THE KLEIN GROUP AS AN AUTOMORPHISM GROUP WITHOUT FIXED POINT

S. F. BAUMAN

An automorphism group V acting on a group G is said to be without fixed points if for any $g \in G$, v(g) = g for all $v \in V$ implies that g = 1. The structure of V in this case has been shown to influence the structure of G. For example if V is cyclic of order p and G finite then John Thompson has shown that G must be nilpotent. Gorenstein and Herstein have shown that if V is cyclic of order 4 then a finite group G must be solvable of p-length 1 for all $p \mid |G|$ and G must possess a nilpotent commutator subgroup.

In this paper we will consider the case where G is finite and V noncyclic of order 4. Since V is a two group all the orbits of G under V save the identity have order a positive power of 2. Thus G is of odd order and by the work of Feit-Thompson G is solvable. We will show that G has p-lengh 1 for all p ||G| and G must possess a nilpotent commutator subgroup.

REMARK. It would be interesting to have a direct proof of solvability without resorting to the work of Feit-Thompson.

From now on in this paper G represents a finite group admitting V as a noncyclic four group without fixed points. If X is a group admitting an automorphism group A then Z(X), $\Phi(X)$, X - A will be respectively the center of X, the Frattini subgroup of X and the semi-direct product of S by A in the holomorph of X. All other notations are standard.

Suppose $V = \{v_1, v_2, v_3\}$ where the v_i are the nonidentity elements of V. Denote by G_i the set of elements which are left fixed by v_i . These are easily seen to be V-invariant subgroups of G and by a result of Burnside ([1] p. 90) G_i are Abelian and v_j restricted to G_i is the inverse map if $i \neq j$. These subgroups G_i are in a sense the building blocks of G.

LEMMA 2. ([4] p. 555) (i) $|G| = |G_1| |G_2| |G_3|$ (ii) $G = G_1 G_2 G_3$

(iii) Every element $g \in G$ has a unique decomposition $g = g_1g_2g_3$, $f_i \in G_i$.

LEMMA 2. If |G| = hm where (h, m) = 1 then G contains a unique V invariant group H such that |H| = h.

S. F. BAUMAN

Proof. Since G is solvable by Hall ([5] p. 141) groups of order h exist and are conjugate in G. Thus there exist an odd number of them permuted by V. Since all the orbits have order power of 2 at least one group say H is V invariant. By Lemma 1 $H = H_1H_2H_3$ where clearly $H_i = H \cap G_i$ and $(G:H) = (G_1:H_1)(G_2:H_2)(G_3:H_3)$. Thus the H_i are Hall subgroups of the Abelian G_i and thus uniquely determined by G_i rather than H.

The decomposition of a V invariant group X into $X_1X_2X_3$ will play an important role in what will follow. The $X_i \subseteq G_i$ are always V invariant and it is clear that if $|X_i| = 1$ for any *i* then X is Abelian. For example if $X = X_1X_2$ is V invariant and normalized by a subgroup $K_1 \subseteq G_1$ then $K_1X = K_1X_1X_2$ is Abelian. Thus subgroups of the complex G_1G_2 are centralized by elements in G_1G_2 which normalize them. If $X = X_1$ then even a stronger statement is available.

LEMMA 3. If $X \subseteq G_i$, then $N_g(X) = C_g(X)$.

Proof. Suppose i = 1. It is easy to see that $N = N_d(X)$ is V invariant and thus $N = N_1 N_2 N_3$. By the above remark XN_2 and XN_3 are Abelian. Since XN_1 is Abelian, the result follows.

Before we continue to the main results, we must examine the inheritance properties of groups admitting automorphism groups without fixed points. If G is such a group and H is a V invariant subgroup, then clearly H is also such a group. If K is a normal V invariant subgroup of G, there exists the canonical way of inducing V on G/K. This definition gives rise to an automorphism group \overline{V} acting on G/K.

LEMMA 4. ([4] p. 556) In above situation (i) \overline{V} is without fixed points on G/K. (ii) $(G/K)_i = G_i K/K$.

LEMMA 5. Suppose V acts on M and A without fixed points. Suppose also that A is an elementary Abelian p-group where (p,|M|) = 1 and M is acting faithfully on A. If the complex M_1M_2 is a normal subgroup of M and $A_i \neq \{1\}$ i = 1, 2, 3 then A is M - V reducible.

Proof. By Maschke's theorem it will suffice to show that some proper subgroup of Λ is M - V invariant. Now $C = C_A(M_1M_2)$ is M - Vinvariant and $C \neq \Lambda$ since M acts faithfully. Hence if $|C| \neq 1$ we are done and so we may assume |C| = 1. Now $\Lambda_2\Lambda_3$ is the subset of Λ inverted by v_1 and so is invariant under $M_1 - V$. Set $K = \cap m_2(\Lambda_2\Lambda_3)$ where the intersection is taken over all $m_2 \in M_2$. Since $M_1 - V$ normalizes M_2 , K is $M_1M_2 - V$ invariant. Furthermore, $\Lambda_2 \subseteq K$ since M_2 centralizes Λ_2 . If $K = \Lambda_2$, then M_1M_2 centralizes K so $K \subseteq C = \{1\}$ contrary to the fact that $|\Lambda_2| \neq 1$. Thus we must have that $|K \cap \Lambda_3| \neq 1$. But then if $R = \cap m_3(K)$ where the intersection is taken over all $m_3 \in M_3$ we have that $\{1\} \subseteq \Lambda \cap K_3 \subseteq R \subseteq \Lambda_1\Lambda_2 \subset \Lambda$. Since M_1M_2 is normal in M and M_3 is V invariant it follows that R is M - V invariant and proper in Λ . This completes the proof of the lemma.

THEOREM 1. For all $p \mid |G|$ G has p-length 1.

Proof. We prove the theorem by induction on |G|. We may assume G has no normal p'-groups and $P_{\scriptscriptstyle 0}
eq \{1\}$ is the maximal normal *p*-group of G. By Hall ([5] p. 332) we have $C_{\mathfrak{g}}(P_0) \subseteq P_0$. By Lemma 2, the fact that P_0 is self centralizing and induction, we may assume G = PQ = QP where P and Q are V invariant p and q Sylow groups of G. By induction we also get that $QP_{0} \triangleleft G$, $(P:P_{0}) = p$ and P_{0} is By ([2] p. 795) Q possesses a characteristic elementary Abelian. subgroup C such that class $(C) \leq 2$, C/Z(C) is elementary Abelian and the only automorphisms of G which become the identity when restricted to C have order a power of q. PC is then a V invariant group and by induction if $C \neq Q$, since P_0 is self centralizing we get $P \triangleleft PC$. Thus $PC/P_0 = P/P_0 \times CP_0/P_0$. Since P/P_0 does not centralize QP_0/P_0 this contradicts the choice of C. Thus Q = C. Since P is normal in any proper V invariant subgroup containing it we get that $(P/P_0 - V)$ is irreducible on $QP_0/\mathcal{O}(Q)P_0$. Thus either Q is Abelian or $Z(Q) \subseteq \mathcal{O}(Q)$. Since Q/Z(Q) is elementary we get that $Z(Q) = \mathcal{O}(Q)$. Thus either Q is Abelian or nonabelian of class 2 with $Z(Q) = \Phi(Q)$. Since $|P/P_0| = p$ we may suppose $P/P_0 = (P/P_0)_3$. By the irreducibility of $P/P_0 - V$ on $QP_0/\emptyset(Q)P_0$ we have that either $Q_1Q_2 \subseteq \emptyset(Q)$ or $Q_3 \subseteq \emptyset(Q)$. The first possibility implies that P/P_0 centralizes $QP_0/\Phi(Q)P_0$ and thus P would be normal in G. Thus we have that $Q_3 \subseteq Z(Q)$ and since Q/Q_3 is Abelian we have $Q_1Q_2 \triangleleft Q$ and $Q_2Q_3 \triangleleft Q$.

Since Q_1Q_2 does not centralize P_0 , there exists an irreducible Q - Vsubmodule Λ of P_0 which is not centralized by Q_1Q_2 . Thus $\Lambda_3 \neq \{1\}$. Since $QP_0/P_0 \triangleleft G_0/P_0$ we have that $\cap x(\Lambda)$ where x ranges through P/P_0 is a $G/P_0 - V$ subspace of Λ . Since $P/P_0 = (P/P_0)_3$ and $\Lambda_3 \neq \{1\}$ this space is not the identity space. By the irreducibility of Λ as a Q - Vspace we get that Λ is also $G/P_0 - V$ irreducible. If $\Lambda_i = \{1\}$ i = 1 or i = 2 we get that $(P/P_0)_3 \subset \text{Ker } \theta$ where θ maps G/P_0 into Aut (Λ). Since Q does not centralize Λ this mapping is not the identity and the result follows by induction. Thus $\Lambda = \Lambda_1 \Lambda_2 \Lambda_3$ where $\Lambda_i \neq \{1\}$ i = 1, 2, 3.

We have that Λ admits G/P_0 and thus form the extension $G^* = \Lambda \cdot G/P_0$. G^* is V invariant and if $|G^*| < |G|$ we may apply induction

to G^* . Let R/P_0 be the maximal normal q-subgroup of G^* . Since Q does not centralize Λ we have that R/P_0 is a proper V invariant subgroup of QP_0/P_0 . Since G^* has p-length 1, $\Lambda(PR/P_0) \triangleleft G^*$. Thus $PR/P_0 \triangleleft G/P_0$ and $PR \neq G$. We are done by induction on PR. We may assume that $\Lambda = P_0$. But since $\Lambda_i \neq \{1\}$ i = 1, 2, 3 and Q - B is faithful irreducible on P_0 we have a contradiction to Lemma 5. This completes the proof of Theorem 1.

THEOREM 2. If G admits V without fixed points then G' = (G, G) is nilpotent.

Proof. Suppose G contains two distinct minimal normal V invariant subgroups N_1 and N_2 . If N_1 is disjoint from G' tden by induction on G/N_1 the theorem is proved. If N_1 and N_2 are in G' then by induction G'/N_1 and G'/N_2 are nilpotent. The minimality of N_i imply that the mapping of G' into $G'/N_1 \times G'/N_2$ is an imbedding and thus again we are done. Therefore G contains a unique minimal normal V invariant group. It is an elementary Abelian p-group P_0 which is characteristic. G must contain no normal p'-groups and by Theorem 1 we have that G has a normal p-Sylow group P. Now $C_{g}(P) = Z(P) \times K$ where K is a characteristic therefore V invariant p'-group of $C_{\mathfrak{g}}(P)$. Since $C_{\mathfrak{g}}(P)$ G we get that $C_{\mathcal{G}}(P) = Z(P) \subseteq P$. Consider $G/\mathcal{P}(P)$. If induction applies $G' \Phi(P) / \Phi(P)$ is a nilpotent group and since $C_{G/\Phi(P)}(P/\Phi(P)) = P/\Phi(P)$ we must have that $G' \Phi(P) / \Phi(P)$ is a p-group and therefore so is G'. Thus we have that P is elementary Abelian. Let M be a V invariant complement to P in G. By Maschke's theorem and the remark on the number of minimal V invariant normal subgroups of G we have that $P = P_0$ and P is (M - V) irreducible.

Consider any proper V invariant subgroup K of M. Then $PK \subset G$. By induction PK has a nilpotent commutator subgroup. Since $C_{PK}(P) = P$ this must be a p-group and therefore contained in P. Since $PK/P \cong K$ we must have that K is Abelian. Thus every proper V invariant subgroup of M is Abelian. If M is Abelian then $G' \subseteq P$ and we are done. We assume henceforth that M is not Abelian. Thus $M = M_1 M_2 M_3$ where $M_i \neq \{1\}$ for any *i*. Since $C_G(P) = P$, $P = P_1 P_2 P_3$ where $P_i \neq \{1\}$ for any *i*.

If M contains two V invariant subgroups K and L of prime index, then since these are both Abelian we get that some M_i say $M_1 \subset Z(M)$. Thus M_1M_2 and M_1M_3 are normal in M. M-V is faithful and irreducible on P. This situation is in contradiction to Lemma 5. Since M is solvable and V invariant, we have a V invariant Sylow system. If more than two primes divide |M| then we would have M Abelian. If M is a q-group for some prime q, we can get an M_iM_j M. Thus to avoid this case we are forced to the following situation. R and S are V invariant r and s Sylow subgroups, each is Abelian and M = RS = SR. We may suppose that M contains a V invariant normal Abelian subgroup K such that (M: K) = s. Thus R M and S is cyclic. Thus $S \subseteq M_i$ for some *i*. To be specific suppose $S \subseteq M_1$. Then by Maschke's theorem applied to S_1 acting on $R_1R_2R_3/\mathcal{O}(R)$ we get that $R_2R_3 = M_2M_3$ is normalized by S_1 and thus $M_2M_3 M$. We have (M - V) irreducible and faithful on $P = P_1P_2P_3$, and we again contradict Lemma 5. This completes the proof of Theorem 2.

BIBLIOGRAPHY

1. W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, 2nd Edition, 1911.

2. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.

3. D. Gorenstein and I. Herstein, Finite groups admitting a fixed point free automorphism of order 4, Amer J. Math. 83 (1961), 71-78.

4. D. Gorenstein and J. H. Walter, On finite groups with dihedral sylow 2-subgroups, Illinois J. Math. 6 (1962), 553-593.

5. M. Hall, The theory of groups, Macmillan, 1959.

6. J. Thompson, Finite groups with fixed point free automorphisms of prime order, Proc. Nat. Acad. Sci. 45 (1959), 578-581.

Received March 3, 1965. This work is contained essentially in the author's doctoral dissertation at the Univ. of Illinois, June 1962.