the sequence of jump points of v(r), counting mul-
tiplicity, and assume throughout this paper that μ(r) —> co as r—>R
(so that p(ri)-*R as w—»oo). This last assumption avoids triviality
and implies that if an ^ 0 for n > nQ then //(z) = m(z) for 12 | suf-
ficiently near R. We denote by {nk} the range of v(r) (so that

= %) and we define:

L = lim sup ρ(nk+1)/ρ(nk) .
k-*oo

S = lim sup (nk+1 — nk) .

A) lim sup nk+1 — nk

Jc —•* oo i n f ^ ~ ^fc-i

lim sup / p(nk+1) \
= j , _ ^ ^f ( % + 1 " W & ) l o g V nίnΛ ) #

THEOREM 1. If L >1 and S < co, /jfoew /(«) fcαs no μ or m
asymptotic values. (The hypothesis L > 1 implies f(z) is a trans-
cendental entire function.)

2. Statement of theorems*

THEOREM 2. Suppose 0 < ψ — Φ < co am? 1 ̂  a — A < oo,
that f(z) has the form

p(nk)

Then f(z) has no μ asymptotic values.

Next suppose that f(z) is real for real z and f(r) > 0 for
R0<r < R. Let

a(r) = l£ilλ and b(r) = ra\r) .

fix)
Following Hayman [9] we call f(z) admissible if δ(r)—> + oo as r—>R
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and there exists a function δ(r) defined for Ro< r < R and satisfying
0 < δ(r) < π such that

(2.1) f(reίθ) ~ f(r)ei°*ir

a s r—>R u n i f o r m l y f o r \θ\ ̂  <?(r); w h i l e u n i f o r m l y f o r δ(r) ^ \θ\ 5g π ,

ί2.2) f(reiθ) = 0 ίlLL- as

THEOREM 3. ( i ) For admissible functions the positive real axis
is an essential μ asymptotic path with μ asymptotic value °o. Any
path in an angle outside the positive real axis is a nonessential μ
asymptotic path with μ asymptotic value 0.

(ii) Let f(z) be an admissible entire function satisfying the
condition

(2.3) a(r) - v(r) = 0 ( y - ^ - Γ as r - oo ,

and let 0 < c < °o. Then c is a μ asymptotic value of f(z) along
the curve whose equation in polar coordinates is {r, φ(r)) where

φ(r) = {δ(r)-1 log 2πc-2b(r 2

(iii) Let g(z) — f(e^z) where 0 < ψ < 2π and f(z) is an admissible
entire function for which (2.3) is satisfied and v(r) assumes every
integer as a value. If 0 < c < oo f then c is a m asymptotic value
of g(z) along the curve (r, φ(r) — ψ) but g(z) has no μ asymptotic
values other than 0 and oo.

In §7 we give some examples of functions illustrating our theorems.

3. LEMMA 1. (cf. [6], [7]). Let 1 ^ r ^ (ρ(nk+1)/ρ(nk)). Then

M(ρ(nk)r) ^ π_ ^ + r ^ _ i - ^
~ 4

Proof. Let μ(p(nk)) = \ anJ p(nk)
nk = \ a^ \ p(nk)

nk-\ Then

ank{p(nk)reiθrk + a^Jpin^re^Γ'1

= J _ f f{ξ)[(p{nkW
θYk f p(nk)reiθ\nk~\ dξ

2πi Jιeι=P(«fcϊr ξ \\ ξ / \ ξ J ί '

Hence
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M(p(nk)r)
2π

Choose θ = - ( n f c - ^ ^ - ' ( a r g α%fc - arg an]c_). Then

))( )

and the lemma follows.

LEMMA 2. (cf. [9; pp. 71, 83]). Let K>1 and 0 < c < oo. / /

/(#) is admissible we may assume that δ(r) satisfies

I 6(r)

/or r(c) < r < R.

< . . . < f JSΓlog 6(r) V'2

Proof. The first inequality must always be satisfied. Indeed
admissibility implies

exp {—|-
Hence exp {1/2 b(r)d(rf} ^ c~-\2πb(r))112 for r(c) < r < R, and this is
equivalent to the first inequality.

For the second inequality suppose f(z) is admissible with a function
δ^r). Let δ(r) = m i n ^ r ) , (iίlog 6(r)/6(r))1/2}. We show that f(z) is
admissible with δ(r). Let δ(r) g |« | ^ ^(r). Then by (2.1)

b(rY'2-κ'2 = 0(1) .6(r)

This is equivalent to (2.2). Thus we may replace δx(r) by δ(r) without
destroying the truth of (2.2).

4* Proof of Theorem 1* Without loss of generality, we may
assume /(O) = 1. Let 1< a < β < Lx < L, and a < (π/(4 - π))1^. There
exists a sequence {7̂ } = {k(p)} of integers such that p(nk{p) + ΐ)/p(nkip))>L1.
Then if φp(w) = f(p(nkip))w)/μ(ρ(nk{p))w) for w e Ωx =
have, writing % = n, (cf. [6])

and

n(oln\ I w |) = —
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Hence

I Λ (W) I < P(n) U + f P(«)' 1 w I* 1

P(n)}\w\j .h j^p(n +3+ !)'•-p{n)
ί) " p(n + j) j=-»

Therefore {0p(w)} is uniformly bounded on compact subsets of Ω1 and so
it is a normal family. Thus there is a subsequence of {φv{w)} which
converges uniformly on compact subsets of ΩlΛ We may therefore
assume that {k(p)} has been so chosen that {φp(w)} itself converges
uniformly on compact subsets of Ωt to a holomorphic function G(w).

We shall show that G(w) is nonconstant, for suppose G(w) = C
on Ωx The constant term in the Laurent expansion of φp(w) about
the origin is 1, and so for 1 < r < L1 we would have

C = -\ dw \im±\ dw l.
2τci J\w\=r w p-*°° 2τri J iwi=» w

Thus G(w) = 1 on Ωlm But by the lemma

M(r, G) = lim M{χ, φp) δ —(1 + r~s) , for 1 < r < Lx .

In particular for r = a we have Λf(α, G) > 1. Hence G(w) must be
nonconstant.

Let Ω — {w\a ^ \w\ ^ β} and suppose that f(z) has a asymptotic
value ω. Then there exists a curve y(t) with | τ(έ) | —> ©o as ί —> oo
such that f(y(t))/μ(y(t)) —* ω as t —> oo.

There exists an unbounded set I with the following property: for
each te I there is a unique integer p such that

Write 7(t) = p(nM)Ίp{ty, then 1 g \yp(t) \ ^ L + o(l), so {7p(ί)} is
bounded. We now consider the set T of limit points of {Ύp(t)} as
t ~> CXD 1 te I, which lie in Ω and prove they are an uncountable set on
which G(w) is constant. In fact, let Σ be the intersection of Ω with
the positive real axis, and define χ: Σ -+ T as follows. For each
XGΣ, there exists tpel such that \y(tp)\ ~ p(nk{p))x; then 17,(^)1 = x.
Choose a limit point v of {Ύp(tp)}, and define χ(x) = v. Then χ is one-
one since | χ(x) \ — x. Thus T is uncountable, since Σ is.

Furthermore G(w) is constant on Γ, for suppose 7j>(̂ s) —> 6 G T
for a sequence {£s} with ts e I. By virtue of uniform convergence

But we are assuming ω is a μ asymptotic value and
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so G(b) = ω. Hence G is constant on T. This is a contradiction;
therefore G has no μ asymptotic values.

For m asymptotic values we define

for w G Ω f
m(ρ(nk{p))w)

and we still have (4.1) holding with φp replaced by ψp. Thus {ψp(w)}
is a normal family and the rest of the proof goes through in exactly
the same manner as for μ asymptotic values.

5* Proof of theorem 2. Since f(z) has positive coefficients we
need only consider μ asymptotic values. We again suppose that f(z)
has μ asymptotic value ω. Let y(t) be a μ asymptotic path corre-
sponding to o). For a given t take m to be the unique integer for
which p(nm) ^ | y(t) \ < p(nm+1) and define ym(t) = C + %D where

= p(nm) exp
φC

+

and 0 ^ D < 2π. It is easy to see that 0 ^ Re ym(t) ^ 1 + o(l) so
that {ym(t)} is bounded.

Now write Pm(w) = f(z)/μ(z) where z = p(wm) exp (φw/(nm+1 - nj).
Then [8] PΛ(w) tends uniformly on Λ = {w\0^Rew^β},l/2<β<l,
to a nonconstant analytic function Q(w) as m-+co. For completeness
we sketch a proof of this. We have

φw1 g exp I—2———i = exp (-

For sufficiently large m

(nm+1 - nm) log

and so

Hence

Write

p{nm) S p(nm) exp I < P(nm+i) .

| z\) = nm, μ(z) =

σU)(m) =

3 < 0
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Then

(5.1) φvλ .
μ(z) y=-» σU)(m) w*m+1

Since 1 ^ a ^ A < oo 9 and ^ > 0, there exist numbers AlyA2f φ1 so that

0 < A 1 < <A2<

0 < Φi < (wm+i — wm) log -

Let j ^ 2. Then

(nm+j - nm) log ρ(nm+1) - log -

P(nm)

θ log

< _ V

for m = 1, 2,

Similarly we have for — j — k ^ 2, (^m+J — ww) log /θ(ww) — log σ{j)(m) ^
( i + l)φJA2. Hence

β-(i-DΦi y i ^ 2

1 , - 2 < i < 2
σU)(m)

Hence by the Weierstrass M-test the series (5.1) converges uniformly
in both m and w. Hence we have

(5.2) lim = Σ Urn
e χ p

Further for i > 0

(nm+j - raj log />(̂ m) - log σij)(m)

= -±±(t I m + ' + Γ/ m + M o g (J

and so

(5.3)

lim {(^w+i - nm) log /θ(wm) - log σ{j)(m)

2

(α - I)2
if
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A similar argument shows that (5.3) is valid when j < 0. Hence we
have from (5.2)

(5.4)

, exp I ~-^-(j + 1 — 2w)> when A = a = 1 ,

- (j + l)α + j — (a — l)(aj — 1)?
(a - 1) l

when A = a > 1.
It can be easily verified that the two expressions on the right of

(5.4) are not constant.
Just as in Theorem 1, we now can prove that the set T of limit

points of {Ίm{t)} is uncountable, and that Q(w) is constant on T,
contradicting the fact that Q(w) is nonconstant on A. Hence f(z)
has no μ asymptotic values.

6. Proof of Theorem 3* ( i ) We may assume by Lemma 2
that δ(r) = o(l). Furthermore according to [9] an > 0 for n > n09 and
so we need only consider μ asymptotic values. We have [9; pp. 68-69]

( 6 Λ ) ϋμl. „ VWr) exp \i(a(r) - v{τ))θ - i- θ%r)\
μ(reιθ) I 2 J

uniformly for | θ \ ^ δ(r), and

(6.2) / ( r O = 0(i) uniformly for δ(r) ^ | 6> | g π .
/i(rβ^)

It is immediate from (6.2) that any path in an angle outside the
real axis has μ asymptotic value 0 and is nonessential. From (6.1)
we have

μ(r)
V2πb(r) ,

and so the positive real axis has μ asymptotic value °o. To prove
that it is essential it suffices to show that there exists a curve
(r, φ(r)) (in polar coordinates) such that for each ε > 0 there exists
r(ε) for which r > r(ε) implies | ψ(r) \ < ε, and (r, φ(r)) does not have
μ asymptotic value ^. We take

φ(r) = {6(r)-1log(2τrc-26(r))}1/2 ,

where 0 < c < oo. Then by Lemma 2, | φ(r) \ S δ(r) for r > r(c) and

f(reίφ{r))

μ(reiφ{r))
V2πb(r) e-

{1J2)φ{r)2bir) = c ,
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so that (ryφ(r)) cannot have μ asymptotic value ©o.
(ii) If (2.3) is satisfied for f(z) then (a(r) - v(r))φ(r) = o(l), and so

μ(reίφ{r))

(iii) We have

m(reίίφ{r)-^,g) μ(τeiφ[r\ f) ° '

so that c i s a m asymptotic value of 0(2) along (r, 0(r) — ψ\). However

uniformly for 0 <£ [ θ [ g <5(r). Since v(τ) assumes every integer as a
value, g can have no μ asymptotic values other than 0 and oo.

7* EXAMPLES, ( i ) Theorem 1 shows that X"= oλ" ( 1 / 2 ) % ( % + 1 )β ΐ α^%,
where 1 < λ < ^ and 0 ^ ^ < 2π, has no μ or m asymptotic values.
Here p(n) — Xn and L = λ. Similarly it follows from Theorem 2 that
if 0<α:<c>o the functions

and Σk=oZk2fk2ak2 have no μ or m asymptotic values. For each of
these functions ^ = 4α.

(ii) The function ez is admissible with α(r) = 6(r) = r and y(? ) =
[r], so Theorem 3 (i), (ii) apply to it. More generally the Mittag-
Leffler function

Ea(z) = Σ 7 ^ r (0 < a < 2)
=̂0 Γ(l + α^)

is admissible with a(r) = α"1?- ̂ '-f o(l), 6(r) = a'V""'1 + o(l), and v(r) =
α-V^"1 + 0(1), so that a(r) - v(r) = 0(1). These facts follow from

#α(s) - e'1Ia = 0(1/z) for | arg z\^~aπ [1; p. 175] .

If /(«) is admissible so is ef{z) [9].

(iii) Let Lβ{z) = Σr=o {z/(fog (n + β))}n where β > 1. It is known
[3; p. 346] that Lβ(z) tends to zero on every ray except the real axis,
where it tends to °°. Hence e~Lβ{z) has μ and m asymptotic value 0
along every ray from 0 to °o.

(iv) Theorem 3 (ii), (ίίi) show that every positive real number is
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an m asymptotic value of some function. If b is any complex number
we can construct a function having b as a μ asymptotic value. We
take for example

f(z, b) =

For r >( | 6 |)/(l/2π) we have μ(r, /) = μ(r, eίz2) ~ (er2)/(rV2π). It follows
easily that l i m ^ f(r)/μ(r) = 6.

We wish to thank the referee for his suggestions.

Added in proof. An application of these results may be found
in the authors' paper "Asymptotic values of holomorphίc functions
of irregular growth," Bull. Amer. Math. Soc. 71 (1965), 747-749.
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