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THE KLEIN GROUP AS AN AUTOMORPHISM
GROUP WITHOUT FIXED POINT

S. F. BAUMAN

An automorphism group V acting on a group G is said to
be without fixed points if for any g eG, v(g) = g for all v eV
implies that g = 1. The structure of V in this case has been
shown to influence the structure of G. For example if V is
cyclic of order p and G finite then John Thompson has shown
that G must be nilpotent. Gorenstein and Herstein have shown
that if V is cyclic of order 4 then a finite group G must be
solvable of p-length 1 for all p \ \ G \ and G must possess a
nilpotent commutator subgroup.

In this paper we will consider the case where G is finite
and V noncyclic of order 4. Since V is a two group all the
orbits of G under V save the identity have order a positive
power of 2. Thus G is of odd order and by the work of Feit-
Thompson G is solvable. We will show that G has p-lengh 1
for all p\\G\ and G must possess a nilpotent commutator
subgroup.

REMARK. It would be interesting to have a direct proof of solv-
ability without resorting to the work of Feit-Thompson.

From now on in this paper G represents a finite group admitting
V as a noncyclic four group without fixed points. If X is a group
admitting an automorphism group A then Z(X)9 Φ(X), X — A will be
respectively the center of X, the Frattini subgroup of X and the
semi-direct product of S by A in the holomorph of X. All other
notations are standard.

Suppose V = {vuv2, v3} where the i;4 are the nonidentity elements
of V. Denote by (?* the set of elements which are left fixed by vim

These are easily seen to be F-invariant subgroups of G and by a
result of Burnside ([1] p. 90) G{ are Abelian and vό restricted to G{

is the inverse map if i Φ j . These subgroups Gi are in a sense the
building blocks of G.

LEMMA 2. ([4] p. 555)
( i ) | G | = |G 1 | |G 1 | | f f , |
(ii) G=G&GZ

(iii) Every element geG has a unique decomposition g =

LEMMA 2. If \G\ — hm where (h, m) — 1 then G contains a unique

V invariant group H such that \ H\ — h.

9
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Proof. Since G is solvable by Hall ([5] p. 141) groups of order
h exist and are conjugate in G. Thus there exist an odd number of
them permuted by V. Since all the orbits have order power of 2 at
least one group say H is V invariant. By Lemma 1 H — H^H^
where clearly Hi = H{\Gi and (G : H) = (G, : HX){G2 : H2)(G,: H3).
Thus the Hi are Hall subgroups of the Abelian G{ and thus uniquely
determined by Gi rather than H.

The decomposition of a 7 invariant group X into X1X2X3 will
play an important role in what will follow. The X{ ϋ G{ are always
V invariant and it is clear that if \X{\ — 1 for any i then X is
Abelian. For example if X = XXX2 is V invariant and normalized by a
subgroup Kλ <Ξ Gx then KXX — KXXXX2 is Abelian. Thus subgroups of
the complex GλG2 are centralized by elements in G±G2 which normalize
them. If X — X1 then even a stronger statement is available.

LEMMA 3. If XsGi9 then NG(X) = CG(X).

Proof Suppose i = 1. It is easy to see that N = NG(X) is V
invariant and thus N = NXN2N3. By the above remark XN2 and XN3

are Abelian. Since XNX is Abelian, the result follows.

Before we continue to the main results, we must examine the
inheritance properties of groups admitting automorphism groups without
fixed points. If G is such a group and H is a V invariant subgroup,
then clearly H is also such a group. If if is a normal V invariant
subgroup of G, there exists the canonical way of inducing V on G/K.
This definition gives rise to an automorphism group V acting on G/K.

LEMMA 4. ([4] p. 556) In above situation
( i ) V is without fixed points on G/K.
ί i i)

LEMMA 5. Suppose V acts on M and A without fixed points.
Suppose also that A is an elementary Ahelian p-group where
(p,\M\) = 1 and M is acting faithfully on A. If the complex MXM2

is a normal subgroup of M and A{ Φ {1} i = 1, 2, 3 then A is M ~V
reducible.

Proof. By Maschke's theorem it will suffice to show that some
proper subgroup of A is M — V invariant. Now C = CA{MXM2) is M — V
invariant and C Φ A since M acts faithfully. Hence if \C\ Φ 1 we are
done and so we may assume \C\ = 1. Now AΛ is the subset of A
inverted by vι and so is invariant under M1 — V. Set K = Π m2(A2A3)
where the intersection is taken over all m2 e M2. Since M1 — V normal-
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izes M2y K is M1M2 — V invariant. Furthermore, A2 £ K since M2

centralizes A2. If K — A2, then M1M2 centralizes K so K £ C — {1}
contrary to the fact that | J21 Φ 1. Thus we must have that \K{\A%\Φ\.
But then if R — Π md(K) where the intersection is taken over all m3 6 Af3
we have that {1} £ J n iζ? £ J2 S A A c: Λ# Since M±M2 is normal in
M and Λf3 is F invariant it follows that R is M — F invariant and
proper in J . This completes the proof of the lemma.

T H E O R E M 1. For all p\\G\ G has p-length 1.

Proof. We prove the theorem by induction on \G\. We may
assume G has no normal p'-groups and Po Φ {1} is the maximal normal
p-group of G. By Hall ([5] p. 332) we have CG(P0) £ Po. By Lemma
2, the fact that Po is self centralizing and induction, we may assume
G — PQ — QP where P and Q are V invariant p and q Sylow groups
of G. By induction we also get that QPQ <\ G, ( P : Po) = p and Po is
elementary Abelian. By ([2] p. 795) Q possesses a characteristic
subgroup C such that class (C) g 2, CjZ(C) is elementary Abelian and
the only automorphisms of G which become the identity when restricted
to C have order a power of q. PC is then a V invariant group and
by induction if C Φ Q9 since Po is self centralizing we get P < ] PC.
Thus PC IP, = P/Po x CP0/P0. Since P/Po does not centralize QPQ/P0

this contradicts the choice of C. Thus Q — G. Since P is normal in
any proper V invariant subgroup containing it we get that (P/PQ — V)
is irreducible on QP0/Φ(Q)P0. Thus either Q is Abelian or Z(Q) £ 0(Q).
Since QjZ(Q) is elementary we get that Z(Q) = 0(Q). Thus either Q is
Abelian or nonabelian of class 2 with Z(Q) = Φ(Q). Since | P/Po \ = p
we may suppose P/Po = {PjPQ)z. By the irreducibility of P/Po — V on
QP0/Φ(Q)Po we have that either Q ^ £ Φ(Q) or Q3 £ Φ(Q). The first
possibility implies that P/Po centralizes QP0/Φ(Q)P0 and thus P would
be normal in G. Thus we have that Q3 £ J£(Q) and since Q/Q3 is
Abelian we have Q,Q2 < Q and Q2QZ <\ Q.

Since Qj.Q2 does not centralize Po, there exists an irreducible Q — V
submodule A of Po which is not centralized by QλQ2. Thus A, Φ {1}.
Since QP0/P0 <\ GQ/P0 we have that Π x( J) where x ranges through P/Po

is a G/Po - F subspace of A. Since P/Po = (P/Poh and J 3 ^ {1} this
space is not the identity space. By the irreducibility of A as a Q — V
space we get that A is also G/Po — F irreducible. If ^ = {1} i — 1 or
i = 2 we get that (P/P 0) 3c Ker^ where 0 maps G/Po into Aut {A).
Since Q does not centralize A this mapping is not the identity and the
result follows by induction. Thus A = AλA2Az where A{φ\\) i = 1, 2, 3.

We have that Λ admits G/Po and thus form the extension G* =
G* is F invariant and if |G* | < |G| we may apply induction
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to G*. Let R/PQ be the maximal normal g-subgroup of G*. Since Q does
not centralize A we have that R/Po is a proper V invariant subgroup
of QPo/Po. Since G* has p-length 1, A(PR/P0) < G*. Thus Pβ/P0 <j G/Po

and PRφG. We are done by induction on PR. We may assume that
A = PQ. But since A{ Φ {1} i = 1,2,3 and Q - £ is faithful irreducible
on Po we have a contradiction to Lemma 5. This completes the proof
of Theorem 1.

THEOREM 2. If G admits V without fixed points then G' — (G, G)
is nilpotent.

Proof. Suppose G contains two distinct minimal normal V invariant
subgroups Nt and N2. If JVj is disjoint from G' tden by induction on
G/JVΊ the theorem is proved. If Nx and JV2 are in G' then by induction
G'/JVΊ

 a n ( i G'/Λ^ are nilpotent. The minimality of Nt imply that the
mapping of G' into GrjN1 x G'/N2 is an imbedding and thus again we
are done. Therefore G contains a unique minimal normal F invariant
group. It is an elementary Abelian p-group Po which is characteristic.
G must contain no normal p'-groups and by Theorem 1 we have that
G has a normal p-Sylow group P. Now CG(P) = Z(P) x K where K is
a characteristic therefore F invariant p'-group of CG{P). Since CQ(P) G
we get that CG{P) = Z(P) s P. Consider G/Φ(P). If induction applies
G'Φ{P)IΦ(P) is a nilpotent group and since CmiP)(P/Φ(P)) = P/0(P)
we must have that G'Φ(P)/Φ(P) is a p-group and therefore so is G\
Thus we have that P is elementary Abelian. Let M be a F invariant
complement to P in G. By Maschke's theorem and the remark on the
number of minimal F invariant normal subgroups of G we have that
P= Po and P is (M — F) irreducible.

Consider any proper F invariant subgroup K of M. Then
PKczG. By induction PK has a nilpotent commutator subgroup.
Since CPK(P) = P this must be a p-group and therefore contained in P.
Since PK/P = K we must have that i£ is Abelian. Thus every proper
F invariant subgroup of M is Abelian. If M is Abelian then Gr ξi P
and we are done. We assume henceforth that M is not Abelian.
Thus M = MMMi where Mi Φ {1} for any i. Since Cβ(P) = P,P =
PXP2PZ where P4 ̂  {1} for any i.

If M contains two F invariant subgroups K and L of prime index,
then since these are both Abelian we get that some Mi say M1 c Z(M).
Thus MXM2 and MJdz are normal in M. M — F is faithful and irre-
ducible on P. This situation is in contradiction to Lemma 5. Since
M is solvable and F invariant, we have a F invariant Sylow system.
If more than two primes divide | M \ then we would have M Abelian.
If M is a g-group for some prime q, we can get an MiMj M. Thus
to avoid this case we are forced to the following situation. R and S
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are V invariant r and s Sylow subgroups, each is Abelian and M ~
RS — SR. We may suppose that M contains a V invariant normal
Abelian subgroup K such that (M: K) = s. Thus R M and S is cyclic.
Thus S S Mi for some i. To be specific suppose S S Mlm Then by
Maschke's theorem applied to Si acting on R1R2R5IΦ(R) we get that
R2RZ — M2M3 is normalized by S± and thus M2M3 M. We have (M — V)
irreducible and faithful o n P = PxPιPz, and we again contradict Lemma
5. This completes the proof of Theorem 2.
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