FRATTINI SUBGROUPS AND ϕ -CENTRAL GROUPS

HOMER BECHTELL

Denote the automorphism group induced on $\mathcal{O}(G)$ by transformation of elements of an *E*-group *G* by \mathcal{H} . Then $\mathcal{O}(\mathcal{H}) =$ $\mathscr{I}(\varPhi(G))$, $\mathscr{I}(\varPhi(G))$ the inner automorphism group of $\varPhi(G)$. Furthermore if G is nilpotent, then each subgroup $N \leq \mathcal{O}(G)$, N invariant under \mathcal{H} , possess an \mathcal{H} -central series. A class of nilpotent groups N is defined as \mathcal{O} -central provided that N possesses at least one nilpotent group of automorphisms $\mathscr{H} \neq 1$ such that $\Phi(\mathscr{H}) = \mathscr{I}(N)$ and N possesses an \mathscr{H} -central series. Several theorems develop results about φ -central groups and the associated *H*-central series analogous to those between nilpotent groups and their associated central series. Then it is shown that in a p-group, \mathcal{O} -central with respect to a p-group of automorphism \mathcal{H} , a nonabelian subgroup invariant under \mathcal{H} cannot have a cyclic center. The paper concludes with the permissible types of nonabelian groups of order p^4 that can be \mathcal{Q} -central with respect to a nontrivial group of *p*-automorphisms.

Only finite groups will be considered and the notation and the definitions will follow that of the standard references, e.g. [6]. Additionally needed definitions and results will be as follows: The group G is the reduced partial product (or reduced product) of its subgroups A and B if A is normal in G = AB and B contains no subgroup K such that G = AK. For a reduced product, $A \cap B \leq \Phi(B)$, (see [2]). If N is a normal subgroup of G contained in $\Phi(G)$, then $\Phi(G/N) \cong \Phi(G)/N$, (see [5]). An elementary group, i.e., an E-group having the identity for the Frattini subgroup, splits over each of its normal subgroups, (see [1]).

1. For a group G, $\Phi(G) = \Phi$, $G/\Phi = F$ is Φ -free i.e., $\Phi(F)$ is the identity. The elements of G by transformation of Φ induce auto-

morphisms \mathscr{H} on $\mathscr{\Phi}$. Denoting the centralizer of $\mathscr{\Phi}$ in G by M, $G/M \cong \mathscr{H} \leq \mathscr{A}(\mathscr{\Phi}), \, \mathscr{A}(\mathscr{\Phi})$ the automorphism group of $\mathscr{\Phi}$. Then if $\mathscr{I}(\mathscr{\Phi})$ denotes the inner automorphisms of $\mathscr{\Phi}$, one has $\mathscr{I}(\mathscr{\Phi}) \leq \mathscr{\Phi}(\mathscr{H})$ and by a result of Gaschütz [5, Satz 11], $\mathscr{I}(\mathscr{\Phi})$ normal in $\mathscr{A}(\mathscr{\Phi})$ implies that $\mathscr{I}(\mathscr{\Phi}) \leq \mathscr{P}(\mathscr{A}(\mathscr{\Phi}))$.

Supposing first that $M \not\leq \emptyset$, there exists a reduced product G = MKsuch that $M \cap K \leq \emptyset(K)$ and $M\emptyset(K)/M \cong \emptyset(G/M) \cong \emptyset(\mathscr{H})$. Moreover $M\emptyset/\emptyset \cong A \leq F$. Thus A is normal in F and the elements in A correspond to the identity transformation on \emptyset . Thus $F/A \cong G/M\emptyset$ corresponds to a subgroup of outer automorphisms of \emptyset , namely $F/A \cong$ $\mathscr{H}/\mathscr{I}(\emptyset)$. Since F is \emptyset -free, there exists a reduced product F = ABsuch that $A \cap B \leq \emptyset(B)$ and $F/A \cong B/A \cap B$. By combining these latter statements, $\mathscr{H}/\mathscr{I}(\emptyset) \cong B/A \cap B$. Moreover $\emptyset(B/A \cap B) \cong \emptyset(B)/A \cap B \cong$ $\emptyset(\mathscr{H}/\mathscr{I}(\emptyset)) = \emptyset(\mathscr{H})/\mathscr{I}(\emptyset)$, i.e., $\emptyset(B)/A \cap B \cong \emptyset(\mathscr{H})/\mathscr{I}(\emptyset)$. However note that if $\vartheta(K) \leq \vartheta(G)$, then $M\vartheta(K)/M \leq M\vartheta(G)/M \cong \mathscr{I}(\emptyset) \leq \vartheta(\mathscr{H})$. Thus $\mathscr{I}(\emptyset) = \emptyset(\mathscr{H})$.

Now suppose that $M \leq \emptyset$. Then $\emptyset(G/M) \cong \emptyset(G)/M \cong \emptyset(\mathscr{H})$. Since M = Z, Z the center of \emptyset , and $\emptyset/Z \cong \mathscr{I}(\emptyset)$ again it follows that $\mathscr{I}(\emptyset) = \emptyset(\mathscr{H})$.

LEMMA 1. A necessary condition that a group N be the Frattini subgroup of an E-group G is that $\mathscr{A}(N)$ contains a subgroup \mathscr{H} such that $\varphi(\mathscr{H}) = \mathscr{I}(\Phi)$.

COROLLARY 1.1. A necessary and sufficient condition that the centralizer of Φ in an E-group G be the center of Φ is that $G/\Phi \cong \mathscr{H}/\mathscr{I}(\Phi)$.

Using the notation of the above, $G/M \Phi \cong \mathscr{H}/\mathscr{I}(\Phi) \cong T \leq F$. However $G/\Phi \cong F$ elementary implies F = ST, $S \cap T = 1$, S normal in F and F/S = T. Then:

THEOREM 1. Necessary conditions that a nilpotent group N be the Frattini subgroup of an E-group G is that $\mathscr{N}(N)$ contains a subgroup \mathscr{H} such that

(1) $\Phi(\mathcal{H}) = \mathcal{I}(N)$, and

(2) there exists an extension of N to a group M such that $M/N \cong \mathscr{H}/\mathscr{I}(N).$

A sufficiency condition may well be lacking since M/N elementary only implies that $\Phi(M) \leq N$; equality is not implied.

Let K denote a normal subgroup of an E-group G such that $\emptyset < K \leq G$ and that M is the G-centralizer of K. If $M \not\leq \emptyset$ but $M\emptyset < K$ properly, $M\emptyset/\emptyset \not\cong \mathscr{I}(K)$. On the other hand $K < M\emptyset$ implies $M\emptyset/M \cong$

THEOREM 2. If K is a subgroup normal in an E-group G, $\Phi < K \leq G$, and M is the G-centralizer of K, then $\Phi(\mathscr{H}) = \mathscr{I}(K)$, \mathscr{H} the group of automorphisms of K induced by transformation of elements of G, if and only if $K \leq M\Phi$, i.e., $K = \Phi Z$, Z the center of K.

On the other hand if K is a subgroup of Φ , the following decomposition of Φ is obtained:

THEOREM 3. If a subgroup K of Φ normal in an E-group G has an automorphism group \mathcal{H} induced by transformation of elements of G with $\Phi(\mathcal{H}) = \mathcal{I}(K)$, then $\Phi = KB$, B the centralizer of K in Φ , and $K \cap B \neq 1$ unless K = 1. \mathcal{H} denotes the automorphism group of B induced by transformation of elements of G, then $\Phi(\mathcal{H}) = \mathcal{I}(B)$.

Proof. Denote the G-centralizer of K by M. Then $G/M \cong \mathscr{H}$ and $MK/M \cong K/Z \cong \mathscr{I}(K)$, Z the center of K. Since the homomorphic image of an E-group is an E-group, then \mathscr{H} is an E-group and $\mathscr{H}/\mathscr{I}(K)$ is an elementary group. Hence G/KM is an elementary group which implies that $\emptyset \leq KM$ since G is an E-group. $B = M \cap \emptyset$ is normal in G and it follows that $\emptyset = KB$. Since K is nilpotent, the center of K exists properly unless G is an elementary group.

Symmetrically K is contained in the G-centralizer J of B. Then as above JB/J is mapped into $\Phi(\mathscr{K})$ and since G/JB is elementary, the mapping is onto, i.e., $JB/J \cong \Phi(\mathscr{K}) \cong B/J \cap B \cong \mathscr{I}(B)$.

REMARK 1. Note that in Theorem 3, each subgroup K contained in the center of \mathcal{P} and normal in G satisfies the condition $\mathcal{P}(\mathcal{H}) = \mathcal{J}(K)$ and so \mathcal{H} is an elementary group.

For normal subgroups N of a nilpotent group G, transformation by elements of G on N induce a group of automorphisms \mathscr{H} for which a series of subgroups exist, $N = N_0 > N_1 > \cdots > N_r = 1$, such that $x^{-1}x^a \in N_i, a \in \mathscr{H}, x \in N_{i-1}$. Following Kaloujnine [8], N is said to have an \mathscr{H} -central series. In general E-groups do not have this property on the normal subgroups except in the trivial case of \mathscr{H} the identity mapping. If N is nilpotent and $\mathscr{I}(N) \leq \mathscr{H}$ then the series can be refined to a series for which $|N_{i-1}/N_i|$ is a prime integer.

A group N does not necessarily have an \mathcal{H} -central series for each subgroup $\mathcal{H} \leq \mathcal{M}(N)$ even if N is nilpotent. For example if N is

HOMER BECHTELL

the quaternion group and \mathcal{H} is $\mathcal{M}(N)$, N has only one proper characteristic subgroup.

Combining Lemma 1 with the above one has:

THEOREM 4. A necessary condition that a group N be the Frattini subgroup of a nilpotent group G is that $\mathscr{A}(N)$ contains a nilpotent subgroup \mathscr{H} such that

- (1) $\Phi(\mathcal{H}) = \mathcal{J}(N)$ and
- (2) N possesses an \mathcal{H} -central series.

The dihedral group N of order eight has an \mathcal{H} -central series for $\mathcal{H} = \mathcal{A}(N)$, however $|\mathcal{P}(\mathcal{H})| = 2$ and $|\mathcal{I}(N)| = 4$. There are Abelian groups which trivially satisfy (1) but not (2). So both conditions are necessary.

A Φ -central group N will be defined as a nilpotent group possessing at least one nilpotent group of automorphisms $\mathcal{H} \neq 1$ such that

(1) $\Phi(\mathscr{H}) = \mathscr{I}(N)$ and

(2) N possesses an \mathcal{H} -central series.

THEOREM 5.

(1) If N is Φ -central with respect to an automorphism group \mathcal{H} , M a subgroup of N invariant under \mathcal{H} , and S a subgroup of N/M invariant under \mathcal{H}^* , \mathcal{H}^* the group of automorphisms induced on N/M by \mathcal{H} , then there exists a subgroup K of N containing M, invariant under \mathcal{H} , with $K/M \cong S$. Moreover $\mathcal{H}^* \cong \mathcal{H} | \mathcal{M}$, \mathcal{M} the set of all $a \in \mathcal{H}$ such that $x^{-1}x^a \in M$.

(2) If N is φ -central with respect to an automorphism group \mathscr{H} and M is a member of the \mathscr{H} -central series, then N/M is φ -central with respect to \mathscr{H}^* , \mathscr{H}^* the group of automorphisms induced on N/M by \mathscr{H} .

Proof. The proof of (1) relies on the fact that the groups considered are nilpotent and $\mathscr{I}(N) \leq \mathscr{H}$. The only additional comment necessary for (2) is that under a homomorphic mapping of a nilpotent group the Frattini subgroup goes onto the Frattini subgroup of the image (see [2]).

THEOREM 6. Let N be a group Φ -central under an automorphism group \mathcal{H} . If M is a subgroup of N invariant under \mathcal{H} then

(1) M possesses an \mathcal{H} -central series,

(2) M possesses a proper subgroup of fixed points under \mathscr{H} , and

(3) M can be included as a member of an \mathcal{H} -central series of N.

Proof. As Kaloujnine [8] has introduced, a descending \mathscr{H} -central chain can be defined by $N = N_0 \geq N_1 \geq \cdots \geq N_j \geq \cdots$ for $N_j = [N_{j-1}, \mathscr{H}]$, $[N_{j-1}, \mathscr{H}]$ the set of $x^{-1}x^a$ for all $x \in N_{j-1}$, $a \in \mathscr{H}$. A series occurs if for some integer $r, N_r = 1$. Analogous to the corresponding proofs for nilpotent groups, a group possessing an \mathscr{H} -central series, possesses a descending \mathscr{H} -central series, M possesses a proper subgroup of fixed points under, \mathscr{H} (the set corresponds to a generalized center of N relative to \mathscr{H}) and M can be included as a member of an \mathscr{H} -central series of N. However M may not necessarily be a \mathcal{P} -central group.

Even though the notion of \mathcal{O} -centrality is derived from the properties of the Frattini subgroup of a nilpotent group, it is not a sufficient condition for group extension purposes e.g., consider the extension of cyclic group of order three to the symmetric group on three symbols.

Since $\mathcal{P}(K)$ for a nilpotent group K is the direct product of the Frattini subgroup of the Sylow *p*-subgroups of K (see Gaschütz [5, Satz 6]), then the determination of the nilpotent groups N which can be the Frattini subgroup of some nilpotent group G reduces to the consideration of G as a *p*-group. The next section discusses several properties of \mathcal{P} -central *p*-groups.

2. Only p-groups and their p-groups of automorphisms will be considered.

LEMMA 2. (Blackburn [3].) If M is a group invariant under a group of automorphisms \mathcal{H} and N is a subgroup of M of order p^2 invariant under \mathcal{H} , then \mathcal{H} possesses a subgroup \mathcal{M} of index at most p under which N is a fixed-point set.

Proof. \mathscr{H} is homomorphic to a *p*-group of $\mathscr{A}(N)$ and $|\mathscr{A}(N)| = p(p-1)$ since \mathscr{H} is a *p*-group. The kernel has index at most *p*.

LEMMA 3. A group N, \mathcal{P} -central under the automorphism group \mathcal{H} , can contain no nonabelian subgroup M of order p^{3} and invariant under \mathcal{H} .

Proof. If M is invariant under \mathcal{H} , then M contains a subgroup K of order p^2 invariant under \mathcal{H} by Theorem 6. By Lemma 2, \mathcal{H} possesses a subgroup \mathcal{M} of index at most p under which K is a fixed-point set. Since \mathcal{H} contains $\mathcal{J}(N), K \leq Z(N), Z(N)$ the center of N. Consequently $K \leq Z(M), M$ must be Abelian, and so a contradiction.

COROLLARY 3.1. (Hobby [7].) No nonabelian p-group of order p^3 can be the Frattini subgroup of a p-group.

HOMER BECHTELL

Proof. Denote the induced group of automorphisms on $\Phi(G)$ by the elements of a p-group G by \mathcal{H} . Then $\Phi(G)$ is Φ -central under \mathcal{H} .

COROLLARY 3.2. Each Frattini subgroup of order greater than p^3 of a p-group G contains an Abelian subgroup N of order p^3 and normal in G.

LEMMA 4. Let N be a group Φ -central under an automorphism group \mathcal{H} . A noncyclic Abelian subgroup M of N, invariant under \mathcal{H} and having order p^{3} contains an elementary Abelian subgroup K of order p^{2} , invariant under \mathcal{H} and a fixed-point set for $\mathcal{I}(N)$.

Proof. If M is invariant under \mathscr{H} and elementary Abelian, M contains an elementary Abelian subgroup K of order p^2 and invariant under \mathscr{H} by Theorem 6. On the other hand if M is invariant under \mathscr{H} and of the form $\{x, y \mid x^{p^2} = x^p = 1\}$, the characteristic subgroup $K = \{x^p, y\}$ in M has order p^2 and is invariant under \mathscr{H} . In either case K is invariant under a subgroup \mathscr{M} of index at most p by Lemma 2. The result follows since $\mathfrak{O}(\mathscr{H}) = \mathscr{I}(N) \leq \mathscr{M}$.

COROLLARY 4.1. A noncyclic Abelian normal subgroup M of a pgroup G, $|M| = p^{\mathfrak{d}}$, and $M \leq \mathcal{Q}(G)$, contains an elementary Abelian subgroup N of order $p^{\mathfrak{d}}$, normal in G, and contained in the center of $\mathcal{Q}(G)$.

THEOREM 7. Let N denote a group Φ -central under an automorphism group \mathcal{H} . Each nonabelian subgroup M of N, invariant under \mathcal{H} , contains an elementary Abelian subgroup K of order p^2 which is invariant under \mathcal{H} and is a fixed-point set under $\mathcal{I}(N)$.

Proof. Suppose M is a nonabelian subgroup of least order for which the theorem is not valid. By Lemma 3, $|M| \ge p^4$. Since $\mathcal{P}(M) \ne 1$, denote by P the cyclic subgroup of order p, consisting of fixed-points under \mathscr{H} and contained in $\mathcal{P}(M)$. One such subgroup always exists by Theorem 6. Then $M/P \le N/P$, both are invariant under \mathscr{H}^* , and N/P is \mathcal{P} -central under \mathscr{H}^* , \mathscr{H}^* the induced automorphisms on N/Pby \mathscr{H} .

If M/P is Abelian, then M/P not cyclic implies that the elements of order p in M/P form a characteristic subgroup K/P, invariant under \mathscr{H}^* , which is elementary Abelian and $|K/P| \ge p^2$. Thus K/P contains a subgroup L/P of order p^2 and invariant under \mathscr{H}^* . This implies that L is a noncyclic commutative subgroup invariant under \mathscr{H} by Lemma 3.

For M/P nonabelian, M/P contains an elementary Abelian subgroup

L/P of order p^2 invariant under \mathscr{H}^* by the induction hypothesis. Again Lemma 3 implies that L of order p^3 is a noncyclic commutative subgroup invariant under \mathscr{H} .

By Lemma 4, K exists for L and hence for M in both cases.

COROLLARY 7.1. A nonabelian subgroup invariant under \mathcal{H} of a group N, Φ -central under an automorphism group \mathcal{H} , cannot have a cyclic center.

COROLLARY 7.2. A nonabelian normal (characteristic) subgroup of a p-group G that is contained in $\Phi(G)$ cannot have a cyclic center.

REMARK 2. Corollary 7.2 is stronger than the results of Hobby [7, Theorem 1, Remark 1] and includes a theorem of Burnside [2] that no nonabelian group whose center is cyclic can be the derived group of a p-group. Together with Lemma 5, the results, as necessary conditions, prove useful in determining whether or not a p-group could be the Frattini subgroup of a given p-group.

LEMMA 5. Let N denote a group Φ -central under an automorphism group \mathcal{H} . An Abelian subgroup $M \leq N$ of type (2,1) and invariant under \mathcal{H} , is contained in the center of N.

Proof. The result holds for N Abelian so consider the case of N nonabelian. If $M = \{x, y \mid x^{p^2} = y^p = 1\}$, then as in Lemma 4, $\{x^p, y\}$ is invariant under \mathscr{H} and is contained in the center of N. Since M contains only p cyclical subgroups of order p^2 and $x^a \neq x^j$ for an integer j and $a \in \mathscr{H}$, it follows that x^a has at most p images under \mathscr{H} . Therefore the subgroup \mathscr{M} of \mathscr{H} having x as a fixed point has index at most p in \mathscr{H} . Since $\varPhi(\mathscr{H}) = \mathscr{I}(N) \leq \mathscr{M}$, then x is fixed by $\mathscr{I}(N)$ i.e., x is in the center of N.

COROLLARY 5.1. An Abelian subgroup M of type (2, 1), normal in a p-group G, and contained in $\Phi(G)$ is contained in the center of $\Phi(G)$.

THEOREM 8. The following two types of nonabelian groups of order p^4 cannot be Φ -central groups with respect to a nontrivial p-group of automorphisms \mathcal{H} :

(1)
$$A = \{x, y, z \mid x^{p^2} = y^p = z^p = 1, [x, z] = y, [x, y] = [y, z] = 1\}$$

(2)
$$B = \{x, y \mid x^{p^2} = y^{p^2} = 1, [x, y] = x^p\}$$
.

Proof. Consider (1) and note that each element of order p^2 is of

HOMER BECHTELL

the form $z^a x^b y^c$ for $b \neq 0 \pmod{p^2}$. Then $(z^a x^b y^c)^p = x^{pb} y^{pc+ab(1+2+\cdots+(p-1))} = x^{pb} y^{abp(p-1)/2} = x^{pb}$ for (b, p) = 1. Thus $\{x^p\} = A^p$ is characteristic in A of order p. If A was \mathscr{P} -central with respect to an automorphism group \mathscr{H} then A/A^p would be \mathscr{P} -central with respect to the automorphism group \mathscr{H}^* induced on A/A^p by \mathscr{H} . This contradicts Lemma 3 if \mathscr{H} is nontrivial and so A cannot be \mathscr{P} -central with respect to a nontrivial p-group of automorphisms \mathscr{H} .

Each maximal subgroup in (2) is Abelian, of order p^3 , and type (2, 1). If B was \mathcal{P} -central under a nontrivial p-group of automorphisms \mathcal{H} then one of these maximal subgroups, say M, is invariant under \mathcal{H} . By Lemma 5, M is contained in the center of B and thus B is Abelian. So B cannot be \mathcal{P} -central with respect to a nontrivial p-group of automorphisms \mathcal{H} .

COROLLARY 8.1. The types (1) and (2) of p-groups of Theorem 8 cannot be Frattini subgroups of p-groups.

REMARK 3. The remaining two types of nonabelian p-groups are of the forms

$$(3) \quad \{x, y, z \mid x^{p^2} = y^p = z^p = 1, [x, z] = x^p, [y, x] = [y, z] = 1\}$$
 and

 $(4) \quad \{x, y, z, w \mid x^p = y^p = z^p = w^p = 1, [z, w] = x, [y, w] = [x, w] = 1\}.$

Without attempting a classification it is sufficient to show the existence of *p*-groups *G* having $\mathcal{O}(G)$ of form (3) or (4). For p > 5, the group $G = \{x, y, z, w \mid x^{p^2} = y^{p^3} = z^p = w^p = 1$, $[y^p, z] = [y^p, x] = [x, w] = 1$, $[y^p, w] = [x, z] = [z, w] = x^p$, $[z, y] = y^p$, [x, y] = z, [w, y] = x, $|G| = p^6$, and $\mathcal{O}(G)$ is of the form (3). Then for p = 5, $G = \{u, v, w, x, y, z \mid u^p = v^p = w^p = x^p = y^p = z^p = 1$, [v, w] = [v, x] = [v, z] = [x, y] = 1, [v, y] = [x, w] = [w, y] = u, [w, z] = v, [x, z] = w, [y, z] = x, $|G| = p^6$, and $\mathcal{O}(G)$ is of type (4).

Groups G of order p° other than those given in Remark 3 exist having nonabelian $\mathcal{Q}(G)$. However for all such cases $\mathcal{Q}(G)$ contains a characteristic subgroup N of order p° such that G/N is not of form (3) nor (4) i.e., G cannot be the Frattini subgroup of any p-group. Remark 3 provides a ready source of examples of p-groups which are φ -central, or in particular are Frattini subgroups of some p-group. This offsets the conjecture that such a source consisted of p-groups of relatively "large" order. The examples raise the following question: If the group F is the Frattini subgroup of a group G, does there always exist a group G^* such that $\mathcal{Q}(G^*) \cong F$ and the centralizer of $\mathcal{Q}(G^*)$ in G^* is the center of $\mathcal{Q}(G^*)$?

BIBLIOGRAPHY

1. H. Bechtell, *Elementary groups*, Trans. Amer. Math. Soc. (to appear).

2. ____, Reduced partial products, Amer. Math. Monthly, Notes Section (to appear).

3. N. Blackburn, On prime-power groups, Proc. Camb. Phil. Soc. 53 (1957), 19-27.

4. W. Burnside, On some properties of groups whose orders are powers of primes, Proc. Lond. Math. Soc. (2) 11 (1912), 225-245.

5. W. Gaschütz, Über die Ø-Untergruppen endlicher Gruppen, Math. Z. 58 (1953), 160-170.

6. M. Hall, The theory of groups, Macmillan, New York, 1959.

C. Hobby, The Frattini subgroup of a p-group, Pacific J. Math. 10 (1960), 209-212.
L. Kaloujnine, Über gewisse Beziehungen zwischen einer Gruppen und ihren Auto-

morphismen, Berliner Mathematische Tagung, 1953, 164-172.

Received February 13, 1965.

BUCKNELL UNIVERSITY LEWISBURG, PENNSYLVANIA