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ANALYTIC PHENOMENA IN GENERAL
FUNCTION ALGEBRAS

C. E. RICK ART

Let I7 be a locally compact Hausdorff space and $ an
algebra of complex-valued continuous functions on Σ which
contains the constant functions. Assume that Σ carries the
weakest topology in which every function in % is continuous
and that each homomorphism of 2i onto the complex numbers
is given by evaluation at a point of Σ. Then W is called a
natural algebra of functions on Σ. The motivating example
for most of this paper is the algebra & of all polynomials
in n complex variables. It is readily verified that & is in
fact a natural algebra of functions on the ^-dimensional com-
plex space O . In the general setting an abstract analytic
function theory is constructed for Σ with the natural algebra
% playing a role analogous to that of & in the case of Cn.
For example, the concepts of 2I-holomorphic functions and, in
terms of these functions, ?ϊ-analytic varieties in Σ are in-
troduced. The first main result obtained is that every ?t-
analytic subvariety of a compact 2ί-convex subset of Σ is
itself ^[-convex. Next let Ω be any compact ^[-convex subset
Σ and U a relatively open subset of Ω disjoint from the
Silov boundary of Ω with respect to 21. Consider a connected
subset J^~ of the space C(Ό) of all complex-valued continuous
functions on the closure Ό of the set U. Let each function in
j ^ ~ be 9I-holomorphic in U and assume that some but not all of
the functions in ^ have zeros in U. Then the second main
result is that J^~ must contain a function with zeros on the
topological boundary of U relative to the space Ω. This im-
plies a local property of H-convex hulls which generalizes an
important result due to K. Oka for polynomially convex hulls
in C\

The theorems obtained below contain well-known results for Cn

which depend more-or-less directly on the fundamental contributions
made by K. Oka [5] to the theory of analytic functions of several
complex variables. (See, for example, [9, (A. 21) p. 285] for convexity
properties of subvarieties and [5, pp. 13, 14] or [9, (1.4) p. 264] for
the local properties of convex hulls in Cn.) The proofs of the general
theorems are entirely in the spirit of function algebras and consequently
are quite different from the usual proofs for Cn. In fact, the theory
of analytic functions of several complex variables is involved only in-
directly through the use of H. Rossi's local maximum modulus principle
for general function algebras [8] whose proof does depend on several
complex variable theory.
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In Section 1 a few notations, definitions and elementary properties
of natural algebras of functions are introduced; Section 2 contains a
discussion of functions that are holomorphic in an appropriate sense
relative to a natural algebra; Section 3 contains the results on con-
vexity of subvarieties; and Section 4 contains the local property of
convex hulls mentioned above along with a few other related results.

1* Preliminaries* Let Σ be a locally compact Hausdorff space.
We will be concerned with complex-valued functions defined and con-
tinuous (but not necessarily bounded) on the space Σ or on a subset
thereof. The algebra operations involving such functions will always
be the pointwise operations for functions. If / is defined on a set
X S Σ and if F g l , then the function obtained by restricting / to
the set Y is denoted by f\ Y. We also define

l/lr = sup I/(*) ! .

Let 2ί be an algebra of complex-valued continuous functions defined
on all of Σ. We call such an algebra a natural algebra of functions
on Σ provided it contains the constant functions and has Σ as its
carrier space [6, p. 110]. The first condition means that 21 has an
identity element. The second condition amounts to the assumption
that every homomorphism φ of 2ί onto the complex numbers be of
the form φ: /-—> f(crφ)f where σψ is a point of Σ, and that the topology
in Σ be the weakest under which all functions in 21 are continuous
[6, p. 110]. We call this topology the 2I-topology for Σ. It can also
be defined as the topology determined by neighborhoods of the form

V,o = {σ:σeΣ, | / » - ft(σQ) | < 1 (i = 1, • , k)} ,

where fu •••,/* is an arbitrary finite set in 2ί. It is evident from
this remark that, if Σ carries the 2ί-topology and X is an arbitrary
subset of Σ, then the relative topology in X coincides with the 211 X-
topology, where 211 X is the algebra of functions on X obtained by
restricting functions from 21 to X. Note that elements of 2ί separate
the points of Σ. If Σ is compact, then the condition that 2ί separate
the points of Σ is sufficient as well as necessary for the topology in
Σ to be the 2ί-topology.

Throughout the remainder of this paper, we will always require
that 2t be a natural algebra of functions on Σ, although in some
places the full assumption is not needed.

As was remarked in the Introduction, the algebra & of all poly-
nomials in n complex variables is a natural algebra of functions on
Cn [6, p. 149]. Although this is the example that guides most of
what we do, another important example of a natural function algebra
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is the algebra of functions obtained from the Gelfand representation
of an arbitrary commutative Banach algebra with identity [6, p. 119].
In this case the space Σ is compact, being the carrier space (space of
maximal ideals) of the Banach algebra.

Let X be an arbitrary subset of Σ. Then the set

{σ:σeΣ,\f(σ)\^\f\x,fe?t}

is called the %-convex hull of X in Σ and is denoted by hull^ X. If
hull^ X = X, then X is said to be an %-convex set. Notice that the
Sί-convex hull of a set X is always closed, contains X, and is 21-
convex. Now let © denote another algebra of continuous functions
on Σ. Indicate by 21 the closure of 21 in the topology of uniform con-
vergence on compact subsets of Σ. If X is compact and S) S 31, then
it is readily proved that

Thus, if 2ί and ® have the same closure, then

h u % X = hullφ X .

In particular, we have

hulls2ί X = h u % X .

Let X be a compact set in Σ and let Ω = hull^ X. Then, for
each / e St, we have

Therefore 2ί | Ω is a normed algebra. The completion of 211 Ω under
its norm can obviously be identified with the algebra 3Xfl of continuous
functions on Ω which are uniform limits on Ω of elements of 2t | Ω.
Evidently %Q is isometrically isomorphic with the algebra 2ΪX obtained
by closing 211 X in the Banach algebra C(X). The following lemma,
which depends in an essential way on the assumption that 2ί be
natural, will be used frequently below.

LEMMA 1.1. Let X be a compact set with %-convex hull Ω.
Then Ω is also compact and 2Iβ is a natural algebra of functions

On Ω.

Proof. Denote the carrier space of %Ω by Φ. For each ωe Ω set

f(φω) = f(ω) for / € « , .

Then φωeΦ and the mapping ω —* φω is the natural embedding of Ω
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in Φ. Since the topology in Ω is the 21 | β-topology, it follows that
the embedding is a homeomorphism. We show that Ω maps onto Φ.
Let

be any homomorphism of 21̂  onto the complex numbers. Then the*
mapping

a -> a I Ω -> (α | β)(<p) for α e 21 ,

defines a homomorphism of 21 onto the complex numbers. Since 21 is
natural on Σ, there exists σφe Σ such that

(a I β)(<p) = α(^) for a e 21 .

Now 2tβ is a Banach algebra with norm \f\Ω so we have

| / ( Φ ) | ^ | / U f o r / e 2 t β .

Therefore, in particular,

I a(σφ) I ^ I a \Ω — \ a \x for a e 2ί .

This means that o^ e Ω. Since SI | Ω is dense in SIβ, it follows that
f(φ) — f(σφ) for all / e %Ω. In other words, the image of Ω in Φ
under the mapping ω —> φω exhausts Φ. Therefore Ω and Φ are homeo-
morphic and 2Iβ is a natural algebra of functions on Ω. That Ω is
compact follows from the fact that the carrier space of a Banach
algebra with identity element is compact.

COROLLARY 1.2. Let Ω he an arbitrary compact %-convex subset
of Σ. Then §I# is a natural algebra of function on Ω,

Lex X be a compact subset of Σ. A closed set B gΞ X is called
a boundary of X relative to SI, or simply an ^-boundary of X, if
for every / e SI, it is true that

sup I f(σ) I = sup I f(σ) \ .

There always exists a unique minimal SI-boundary for X which is called
is Silov boundary of X relative to 21 and denoted by d^X [6, p. 133],
If 5) is any subalgebra of C(X) whose closure in C(X) is equal to
the closure of 211 X in C(X), then we have d^X — d^X. In particular,
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A necessary and sufficient condition for a point δ in X to belong to
d^X is that, for every neighborhood V of δ, there exist an element

with

sup | / ( t f ) | p
σex-v σev

If such an / exists with \f(δ)\ — \f\x, then δ is called a strong
boundary point of X relative to 2ί. In the case of a closed sub-
algebra of C(X), strong boundary points are dense in the Silov
boundary [6, p. 141]. Thus strong boundary points of X relative to
%x are dense in <3̂ X As an immediate consequence of definitions,
we have

The Silov boundary provides a kind of global maximum modulus
principle for functions in 2tx. Its existence depends only on the con-
dition that the algebaa 2ί separate the points of X. On the other
hand, since SI is assumed to be natural, a local maximum modulus
principle within compact 2ί-convex subsets of Σ is valid. This, by
Lemma 1.1, follows immediately from the local maximum modulus
principle established by H. Rossi [8, 6.1, p. 9]. We note in passing
that the proof of Rossi's theorem depends in a nontrivial way on the
theory of analytic functions of several complex variables. Now, for a
statement of the local maximum-principle, let Ω denote a compact 21-
convex set in Σ and let bdry# U denote the topological boundary of
U (a subset of Ω) with respect to the space Ω.

1.3. Local maximum modulus principle. Let U be a subset of
Ω — d^Ω which is open in Ω. Then, for every f e 21,

sup I f(ω) I = sup I f(ω) \ .
ωGC α>6bdryβ£Γ

Thus

dmU^ bdryβ U.

2* 2I-holomorphic functions. Consider a complex-valued func-
tion h defined on a subset E of Σ. We say that h is %-holomorphic
at a point σe E provided there exists a neighborhood V of σ such
that h is a uniform limit on V Π E of functions from 2t. Evidently
if h is 2ί-holomorphic at σ then it is 2ί-holomorphic at every point of
E in the prescribed neighborhood V. Therefore the set of points at
which h is 2ϊ-holomorphic is open relative to E. If h is 2I-holomor-
phic at each point of E, then we say that it is Wi-holomorphic on
(or in) the set E.
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The class of all functions that are 2I-holomorphic on a given set
E will be denoted by β£\Ά(E). Obviously SίfyfcE) is an algebra of
continuous functions on E. Note that £έfζ%(E) contains all functions
on E which belong locally to 21 on E. We have %E g £ίf%{E), and
the inclusion will in general be proper. In fact, even when £ is a
compact 2ί-convex set, there may exist functions which belong locally
to 2t on E but which do not belong to 21^ [4, p. 822], On the other
hand, when E is a compact 2I-convex set, the closure in C(E) of the
functions that belong locally to 21 on E is a natural algebra of func-
tions on E [10]. Whether or not the closure of £%\{{E) in C(E) is
also natural under these conditions remains an open question.

We now establish some basic properties of 2I-holomorphic func-
tions.

LEMMA 2.1. If h is %-holomorphic on a set E and if h(ζ) Φ 0
for each ξ e E, then h"1 is also %-holomorphic on E.

Proof Let σ be an arbitrary point of E. Consider the disc

D p = { ζ : I ζ - h(σ) \ < p } ,

where 3p — \ h(σ) |, and let V be a neighborhood of σ such that
h(ξ) e Dp for ξ e V Π E and h is a uniform limit on V Π E of func-
tions from 21. Since 0 g Dp, there exists, for arbitrary ε > 0, a poly-
nomial P(ζ) such that

P(ζ) - < 4 ϊorζeDp.
Δ

Choose δ with 0 < δ < p such that | ζ1 — ζ21 < δ and ζu ς2 e Zλo imply

Now choose a e 2ί such that

I α ( f ) - h(ξ) \<δ ΐ o r ξ G V Π E .

Since h(ξ) e DP1 it follows that a(ξ) e D2P and hence that

I P(a)(ζ) - h-\ξ) \<e f o r ξ e V Π E .

Thus h~ι is 2I-holomorphic at σ and the lemma is proved.

Next we show that a local maximum modulus principle is valid
for 2ί-holomorphic functions. (See also [2, proof Theorem 3.2].)
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THEOREM 2.2. Let Ω be a compact %-convex set in Σ and let U
be a subset of Ω — ds%Ω which is open in Ω. If h is a function
which is continuous on Ό and %-holomorphic in U, then

sup I h(ω) I = sup | h(ω) \ .
ωEU ω£bdry QTJ

Proof. Consider the closed subalgebra 3) of C(U) generated by
SI I U plus the function h. The theorem will follow if we show that
U f] dc^U — 0 . Let ω0 be an arbitrary point of U and choose a neigh-
borhood V of ω0 in Ω such that VaU and h \ Ve SI?. Then ® | V =
%y. Suppose ωoed<ftϋ. Then there exists / e ® and δ e V such that

\f(δ)\ > s u p \f(ω)\^ s u p
6bd

But, since f\Ve 31^, this contradicts the local maximum modulus
principle for Si. Thus UΠ d^U = 0 and the theorem is proved.

The result in Theorem 2.2 can be improved somewhat as follows.
Suppose that h is only defined and Sl-holomorphic in U. For arbitrary
p < I Λ, |r, set

Kp = {ft):α)G{/,| h(ω)

Then Kp is nonvacuous, compact, contained in U, and pt < p2 implies

*= n
KP2aKPi. Therefore

Observe that

K n U = {ω: ω e 17,

We prove that K Π bdry^ U Φ 0 . If this were not true then there
would exist an open set W in Ω such that

KaWdWaU.

Then if n bdry^ TF = 0 . But, since fe|TΓeC(TF), this contradicts
Theorem 2.2. Therefore there exists δ e K Π bdryβ U. If F is any
neighborhood of δ, then KPΓ)V Φ 0 for every p < | Λ |^. Thus we
obtain the following corollary.

COROLLARY 2.3. Assume that h is only defined and %-holomor-
phic within U. Then there exists δ e bdryβ U such that, for every
neighborhood V of δ,

sup I h{ω) I = sup | h{ώ) \ .
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Applying the theorem to the case U — Ω — d^Ω, we obtain the
next corollary.

COROLLARY 2.4. Let Ω be any compact ^-convex set in Σ. Then
the Silov boundary of Ω relative to ^ζχ(Ω) is equal to d^Ω.

3* 2ί-analytic varieties* Let A and Ω be subsets of Σ. The
set A will be called an %-analytic variety within Ω if A g Ω and for
each Xe A there exists a neighborhood V of λ such that V Π A is an
intersection of zero sets of functions (possibly infinite in number)
which are 2I-holomorphic in V f] Ω. In other words, if ω e V Π Ω — A,
then there exists a function h which is 2I-holomorphic on Fί lΩ and
vanishes on FΠ^ί but not at the point ω. It is obvious that, if
Γ g f i , then A Π Γ is an 21 -analytic variety within Γ. If A is rela-
tively closed in Ω, then it will be called an 2I-analytic subvariety of
Ω. If V Π A is the zero set of a single function 2I-holomorphic in
Fflfi, then A is called an 21-analytic hypersurface. Trivial examples
of 21-analytic subvarieties (actually hypersurface) of a given set Ω are
the empty set and the set Ω itself.

We establish next an important lemma for the proof of the main
theorem concerning varieties. It's proof can also be adapted to give
a related lemma obtained by Glicksberg [2, Lemma 2.1] for quite a
different purpose. It is convenient to make another definition before
stating the lemma. Let X and Ω be subsets of Σ with I g ί 3 and
let δ e Ω. Then the set X is said to be locally determining in Ω at
δ if for every neighborhood U of δ there exists a neighborhood V of
δ such that F g P and any function which is 2I-holomorphic on
U Π Ω and vanishes on U Π X must also vanish on FΠ Ω.

LEMMA 3.1. Let Ω — hull^X where X is a compact set in Σ.
If X Φ Ω, then there exists a point δ e bdryβ X at which X is locally
determining in Ω.

Proof. Set G = Ω - X. Then G is open in Ω. If ® denotes the
closure of the algebra 211 G in C{G), then by the local maximum
modulus principle for 21, we have

d^G = dsβ s bdryβ G = bdryβ X .

Let δ be a strong boundary point of G relative to ®. Then δ e bdryβ X
and we will show that X is locally determining in Ω at δ. Let U be
an arbitrary open neighborhood of the point δ. Then there exists
b G ® such that
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sup I b(ω) I < I b(d) I = I 6 | s .
ωβG-U

Since SI | G is dense in 3D, it is straightforward to obtain u e Si such
that

sup I u(ω) I < — , I u(δ) | > 1 .

Define

V = {ω: ω e U, | »(ω) | > 1} .

Then F is an open neighborhood of d and V Ξ ί7. Also let

:<we 17,

Then 7 g l f g ί J a n d l ^ n G c ί / n G .
Now suppose that h were 3I-holomorphic on Z7 Π Ω and that

A(ί7n X) = (0) while Λ((j) Φ 0 for some σ e F n Ω. Since ft is con-
tinuous on U Π Ω and zero on U Π X, it follows that fe is bounded
on f n G and

Hence there exists an integer m such that

Define

g(ω) = u(ω)mh{ω) , ω e U Π Ω .

Then g is also Sl-holomorphic on U f] Ω and flr(J7Π X) = (0). Since
I u(σ) I > 1, we have

I h(σ) I < I u(σ) \m \ h(σ) \ = | g(σ) \ £ \ g \WΠΩ .

By the local maximum modulus principle for 2t-holomorphic functions
(Theorem 2.2) and the fact that g is St-holomorphic on WΠΩ, there
must exist a point τ e bdry^ (W Π Ω) such that

I h(σ) I < I flr(τ) I .

Note that τ must belong to G since g(U f] X) — (0). From the defi-
nition of W and the fact that WπGczUnG, it follows that | ̂ (r) | =
2/3. Therefore

I g(τ) I = ( | - ) I h(τ) I ̂  ( - | ) ! h UΩ < I Λ(^) I
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This is a contradiction and completes the proof of the lemma.

We are now ready to prove the main theorem concerning con-
vexity properties of 2I-analytie varieties.

THEOREM 3.2. Let Ω be any compact %-convex set in Σ. Then
every ^-analytic subvarίety of Ω is %-convex.

Proof. Let A be an §l-analytic subvariety of Ω and set

Δ •=• hul l s^ A .

Since Ω is 31-convex and A ξΞ: Ω, we also have Δ g Ω. The problem
is to show that A = A. From the compactness of Ω and the fact
that A is closed in Ω, it follows that A is also compact. Hence, if
AΦΔ, then Lemma 3.1 applies giving a point δebdry^J at which
A is locally determining in Δ. Since A is closed, δeA and there
exists a neighborhood U of δ such that U Π A is an intersection of
zero sets of functions 2I-holomorphic in U (Ί Ω. Now choose a neigh-
borhood V of δ in accordance with the local determining property.
Since a function which is St-holomorphic in U Π Ω is automatically 2ί-
holomorphic in U Π Δ, it follows that any function which is 3I-holomor-
phic in U Π Ω and zero on U Π A will also be zero on V Π Δ. There-
fore V Π Δ c Λ. But this is impossible since 7 is a neighborhood of
a boundary point of A within the space A. Hence we must have
A — Δ, completing the proof of the theorem.

Since a closed polynomial polyhedron in Cn is polynomially con-
vex we have the following corollary for Cn.

COROLLARY 3.3. Every analytic subvariety of a closed polynomial
polyhedron in Cn is polynomially convex.

We obtain next a generalization of another version of the result
for Cn [9, (A. 21) p. 285]. For an arbitrary finite set {au •••, am} of
elements of §1, the set

Θ = {σ: σeΣ,\ a^σ) | < 1, (i = 1, , m)}

will be called an open %-polyhedron in Σ. (If " < " is replaced by
" < : " , then θ is a closed 21 -polyhedron.)

THEOREM 3.4. Let A be an ^-analytic subvariety of an open
%-polyhedron Θ in Σ. Then X ξΞ= A implies h u % X g A, for X any
compact set.
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Proof. Let Θ be defined by the elements aίf « , α m e 2 ϊ and let
X be any compact subset of A. Then hull^X is also compact. If
σ e hull^ X, then

\a(σ)\ <£ \a\z , α e § ί .

In particular, since I S ^ i ^ ,

I α<(σ) I S I α< | x < 1 , i = 1, , m .

Therefore hull^XcΘ. From the assumption that A be a sub variety
of © we have that A is relatively closed in Θ and so Λ Π (hull^ X) is
closed. In other words, A Π (hull^ X) is a subvariety of hull^ X.
Hence, by Theorem 3.2, A Π (hull^ X) is 2t-convex. Since I g J Π
(hull^X), it follows that

hu% X = A n (hullgj I ) g J ,

and the theorem is proved.

The next theorem generalizes a result of Oka in which an analytic
polyhedron in Cn is represented as a polynomial convex set in higher
dimension. [5, p. 21; 1, p. 115], We must first extend the concept
of analytic polyhedron to the general case. Let G be an open set in
Σ and let hu •• ,hm be St-holomorphic in G. Set

Δ = {σ:σeG, \ h{(a) \ ̂  1, ΐ = 1, . . . , m} .

Then A will be called an %-analytic polyhedron in G. Now consider
the product space Σ x Cm consisting of all pairs (σ, ζ) where σ £ Σ
and

Let

Γ = {(σ, ζ): a e Λ, ζ

Thus 7"1 is the "graph" in Σ x Cm of the vector-valued function ζ( ),
where

If /7 denotes the unit polydisc in Cw, then

Note that G x Cw is an open set in J? x Cm. If J is a closed set in
Σ, then it is not difficult to verify that Γ is a closed set in Σ x Cm.

Next let &^ denote the algebra of all polynomials in m complex
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variables ζu , ζm with coefficients in 21. Each Pe ^% can be regarded
as a function defined on Σ x Cm of the form

where the number of terms in the sum is finite and each coefficient
ak ... k belongs to 21. It is a routine matter to show that ^ ) T is a
natural algebra of functions on Σ x Cm. Furthermore, if we define

fr, ζ) - hάσ) - ζ«

for O, ζ) G G x Cm then ί^ is ^-holomorphic in G x Cm. Since

Γ = {(σ, ζ): (σ, ζ) G G x Cw, ίf,(σ, ζ) = 0, i = 1, , m}

we see that Γ is a ^^-analytic variety within G x Cm. We can now
prove the generalization of Oka's theorem. The latter is obtained
from the general theorem in the usual way by taking Σ — Cn and
Si = ^.

THEOREM 3.5. If the %1-analytic polyhedron A is compact, then
its associated graph Γ is ^^-convex in Σ x C m .

Proof. Let Ω denote hull^J in Σ. Then Ω is compact. Con-
sider the compact set Ω x Π in Σ x Cm. We prove that Ω x Π is

Let

(δ, ί) G h u l l ^ (fl x 77)

and consider the function

Z i ( σ , ζ ) = ζi, ( σ , ζ ) e Σ x C ™ .

Then ^ G ^ ^ for each ί = 1, , m so we have

1 ^ 1 = 1 Ztf, ζ ) \ ^ \ Z t \ΩXΠ = s u p I ζ , I = 1 .
ζeπ

It follows that ς e Π. Next consider, for a e 21, the function

A(σ, ζ) - α(σ) , (σ,ζ)eΣ x Cm .

Then L̂ G ^ ^ ί a n d hence

- ί A(δ, ζ)\S\A \ΩXΠ = s u p | a(σ) \ .

Therefore δ e Ω. In other words, (3, f) G β x 77 so β x 77 is ^ Γ

convex. We now have F as a ^^-analytic subvariety of β x 77.
Therefore, by Theorem 3.2, 7̂  is ^^-convex and the theorem is
proved.
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4* A l o c a l p r o p e r t y of Sΐ-convex sets* Let Ω be a compact

§1 -convex set in Σ and let U be a subset of Ω — d^Ω which is open
in the space Ω. Denote by ^ a family of functions each of which
is continuous on U and Sΐ-holomorphic in J7. For each / e ^ set

Λf = {ω: ωeϋ, f(ω) = 0} .

In this situation we have the following lemma.

LEMMA 4.1. Assume that J^ is a connected subset of C(U) and
that there exist g,he J^ for which

Λg n U Φ 0 and Ah Π U = 0 .

Then there also exists k e J?" for which

Ak n bdryβ Uφ 0 .

Proof. Consider the collection of all those functions which are
continuous on U and Sί-holomorphic in U. This is a subalgebra of
C(U) whose closure in C{U) we denote by ®. Then ^ g ® and,
by Theorem 2.2,

Identify Ϊ7 in the usual way with its natural embedding in the carrier
space Φ^ of the Banach algebra ® [6, p. 120]. Then we have

Observe that, by Lemma 2.1, a function which is continuous on U
and Sί-holomorphic in U will be singular in ® if and only if it has
a zero in U.

Now let J^s denote those elements of J^ that are singular in ©
and ^ those that are regular in ®. Then g e ^"s so that ^ 7 is not
empty. In case ^ — ^ then in particular the element h is singular
and accordingly must have a zero in Z7. Since Λh Π U = 0, it follows
that Λh Π bdry^ C7 ̂  0 , so we can take fc = h in this case. In case
^ ^ ^ then both JF's and ^ are nonempty. Since ^ is con-
nected in C(U)9 it follows that either β^Λ Π ̂  Φ 0 or ^ 7 n ^ ^ 0 .
From the fact that the singular elements constitute a closed set in a
Banach algebra, we conclude that the first possibility cannot occur.
Hence J^s ΓΊ J^~r Φ 0 . In other words, j^~Λ contains an element k which
is a limit of regular elements. But then k is a topological divisor of
zero in ® [6, p. 22; 7, p. 1066], and therefore its image in the Gel-
fand representation of ® must have a zero on the Silov boundary,
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5φ0$ t6> P 1 3 7 ; 7> P 1 0 7 6 ] S i n c e 3 Φ ^ Φ S bdry^ Ϊ7, it follows that
Jfc Π bdryβ Z7 Φ 0 and the proof is complete.

We obtain next the local property of Si-convex hulls in Σ which
generalizes the Oka result for polynomial convex hulls in C* mentioned
in the Introduction. This involves the concept of a continuous family
of 2ί-analytic hypersurfaces which we now describe. Let G be an
open set in Σ. For each t e [0,1] let ht be a function which is SI-
holomorphic in G and consider the hypersurface

Λt == {σ: σ e G, ht(σ) = 0} .

We say that {At} is a continuous family of hypersurfaces within G
if the mapping {t, σ) —> ht(σ) of [0,1] x G into the complex plane is
continuous. The family is said to intersect a set X if At Π X Φ 0
f o r s o m e t. I t i s s a i d t o i n t e r s e c t X n o n t r i v i a l l y i f A t f ] X i s c l o s e d
relative to X for each t and the set {t: At Π X =£ 0} is a proper, closed,
nonempty subset of [0,1]. In the case of Cn, Oka [5, p. 14] calls an
analytic hypersurface a "characteristic surface" and Stoltzenberg [9,
p. 264] calls a continuous family of analytic hypersurfaces a "curve"
of analytic hypersurfaces.

THEOREM 4.2. Let X be a compact subset of Σ. Then every
continuous family of %-analytic hypersurfaces which intersects
hull^X nontrivially must intersect X.

Proof. Set ί2 = hull^X and let {^.-£6 [0,1]} be a continuous
family of hypersurfaces within the open set G. Assume that {At}
intersects Ω nontrivially but that it does not intersect X. Consider
the set

Γ = {t:JtΓ\ΩΦ 0 } .

By hypothesis, T is a proper, closed, nonempty subset of [0,1] and
therefore its complement in [0,1] must contain an open interval with
at least one end-point in the set T. Hence, by a simple change of
parameter t, we can reduce to the case in which Ao Π Ω Φ 0 and
At n Ω = 0 for 0 < t < 1. Since Aof] Ω is compact and contained in
G — X, there exists a relatively open subset U of Ω such that

UaG-X and Atf)Ω<zU

for all te[0,1]. Let {ht:te [0,1]} be the family of Sί-holomorphic
functions which determines the family {At}. Then each ht is Sί-
holomorphic in G and hence on the set U. Also, by the continuity
condition, it is obvious that the functions ht restricted to £7 con-
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stitute a connected subset of C(U). Therefore, by Lemma 4.1,

At Π bdry^ U Φ 0

for some t. Since At Π Ω c U, this is impossible so the theorem fol-
lows.

We are indebted to John Garnett for pointing out that Theorem
4.2 is actually false if in the definition of nontrivial intersection we
drop the requirement that the set T be closed. Furthermore, the
result for Cn claimed by Oka [5, p. 14] is also false. However, Oka's
proof does yield a result for Cn which may easily be deduced from
Theorem 4.2.

Although the result for Cn follows from Theorem 4.2, it should
be noted that the proof of Theorem 4.2 involves the local maximum
modulus principle whose proof in turn involves results from the theory
of analytic functions of several complex variables as deep as those
involved in the proof of the Oka theorem. In fact, one of the nicest
proofs of the local maximum principle can be obtained from the Oka
theorem [9, p. 265]. Similarly one can easily deduce the general
local maximum principle from the property of 2ί-convex hulls proved
in Theorem 4.2. In other words these two properties of §t-convex
hulls are equivalent.

Lemma 4.1 will now be used to obtain some further properties of
2ί-holomorphic functions. These properties, in the case of functions
in 21, can be obtained from known results for Banach algebras of
functions [6, Section 3.3]. The first is a partial extension of Rouche's
theorem. For functions in 2ί, Theorems 4.3 and 4.4 follow from
theorems due to John Holladay [3; 6, (3.3.22), (3.3.23)]. As before,
Ω will denote a compact Sί-convex set in Σ and U will be a subset
of Ω — d^Ω which is open in Ω.

THEOREM 4.3. Let f and g be continuous on Ό and %-holomor-
phic in U. If

! f(ω) - g(ω) \ < \ f(ω) \ for ωe bdryΩ U ,

then f will have a zero in U if and only if g does.

Proof. Consider the family of functions

ht = (l-t)f+tg, ί e [ 0 , l ] .

Then each ht is continuous on U and Sί-holomorphic in U. Obviously
{ht} is a connected subset of C(U). Furthermore, for arbitrary ωe
bdryβί7 and ί e [ 0 , l ] f
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0 < \f(ω) I - \f(ω) - g(ω) | g \f(ω) \ - t\f(ω) - g(ω) |

^\f(ω)-t[f(ω)-g(ω))\

= I ht(ω) I .

Hence ht does not have a zero on hdryΩ U. Therefore, by Lemma 4.1,
either every ht has a zero in U or no ht has a zero in U. Since
hQ — f and hx = #, the theorem follows.

THEOREM 4.4. Let f be continuous on Ό and ^Ά-holomorphic in
U. Let ω0 be a point of U and define

δ = min | f(ω) - f(ω0) \ .
ωebdryβ U

If δ > 0, then f(U) contains the disc

{ζ:ζeC,\ζ-f(ωo)\<δ}.

Proof. Consider the family J^ of functions of the form fζ •=•
f — ζ, where ζ is an arbitrary point of the given disc. Then each
fζ is continuous on ΪI and Sί-holomorphic in U. Obviously j ^ ~ is a
connected subset of C(U). Furthermore, if | ζ — f(ωo)\ < δ and ωe
bdryΩ£7, then

) \ ^ \f(ω) - f(ωQ)\ - \f(ωQ) - ζ\

Therefore none of the functions in ^ has a zero on bdry^C/. Since
fξ(ωQ) = 0 for ζ = /(o)0), it follows from Lemma 4.1 that every func-
tion fζ has a zero in U. In other words, ζef(U) for every ζ in the
disc.

THEOREM 4.5. // / is continuous on U and %-holomorphic in
U, then

bdτycf(U)^f(bάτyΩU) .

Proof. Let ζ0 be a boundary point of f(U) and set

3 δ = min | / ( o ) ) - ζ 0 1 .
€ b d ί 7

Suppose ζ o ^/(bdry β [/). Then δ > 0. Since ζ0 is on the boundary of
/(£/), there exists ωQ e U such that \f(ω0) — ζ01 < δ. We then have

min I/(ω) —/(α) 0) | ^ 2δ .
ω 6 b d r y β CΓ

Hence, by the preceding theorem
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{ ζ : ] ζ - / ( ω o ) | < 2 δ } c / ( ? 7 ) .

Since

| ζ - / ( ω o ) | g | C - ζ o | + I Co - /(ω0) |

< I ζ - Co I + δ ,

it follows that

{ ζ : | ζ - ζ o | < δ } c / ( £ 7 ) .

But this is impossible because ζ o e hάvycf(U). Therefore we must
have ζoef(bdryΩU) and the theorem follows.
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